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Abstract. There are a number of so-called factorization theorems for rook polynomials that have appeared
in the literature. For example, Goldman, Joichi, and White [6] showed that for any Ferrers board B =
F (b1, b2, . . . , bn),

n
Y

i=1

(x + bi − (i − 1)) =
n

X

k=0

rk(B)(x) ↓(n−k)

where rk(B) is the k-th rook number of B and (x) ↓k= x(x− 1) · · · (x− (k − 1)) is the usual falling factorial
polynomial. Similar formulas where rk(B) is replaced by some appropriate generalization of rook numbers
and (x) ↓k is replaced by polynomials like (x) ↑k,j= x(x + j) · · · (x + j(k − 1)) or (x) ↓k,j= x(x− j) · · · (x −
j(k − 1)) can be found in the work of Goldman and Haglund [5], Remmel and Wachs [11], Haglund and
Remmel [7], and Briggs and Remmel [3]. We shall call such formulas generalized product formulas. The
main goal of this paper is to develop a new rook theory setting where we can give a uniform combinatorial
proof of a generalized product formula which includes all the cases referred to above. That is, given any
two sequences of non-negative integers, B = (b1, . . . , bn) and A = (a1, . . . , an), and two sign functions
sgn, sgn : {1, . . . , n} → {−1, 1}, we shall define a rook theory setting and appropriate generalization of rook
numbers rA

k
(B, sgn, sgn) such that

n
Y

i=1

(x + sgn(i)bi) =
n

X

k=0

rAk (B, sgn, sgn)

n−k
Y

j=1

(x + (

j
X

s=1

sgn(s)as)).

Thus, for example, we obtain a combinatorial interpretations of the connection coefficients between any two
bases of the polynomial ring Q[x] of the form {(x) ↓k,j}k≥0 or {(x) ↑k,j}k≥0. We also find q-analogues and
(p, q)-analogues of the above formulas.

Résumé.

Le but principal de cet article est de développer une nouvelle théorie rook dans laquelle nous pouvons
fournir des preuves combinatoires uniformes d’une formule de produit généralisée qui inclut toutes les cas
cités ci-dessus. C’est-à-dire, se donnant deux suites quelconques de nombres entiers positifs, B = (b1, . . . , bn)
et A = (a1, . . . , an), et deux fonctions de signes sgn, sgn : {1, . . . , n} → {−1, 1}, nous définissons une théorie
rook ainsi qu’une généralisation appropriée des nombres rook rA

k
(B, sgn, sgn) tel que

n
Y

i=1

(x + sgn(i)bi) =
n

X

k=0

rAk (B, sgn, sgn)

n−k
Y

j=1

(x + (

j
X

s=1

sgn(s)as)).

Donc, par exemple, nous obtenons une interprétation combinatoire des coefficients de connexion entre deux
bases de l’anneau des polynômes Q[x] de la forme {(x) ↓k,j}k≥0 ou {(x) ↑k,j}k≥0. Nous trouvons aussi des
q-analogues et des (p, q)-analogues de ces formules.

1. Introduction

Let N = {1, 2, 3, . . .} denote the set of natural numbers. For any positive integer a, we will set [a] :=
{1, 2, . . . , a}. We will say that Bn = [n] × [n] is an n by n array of squares (like a chess board), which we
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call cells. The cells of Bn will be numbered from left to right and bottom to top with the numbers from
[n], and we will refer to the cell in the ith row and jth column of Bn as the (i, j) cell of Bn. Any subset
of Bn is called a rook board. If B is a board in Bn with column heights b1, b2, . . . , bn reading from left to
right, with 0 ≤ bi ≤ n for each i, then we will write B = F (b1, b2, . . . , bn) ⊆ Bn. In the special case that
0 ≤ b1 ≤ b2 ≤ · · · ≤ bn ≤ n, we will say that B = F (b1, b2, . . . , bn) is a Ferrers board.

Given a board B = F (b1, b2, . . . , bn), there are three sets of numbers we can associate with B, namely,
the rook, file, and hit numbers of B. The rook number, rk(B), is the number of placements of k rooks in
the board B so that no two rooks lie in the same row or column. The file number, fk(B), is the number of
placements of k rooks in the board B so that no two rooks lie in the same column but where we allow any
given row to contain more than one rook. Given a permutation σ = σ1σ2 . . . σn in the symmetric group Sn,
we shall identify σ with the placement Pσ = {(1, σ1), (2, σ2), . . . , (n, σn)}. Then the hit number, hk(B), is
the number of σ ∈ Sn such that the placement Pσ intersects the board in exactly k cells.

All of these numbers have been studied extensively by combinatorialists. Here are three fundamental
identities involving these numbers. Define (x) ↓m= x(x − 1) · · · (x − (m − 1)) and (x) ↑m= x(x + 1) · · · (x +
(m − 1)). Then

n∑

k=0

hk(B)xk =

n∑

k=0

rk(B)(n − k)!(x − 1)k,(1.1)

n∏

i=1

(x + bi − (i − 1)) =

n∑

k=0

rn−k(B)(x) ↓k, and(1.2)

n∏

i=1

(x + bi) =

n∑

k=0

fn−k(B)xk.(1.3)

Identity (1.1) is due to Kaplansky and Riordan [8] and holds for any board B ⊆ Bn. Identity (1.2) holds for
all Ferrers boards B = F (b1, . . . , bn) and is due to Goldman, Joichi, and White [6]. Identity (1.3) is due to
Garsia and Remmel [4] and holds for all boards of the form B = F (b1, . . . , bn). Formulas (1.2) and (1.3) are
examples of what we shall call product formulas in rook theory.

We note that in the special case where B = Bn := F (0, 1, 2, . . . , n−1), Equations (1.2) and (1.3) become

xn =

n∑

k=0

rn−k(Bn)(x) ↓k and(1.4)

(x) ↑n=

n∑

k=0

fn−k(Bn)xk.(1.5)

This shows that rn−k(Bn) = Sn,k, where Sn,k is the Stirling number of the second kind, and (−1)n−kfn−k(Bn) =
sn,k, where sn,k is the Stirling number of the first kind, and thus, we obtain rook theory interpretations for
the Stirling numbers of the first and second kind.

There are natural q-analogues of formulas (1.1), (1.2), and (1.3). That is, define [n]q = 1+q+· · ·+qn−1 =
1 − qn

1 − q
. We then define q-analogues of the factorials and falling factorials by [n]q! = [n]q[n − 1]q · · · [2]q[1]q

and [x]q ↓m= [x]q [x − 1]q · · · [x − (m − 1)]q, Garsia and Remmel [4] defined q-analogues of the hit numbers,
hk(B, q), q-analogues of the rook numbers, rk(B, q), and q-analogues of file numbers, fk(B, q), for Ferrers
boards B so that the following hold:

n∑

k=0

hk(B, q)xn−k =

n∑

k=0

rn−k(B, q)[k]q!x
k(1 − xqk+1) · · · (1 − xqn),(1.6)

n∏

i=1

[x + bi − (i − 1)]q =
n∑

k=0

rn−k(B, q)[x]q ↓k, and(1.7)

n∏

i=1

[x + bi]q =

n∑

k=0

fn−k(B, q)([x]q)
k.(1.8)
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Finally, we should mention that there are also (p, q)-analogues of such formulas (see Wachs and White [12],
Briggs and Remmel [2], and Briggs [1]).

In recent years, a number of researchers have developed new rook theory models which give rise to new
classes of product formulas. For example, Haglund and Remmel [7] developed a rook theory model where the
analogue of the the rook number mk(B) counts partial matchings in the complete graph Kn. They defined

an analogue of a Ferrers board F̃ (a1, . . . a2n−1) where 2n− 1 ≥ a1 ≥ · · · ≥ a2n−1 ≥ 0 and where the nonzero
entries in (a1, . . . , a2n−1) are strictly decreasing, and, in their setting, they proved the following identity,

(1.9)

2n−1∏

i=1

(x + a2n−i − 2i + 2) =

2n−1∑

k=0

mk(F )x(x − 2)(x − 4) · · · (x − 2(n − (k − 1))).

Remmel and Wachs [11] defined a more restricted class of rook numbers, r̃
j
k(B), in their j-attacking rook

model and proved that for Ferrers boards B = F (b1, . . . , bn), where bi+1 − bi ≥ j − 1 if bi 6= 0,

(1.10)

n∏

i=1

(x + bi − j(i − 1)) =

n∑

k=0

r̃
j
n−k(B)x(x − j)(x − 2j) · · · (x − (k − 1)j).

Goldman and Haglund [5] developed an i-creation rook theory model and proved that for Ferrers boards one
has the following identity,

(1.11)

n∏

j=1

(x + bi + j(i − 1)) =

n∑

k=0

r
(i)
n−k(B)x(x + (i − 1)) · · · (x + (k − 1)(i − 1)).

In all of these new models, the authors proved q-analogues and or (p, q)-analogues of their product formulas.

2. A General Product Formula

Suppose we are given any two sequences of natural numbers: B = {bi}
n
i=1,A = {ai}

n
i=1 ∈ Nn. Define

Ai = a1 + a2 + · · · + ai, the ith partial sum of the ai’s, and let B = F (b1, b2, . . . , bn) be a rook board. We
will also define two functions, sgn and sgn, such that sgn, sgn : [n] → {−1, +1}. Our goal is to define a
rook theory model with an appropriate notion of the rook numbers rAk (B, sgn, sgn) such that the following
product formula holds:

(2.1)

n∏

i=1

(x + sgn(i)(bi)) =

n∑

k=0

rAk (B, sgn, sgn)

n−k∏

j=1

(x +
∑

s≤j

sgn(s)(as)).

We will refer to Equation (2.1) as the general product formula and the number rAk (B, sgn, sgn) as the kth

augmented rook number of B with respect to A, sgn, and sgn.

2.1. Special Cases of the General Product Formula. We first wish to consider the case where
sgn(i) = +1 and sgn(i) = −1 for every 1 ≤ i ≤ n. In this case we will set

rAk (B, sgn, sgn) = rAk (B).

Thus, we want to prove Equation (2.2):

(2.2)
n∏

i=1

(x + bi) =
n∑

k=o

rAk (B)(x − A1)(x − A2) · · · (x − An−k).

To do this, we first construct an augmented rook board, BA = F (b1 + A1, b2 + A2, . . . , bn + An). In BA,
the cells in the i-th column are (1, i), . . . , (bi + a1 + · · · + ai, i) reading from bottom to top. We shall refer
to the cells (1, i), . . . , (bi, i) as the bi part of column i, the cells (bi + 1, i), . . . , (bi + Ai, i) as the Ai part of
column i, and, for each s ≤ i, the cells (bi + a1 + · · ·as−1 + 1, i), . . . , (bi + a1 + · · · + as, i) as the as part of
column i where by convention a−1 = 0. We call the part of the board BA which corresponds to the Ai’s
the augmented part of BA. We now consider rook placements in BA with at most one rook in each column.
We define the following cancellation rule: a rook r placed in column j of BA will cancel, in each column
to its right, all of the cells which lie in the ai part of that column where i is the highest subscript j such
that the aj part of that column has not been canceled by a rook to the left of r. For example, in Figure 1,
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Figure 1. BA, with B = F (1, 2, 2, 4) and A = (2, 1, 2, 1), and a placement of two rook in BA.

where B = F (1, 2, 2, 4) and A = (2, 1, 2, 1), the rook in the first column cancels the cells in the a2 part of
the second column, the a3 part of the third column, and the a4 part of the fourth column (those cells which
contain a “•”). The rook in the third column cancels the cells in the a3 part the fourth column (those cells
which contain a “∗”). We then define rAk (B) to be the number of ways of placing k such rooks in BA so that
no rook lies in a cell which is canceled by a rook to its left.

We can now construct a general augmented rook board, BA
x , defined by the sequences B = {bi}

n
i=1 and

A = {ai}
n
i=1 and some nonnegative integer x. The board BA

x will be the board BA (the augmented part of
BA will here be referred to as the upper augmented part of BA

x ), with x rows appended below, called the
x-part and then a “mirror image” of the augmented part of BA below that, called the lower augmented part
of BA

x . In the lower augmented part, we number the cells in i-th column with (1, i), . . . , (bi + Ai, i) reading
from top to bottom and we define the as part of the i-th column of the lower augmented board to consist of
the cells (a1 + · · ·+as−1 +1, i), . . . , (a1 + · · ·+as, i). We say that the board BA is separated from the x-part
by the high bar and the x-part is separated from the lower augmented part by the low bar. An illustration of
this type of board with B = F (1, 2, 2, 4), A = (2, 1, 2, 1), and x = 4 can be seen in the left side of Figure 2.

In order to define a proper rook placement in the board BA
x , we make the rule that exactly one rook

must be placed in every column of BA
x . When placing rooks in BA

x , we will define the following cancellation
rules:

(1) A rook placed above the high bar in the jth column of BA
x will cancel all of the cells in columns

j + 1, j + 2, . . . , n , both in the upper and lower augmented parts, which belong to the ai part of
the column where i is largest j such that cells in the aj part of the column are not canceled by a
rook to their left.

(2) Rooks placed below the high bar do not cancel any cells.

An example of a rook placement in these boards can be seen in the right side of Figure 2. In this placement,
the rook placed in the first column is placed above the high bar, thus it cancels in the columns to its right
those cells contained in the ai part of highest subscript in both the upper and lower augmented parts (denoted
by a “•”). The rook placed in the second column is placed below the the high bar so that it cancels nothing.
The rook placed in the third column is again placed above the high bar so that it cancels as does the rook
placed in the first column (denoted by a “∗”), and the last rook may be placed in any available cell.

We will now prove two lemmas in order to prove Equation (2.2).

Lemma 2.1. If there are bj +Am cells to place a rook above the high bar in column j, then there are Am

cells below the low bar to place a rook in column j.

Proof: By how we define our cancellation, a block of cells from ai gets canceled above the high bar if and
only if a block of cells from ai gets canceled below the low bar.

Lemma 2.2. If k rooks are placed above the high bar in BA
x , then the column heights of the uncanceled

cells in the lower augmented part of BA
x , when read from left to right, are A1, A2, . . . , An−k.

Proof: Suppose the first rook above the high bar is placed in the jth column. The columns below the low
bar which lie to the left of column j have heights A1, A2, . . . , Aj−1. Now, the rook that was placed in the
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Figure 2. BA
x , with B = F (1, 2, 2, 4),A = (2, 1, 2, 1), and x = 4, and a placement of rooks

in BA
x .

the jth column will cancel all the cells in the aj+1 part of the (j + 1)st column, all the cells in the aj+2

part of the (j + 2)nd column, etc.. Thus after this cancellation, the heights of the columns below the low
bar into which a rook may be placed are A1, A2, . . . , Aj−1, Aj , . . . An−1. Now suppose that the leftmost
rook to the right to column j is in column k. Then the rook in column k will cancel all the cells in ak

part of the (k + 1)st column, all the cells in the ak+1 part of the (k + 2)nd column, etc.. Thus after this
second cancellation, the heights of the columns below the low bar into which a rook may be placed are
A1, A2, . . . , Aj−1, Aj , . . . Ak−1, Ak, . . . , An−2. We can continue this type of reasoning to show that if there
are k rooks are placed above the high bar in BA

x , then the column heights of the uncanceled cells in the
lower augmented part of BA

x , when read from left to right, are A1, A2, . . . , An−k.

We are now in position to prove (2.2). We shall show that (2.2) is the result of computing the sum S

of the weights of all placements of n rooks in BA
x in two different ways, where we define the weight of the

rooks placed above the low bar to be “+1”, the weight of the rooks placed below the low bar to be “−1”,
and the weight of any placement to be the product of the weights of the rooks in the placement.

If we first place the rooks starting with the leftmost column and working to the right, then we can see
that in the first column there are exactly x + b1 + 2a1 cells in which to place the first rook, where the “2a1”
corresponds to placing the rook in either the upper or lower augmented part of the 1st column. Since all
of the rooks above the high bar have weight “+1” and all the rooks placed below the low bar have weight
“−1”, it is easy to see that the possible placements of rooks in the first column contributes a factor of
x+ b1 +a1 +(−a1) = x+ b1 to S. When we consider the possible placements of a rook in the second column,
we have two cases.

Case I: Suppose the rook that the 1st column was placed below the high bar. Then nothing was canceled
in the second column so we can place a rook in any cell of the second column. Thus there are a total
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x + b2 + 2(a1 + a2) ways to place the rook in the second column in this case. However, given our weighting
of the rooks, we see that the possible placements of rooks in the second column contributes a factor of
x + b2 + (a1 + a2) + (−a1 − a2) = x + b2 to S.

Case II: If the rook in the first column was placed above the high bar, then the cells corresponding to a2

part in both the upper and lower augmented parts of the 2nd column are canceled. Thus in this case, there
are x+ b2 +2a1 cells left to place the rook in the second column. However, given our weighting of rooks, the
possible placements of rooks in the second column contributes a factor of x + b2 + (a1) +−a1 = x + b2 to S

in this case.
In general, suppose we are placing a rook in the jth column that does not have a rook above the high

bar reading from left to right. Assume that we have placed s rooks above the high bar and t rooks below
the high bar in the first j − 1 columns. Then by Lemma 2.1, we have, x + bj + 2(Aj−s) choices as to where
to place the rook in that column. Again, due to our weighting, it is easy to see that possible placement of
rooks contributes a factor of x + bj + Aj−s + (−Aj−s) = x + bj to S. It follows that S =

∏n
i=1(x + bi).

The second way of counting this sum of the weights of all the rook placements in BA
x is to organize

the placements by how many rooks lie above the high bar. Suppose that we place k rooks above the high
bar and then wish to extend that to a placement in the entire board. The number of ways of placing the
k rooks above the high bar is given by rAk (B). For any such placement of k rooks above the high bar, we
are left with n − k columns in which to place rooks below the high bar. We consider the placement of the
remaining rooks in these available columns starting with the leftmost one and working right. By Lemma 2.2,
the number of ways we can do this will be (x + A1)(x + A2) · · · (x + An−k)). However, these placements
come with a weighting of (x + (−A1)(x + (−A2) · · · (x + (−An−k)) since the cells below the low bar have
weight ′′ − 1′′. Thus the sum of the weights of the set of placements in BA

x with k rooks above the high bar
is rAk (B)(x − A1)(x − A2) · · · (x − An−k)). Summing over all possible k gives us the RHS of (2.2).

�

Now suppose we change the weights which are assigned to rooks in BA
x by declaring that the weight of

a rook placed in the upper augmented part is “−1” and all other rooks have weight “+1”. Again the weight
of the placement is the product of the weights of the rooks in the placement. This weighting corresponds to
the case where sgn(i) = +1 and sgn(i) = +1 for every 1 ≤ i ≤ n. We will define r̃Ak (B) to be the weighting
of all placements of k rooks in BA with this newly assigned weight, and this yields an equation which is
analogous to Equation (2.2), namely,

(2.3)
n∏

i=1

(x + bi) =
n∑

k=o

r̃Ak (B)(x + A1)(x + A2) · · · (x + An−k).

Proof of Equation (2.3): This proof follows exactly the proof of Equation (2.2) with the weights from the
upper and lower augmented parts switched.

�

We can see that these two special cases encapsulate all of the product formulas stated in the Introduction.
Next we sketch a proof for the general product formula (2.1).

2.2. The General Product Formula. We have now shown how to generate our general product
formula in the special cases where the functions sgn and sgn are certain constant functions; however, the
proofs of Equations (2.2) and (2.3) do not depend on sgn and sgn being constant. Rather, the proofs depend
only on the condition that, for each column j, if the cells corresponding to the ai part of the upper augmented
part in column j are weighted with ω(ai), then the cells corresponding to the ai part in the lower augmented
part in column j must be weighted with -ω(ai). Moreover, the proofs do not depend on the weighting of
rooks placed in the cells of the cells in the bi part of column i in BA. Thus, if we define rAk (B, sgn, sgn) to
be the weight of all placements of k rooks in the board BA, with each rook in the bi part of column i having
weight sgn(i) and each rook in the ai part of any column below the low bar having weight sgn(i), and the
weight of any placement to be the product of the rooks in that placement, then we can show that Equation
(2.1) is the result of computing the sum S of the weights of all placements of n rooks in BA

x exactly as in
the proofs of Equations (2.2) and (2.3).
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3. Q-Analogues of General Product Formulas

In this section, we shall describe how one can derive q-analogues of some of the general product formulas
described in Section 2. We do this by q-counting rook placements considered in Section 2. To simplify
our notation, we shall use the convention that for any negative integer x, [x]q := −[|x|]q. If we set Ak =∑k

i=1 sgn(i)ai, then we can prove the following q-analogue of Equation 2.1:

(3.1)

n∏

i=1

([x]q + sgn(i)[bi]q) =

n∑

k=0

rAk (B, sgn, sgn, q)

n−k∏

s=1

([x]q + [As]q).

For each cell c in the board BA, we let belowBA(c) denote the number of cells that lie directly below
c in its part. That is, if c is a cell in the augmented part of BA, then belowBA(c) is the number of cells
below c in the augmented part of BA and if c is not in the augmented part of BA, then belowBA(c) is
just the number of cells below c in B. We may then extend this definition to the board BA

x by defining
belowBA

x
(c) to be the number of cells below a given cell c in BA

x in its part. To each cell c in the board

BA
x we will assign a q-weight, ωq(c). Given a placement P in BA

x , we will define the q-weight of that
placement to be ωq(P ) =

∏
r∈P ωq(r), where ωq(r) = ωq(c) if the rook r is in cell c. First, we define

ωq(c) = q
below

BA
x

(c)
if c is in the x-part of the board. Next we set ωq(c) = sgn(i)q

below
BA

x

(c)
if c is in the ith

column of the board B. For the lower augmented part of the board, the definition of ωq(c) is slightly more
involved. Suppose we are at the kth column of the lower augmented part of BA

x , which has column height
a1 + a2 + · · · + ak. Recall that we labeled the cells in k-th column of the lower augmented board from top
to bottom with the pairs (1, k), (2, k), . . . , (a1 + · · ·+ ak, k). Then, for i ≤ a1, we set ωq((i, k)) = sgn(1)qi−1.
Now, assume by induction that we have assigned weights to the cells (1, k), (2, k), . . . , (a1 + · · ·+ai, k) so that∑a1+···+ai

j=1 ωq((j, k)) = [Ai]q. Then we will label the cells (a1 + · · · + ai + 1, k), . . . , (a1 + · · · + ai + ai+1, k)
in the following manner:

(1) Case I: Ai ≥ 0
(a) If Ai ≤ Ai+1, then we assign the q-weight of the cells (a1 + · · ·+ ai + 1, k), . . . , (a1 + · · ·+ ai +

ai+1, k) to be qAi , qAi+1, . . . , qAi+1−1, respectively.
(b) If 0 ≤ Ai+1 ≤ Ai, then we assign the q-weight of the cells (a1 + · · ·+ ai + 1, k), . . . , (a1 + · · ·+

ai + ai+1, k) to be −qAi−1,−qAi−2, . . . ,−qAi+1 , respectively.
(c) If Ai+1 < 0, then we assign the q-weight of the cells (a1+· · ·+ai+1, k), . . . , (a1+· · ·+ai+ai+1, k)

to be −qAi−1,−qAi−2, . . . ,−1,−1,−q,−q2, . . . ,−q|Ai+1|−1, respectively.
(2) Case II: Ai < 0

(a) If Ai ≥ Ai+1, then we assign the q-weight of the cells (a1 + · · ·+ ai + 1, k), . . . , (a1 + · · ·+ ai +

ai+1, k) to be −q|Ai|,−q|Ai|+1, . . . ,−q|Ai+1|−1, respectively.
(b) If 0 ≥ Ai+1 ≥ Ai, then we assign the q-weight of the cells (a1 + · · ·+ ai + 1, k), . . . , (a1 + · · ·+

ai + ai+1, k) to be q|Ai|−1, q|Ai|−2, . . . ,−q|Ai+1|, respectively .
(c) If Ai+1 > 0, then we assign the q-weight of the cells (a1+· · ·+ai+1, k), . . . , (a1+· · ·+ai+ai+1, k)

to be q|Ai|−1, q|Ai|−2, . . . , 1, 1, q, q2, . . . , qAi+1−1, respectively.

Finally, in order to assign the q-weights to the kth column of the upper augmented part of BA
x , we will simply

take the weights that we assigned to the lower augmented part of the kth column, flip them upside down
and multiply them all by “-1”. An example of this weighting can be seen in Figure 3, where the q-number
displayed in each cell of the diagram corresponds to the q-weight a rook placed in that cell would be given.
For example, we can see that the q-weights assigned to the lower augmented part of the fourth column, read
from top to bottom are: 1, q,−q,−1,−1, 1. The weights in the upper augmented part of the same column
are, when read from bottom to top: −1,−q, q, 1, 1,−1, which is the previous sequence with every element
multiplied by “-1”.

Now we can prove Equation 3.1 similar to the way we proved Equation 2.1 in the previous section. That
is, Equation 3.1 results by computing the sum Sq of the q-weights of all placements of n rooks in BA

x in two
different ways.

3.1. Special Cases of the General Q-Analogue Formula. Now consider the special cases where
sgn and sgn are the constant functions −1 or +1. In this case, it is easy to see that
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Figure 3. A q-analogue of the rook placement in Figure 2 with sgn(i) = +1 for i = 1, 2, 3, 4
and sgn(i) = +1 for i = 1, 3, 4 sgn(i) = −1 for i = 2. Here each cell is labeled with the
q-weight that a rook placed in that cell would be given.

(i) if a rook in is the bi part of column i of BA, then its q-weight will be sgn(i)q
below

BA
x

(c)
,

(ii) if a rook in is the Ai part of column i of BA, then its q-weight will be −sgn(i)q
below

BA
x

(c)
,

(iii) if rook in is the x part of column i of BA, then its q-weight will be q
below

BA
x

(c)
, and

(iv) the q-weights of a cell in the lower augmented part of the board is just the q-weight of its mirror image
in the upper augmented part of the board multiplied by ′′ − 1′′.
In this case (3.1) becomes

(3.2)

n∏

i=1

([x]q + sgn(i)[bi]q) =

n∑

k=0

rAk (B, sgn, sgn, q)

n−k∏

s=1

([x]q + sgn(s)[As]q).

It turns out that by slightly modifying our q-counting of rook placements, we can prove analogues of
(3.2) where we replace [x] − [c] by [x − c] or [x] + [c] by [x + c].

3.1.1. Case I: sgn(i) = sgn(i) = −1. For x, c ∈ N with x > c, we have that [x]q − [c]q = qc[x− c]q. Thus
(3.2) becomes

(3.3)

n∏

i=1

qbi [x − bi]q =

n∑

k=0

rAk (B, sgn, sgn, q)

n−k∏

s=1

qAs [x − As].
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It is then easy to see that if we replace rAk (B, q) with r̂Ak (B, q) by

r̂Ak (B, q) := q(A1+A2+···+An−k)−(b1+···+bn)rAk (B, q),

we obtain the following form of Formula 3.2:

(3.4)

n∏

i=1

([x − bi]q) =

n∑

k=o

r̂Ak (B, q)([x − A1]q)([x − A2]q) · · · ([x − An−k]q).

3.1.2. Case II: sgn(i) = −1, sgn(i) = +1. For x, c ∈ N we have that [x]q + qx[c]q = [x + c]q. Thus if
we want to replace [x]q + [Ai]q by [x + Ai]q = [x]q + qx[Ai], then we should weight each rook that lies in
upper augmented part of BA by an extra factor of qx. This means that when we consider placements in
BA

x , then we must also weight each rook that lies in the lower augmented part of BA
x with an extra factor of

qx so that for any given column the weights of possible placements in the lower and upper augmented parts

cancel each other as in the proofs in Section 2. Thus we define ˆ̂rAk (B, q) to be the sum of the q-weight over
all placements of k rooks in BA where each rook placed in the augmented part receiving an extra factor of
qx. Then it is easy to see that (3.2) becomes

(3.5)

n∏

i=1

([x]q − [bi]q) =

n∑

k=0

ˆ̂rAk (B, q)[x + A1] · · · [x + An−k].

Finally we replace ˆ̂rAk (B, q) by a new q-rook number, ˜̃rAk (B, q) where ˜̃rAk (B, q) := q−(b1+···+bn)rAk (B, q). In
doing this, we obtain the following formula:

(3.6)

n∏

i=1

([x − bi]q) =

n∑

k=0

˜̃r
A

k (B, q)([x + A1]q)([x + A2]q) · · · ([x + An−k]q).

We can also use methods similar to the ones used in Cases I and II, to prove the following product formulas

for appropriate choices of rAk (B, q) and r
A
k (B, q).

3.1.3. Case III: sgn(i) = +1, sgn(i) = −1.

(3.7)

n∏

i=1

([x + bi]q) =

n∑

k=o

rAk (B, q)([x − A1]q)([x − A2]q) · · · ([x − An−k]q)

3.1.4. Case IV: sgn(i) = sgn(i) = +1.

(3.8)

n∏

i=1

([x + bi]q) =

n∑

k=o

r
A
k (B, q)([x + A1]q)([x + A2]q) · · · ([x + An−k]q)

4. (P, Q)-Analogues of General Product Formulas

For any n ∈ N we define [n]p,q = pn−1 +qpn−2+ · · ·+qn−2p+qn−1, and we again use the convention that
for a negative integer x, [x]p,q := −[|x|]p,q. Then we can give a combinatorial interpretation of the following
(p, q)-analogue formula:

(4.1)
n∏

i=1

([x]p,q + sgn(i)[bi]p,q) =
n∑

k=0

rAk (B, sgn, sgn, p, q)
n−k∏

s=1

([x]p,q + [As]p,q).

Again, we will assign a weight to each cell c of the board BA
x , which we will call the (p, q)-weight of c,

and this will be denoted by ωp,q(c). We will also define the statistic aboveBA
x

(c), for any cell c in the board

BA
x , to be the number of cells that lie above c in its part, that is, if c is in the x-part of the board, then

aboveBA
x

(c) is the number of cells that lie above c in the x-part. For a placement P of rooks in BA
x , we will

let the (p, q)-weight of P be ωp,q(P ) =
∏

r∈P ωp,q(r), where ωp,q(r) = ωp,q(c) if the rook r is placed in cell c.

Now, we can (p, q)-weight the cells of BA
x in the following manner:

(1) If c is in the x-part of the board, then ωp,q(c) = p
above

BA
x

(c)
q

below
BA

x

(c)
.

(2) If c is in the ith column of the board B, then ωp,q(c) = sgn(i)p
above

BA
x

(c)
q

below
BA

x

(c)
.
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(3) If c is in the kth column of the lower augmented part of the board, then we will set ω(1, k) = [A1]p,q.

We will then set ω(a1 + · · · + ai + 1, k) = [Ai+1]p,q − [Ai]p,q and ω(j, k) = 0 otherwise.
(4) If c is in the kth column of the upper augmented part of the board, then weights will be assigned,

from bottom to top, as they were in the lower augmented part, with all of the weights multiplied
by “-1”.

We note that this type of weighting is more complicated than our q-weighting since now a cell can receive
a (p, q)-weight which is a polynomial in p and q rather than just a plus or minus a power of q. Moreover,
there are many other choices we could make for the weights, but none of them reduce to the q-weight when
p = 1. However, in certain special cases, we can assign a more natural (p, q)-weight which is consistent
with some of the (p, q)-analogues of product formulas that have appeared in the literature, but we shall not
consider these types of results in this paper.
We can now prove Equation 4.1 in the exact same way that we proved Equation 3.1.

5. Conclusion and Perspectives

We have given a rook theory interpretation of the product formula

n∏

i=1

(x + sgn(i)bi) =

n∑

k=0

rAk (B, sgn, sgn)

n−k∏

j=1

(x + (

j∑

s=1

sgn(s)as)),

and this interpretation can be used to obtain identities studied by Goldman and Haglund [5], Remmel and
Wachs [11], Haglund and Remmel [7], and Briggs and Remmel [3]. We also have q- and (p, q)- analogues of
this general product formula.

One application of this new theory is in finding the inverses of connection coefficients for different
bases of Q[x] [9]. If we define the functions (x) ↑k,a= x(x + a)(x + 2a) · · · (x + (k − 1)a) and (x) ↓k,b=
x(x − b)(x − 2b) · · · (x − (k − 1)b), then for any a ∈ N, the sets {(x) ↑n,a}n≥0 and {(x) ↓n,a}n≥0 will both
form bases of Q[x]. Thus, there exist numbers Cn,k(b ↓, a ↑) and Cn,k(a ↑, b ↓) such that

(5.1) (x) ↓n,b=
n∑

k=0

Cn,k(b ↓, a ↑)(x) ↑k,a

and

(5.2) (x) ↑n,a=

n∑

k=0

Cn,k(a ↑, b ↓)(x) ↓k,b .

From linear algebra it is known that ||Cn,k(b ↓, a ↑)||−1 = ||Cn,k(a ↑, b ↓)||, that is to say,

(5.3)

n∑

j=k

Cn,j(a ↑, b ↓)Cj,k(b ↓, a ↑) = χ(n = k).

However, this result may be obtained from our rook theory model. Given the numbers a, b ∈ N we will define
B = (0, b, 2b, . . . , (n − 1)b) and A = (0, a, a, . . . , a). By now defining sgn(i) = −1 and sgn(i) = +1 we see
that Cn,k(b ↓, a ↑) = rAk (B, sgn, sgn) and Cn,k(a ↑, b ↓) = rBk (A, sgn, sgn). We can now write equations (5.1)
and (5.2) as

(5.4) (x) ↓n,b=

n∑

k=0

rAk (B, sgn, sgn)(x) ↑k,a

and

(5.5) (x) ↑n,a=

n∑

k=0

rBk (A, sgn, sgn)(x) ↓k,b .

In particular, we now have that
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(5.6)

n∑

j=k

rAn−k(B, sgn, sgn)rBj−k(A, sgn, sgn) = χ(n = k),

and we have a completely combinatorial proof of this fact based solely on involutions on rook placements in
an augmented rook board setting. We can give similar combinatorial proofs for all the possible choice of ↑
and ↓ in the coefficient Cn,k(b ↓, a ↑). For example, we can find combinatorial interpretations of the inverses
of the numbers Cn,k(a ↑, b ↑) and Cn,k(a ↓, b ↓) which satisfy the equations

(5.7) (x) ↑n,a=

n∑

k=0

Cn,k(a ↑, b ↑)(x) ↑k,b

and

(5.8) (x) ↓n,a=

n∑

k=0

Cn,k(a ↓, b ↓)(x) ↓k,b .

Another application of our rook theory model relates to the numbers S
p(x)
n,k defined in [10] by

(5.9) S
p(x)
n+1,k = S

p(x)
n,k−1 + p(k)S

p(x)
n,k ,

where p(x) is any polynomial with nonnegative integer coefficients and with initial conditions S
p(x)
0,0 = 1 and

S
p(x)
n,k = 0 whenever n < 0, k < 0, or n < k. We call such numbers poly-Stirling numbers of the second kind

[10]. Then, for example, in the special case where p(x) = xm, we can use an extension of the theory of
general augmented rook boards to give a combinatorial proof of the formula

(5.10) (xn)m =

n∑

k=0

Sxm

n,k

k∏

j−1

(xm − (j − 1)m).

Finally, we should note that a theory of hit numbers corresponding to the rook theory for our generalized
product formulas has yet to be developed.

References

[1] K. S. Briggs, q-Analogues and p, q-Analogues of Rook Numbers and Hit Numbers and Their Extensions, Thesis, UC, San

Diego (2005)
[2] K. S. Briggs and J. B. Remmel, A p, q-analogue of a Formula of Frobenius, Electronic Journal of Combinatorics 10(1)

(2003), #R9.
[3] K. S. Briggs and J. B. Remmel, m-Rook Numbers and a Generalization of a Formula of Frobenius for Cm §Sn, Electronic

Journal of Combinatorics, submitted.
[4] A. M. Garsia and J. B. Remmel, Q-Counting Rook Configurations and a Formula of Frobenius, J. Combin. Theory Ser.

A 41 (1986), 246-275.
[5] J. Goldman and J. Haglund Generalized Rook Polynomials, J. Combin. Theory Ser. A 91 (2000), 509-530.
[6] J. R. Goldman, J. T. Joichi, and D. E. White, Rook Theory I. Rook equivalence of Ferrers boards, Proc. Amer. Math

Soc. 52 (1975), 485-492.
[7] J. Haglund and J. B. Remmel, Rook Theory for Perfect Matchings, Advances in Applied Mathematics 27 (2001), 438-481.
[8] I. Kaplansky and J. Riordan, The problem of rooks and its applications, Duke Math. J. 13 (1946), 259-268.
[9] J. Liese, B. K. Miceli, and J. B. Remmel, The Combinatorics of the Connection Coefficients of Generalized Rising and

Falling Factorial Polynomials, In Preparation.
[10] B. K. Miceli, TBD, Thesis, UC, San Diego (2006)
[11] J. B. Remmel and M. Wachs, Generalized p, q-Stirling numbers, private communication.
[12] M. Wachs and D. White, p, q-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A 56 (1991), 27-46.

Department of Mathematics, University of California, San Diego, La Jolla, CA, USA, 92093-0112

E-mail address: bmiceli@math.ucsd.edu

URL: http://www.math.ucsd.edu/~bmiceli


