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San Diego, California 2006

A Rook Theory Model for the Generalized p, q-Stirling Numbers of the First
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Abstract. In (EJC 11 (2004), #R84), Remmel and Wachs presented two natural ways to define p, q-
analogues of the generalized Stirling numbers of the first and second kind, S1(α, β, r) and S2(α, β, r) as
introduced by Hsu and Shiue (Adv. App. Math 20 (1998), 366-384). In this paper, we present a rook
theoretic model for each type of p, q-analogue based on a pair of boards parametrized by the nonnegative
integers α, β, and r, so that rooks attack cells on its own board as well as on its companion board. For each
model, we provide an analogue of Goldman, Joichi and White’s product formula (Proc. Amer. Math. Soc.
52 (1975), 485-492) and demonstrate how each type of the generalized p, q-Stirling numbers of the first and
second kind arises as a special case of these p, q-rook numbers.

Résumé. Remmel et Wachs, dans (EJC 11 (2004), #R84), ont présenté deux façons naturelles pour définir les
p, q-analogues des nombres de Stirling généralisés, des première et deuxième sortes, S1(α, β, r) et S2(α, β, r),
introduits par Hsu et Shiue (Adv. App. Math 20 (1998), 366-384). Dans cet article, nous présentons un
model théorique des mouvements de la tour pour chaque type des p, q-analogues basé sur une paire de jeux

paramétrisés par les entiers non-négatifs α, β, et r. Ainsi, la tour attaque les cases sur son propre jeu et
celles de l’autre jeu. Pour chacun des modèles, nous donnons une formule analogue à celle du produit de
Goldman, Joichi et White (Proc. Amer. Math. Soc. 52 (1975), 485-492) et démontrons comment chaque
type de p, q-analogues des nombres de Stirling généralisés des première et deuxième sortes forment un cas
spécial de nombres p, q-analogues pour les mouvements de la tour.

1. Introduction

In [11], Remmel and Wachs presented two natural ways to give p, q-analogues of Hsu and Shiue’s gener-

alized Stirling numbers of the first and second kind [7], respectively denoted S
1

n,k(α, β, r) and S
2

n,k(α, β, r)
for 0 ≤ k ≤ n, and defined by

(1.1) x(x − α) · · · (x − (n − 1)α) =

n
∑

k=0

S
1

n,k(α, β, r)(x − r)(x − r − β) · · · (x − r − (k − 1)β),

and

(1.2) x(x − β) · · · (x − (n − 1)β) =

n
∑

k=0

S
2

n,k(α, β, r)(x + r)(x + r − α) · · · (x + r − (k − 1)α).

From these definitions, one can clearly see that S
1

n,k(α, β, r) = S
2

n,k(β, α,−r). Moreover, we find that

S
1

n,k(1, 0, 0) = sn,k and S
2

n,k(1, 0, 0) = Sn,k where sn,k and Sn,k respectively denote the classical Stirling
numbers of the first and second kind.

By setting

S1
n,k(α, β, r) = S

1

n,k(α, β,−r) and S2
n,k(α, β, r) = S

2

n,k(α, β,−r)
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and replacing x by t − r in equation (1.1) and x by t in equation (1.2), Remmel and Wachs obtained the
following pair of equations:

(1.3) (t − r)(t − r − α) · · · (t − r − (n − 1)α) =

n
∑

k=0

S1
n,k(α, β, r)t(t − β) · · · (t − (k − 1)β),

and

(1.4) t(t − β) · · · (t − (n − 1)β) =

n
∑

k=0

S2
n,k(α, β, r)(t − r)(t − r − α) · · · (t − r − (k − 1)α).

Replacing (t − γ) by two distinctly natural p, q-analogues, Remmel and Wachs then defined their two
types of p, q-analogues of S1

n,k(α, β, r) and S2
n,k(α, β, r). The p, q-analogue of any real number γ is defined

by

[γ]p,q =
pγ − qγ

p − q
,

so that when γ = n is a nonnegative integer, [n]p,q = qn−1+pqn−2+· · · pn−2q+pn−1. Then, the p, q-analogues
of n! and

(

n
k

)

are naturally defined by [n]p,q! = [n]p,q[n − 1]p,q · · · [1]p,q and
[

n

k

]

p,q

=
[n]p,q!

[k]p,q![n − k]p,q!
.

For their type-I (p, q)-analogues of S1
n,k(α, β, r) and S2

n,k(α, β, r), Remmel and Wachs replaced (t − γ)

by ([t]p,q − [γ]p,q) in (1.3) and (1.4). That is, they defined S
1,p,q
n,k (α, β, r) and S

2,p,q
n,k (α, β, r) for 0 ≤ k ≤ n

respectively by the following equations:

([t]p,q − [r]p,q)([t]p,q − [r + α]p,q) · · · ([t]p,q − [r + (n − 1)α]p,q)(1.5)

=
n

∑

k=0

S
1,p,q
n,k (α, β, r)([t]p,q)([t]p,q − [β]p,q) · · · ([t]p,q − [(k − 1)β]p,q)

and

([t]p,q − [β]p,q) · · · ([t]p,q − [(n − 1)β]p,q)(1.6)

=
n

∑

k=0

S
2,p,q
n,k (α, β, r)([t]p,q − [r]p,q)([t]p,q − [r + α]p,q) · · · ([t]p,q − [r + (k − 1)α]p,q).

Moreover, they proved that when 0 ≤ k ≤ n, the S
1,p,q
n,k (α, β, r) and S

2,p,q
n,k (α, β, r) defined according to

equations (1.5) and (1.6) satisfy the following recursions:

(1.7) S
1,p,q
0,0 (α, β, r) = 1 and S

1,p,q
n,k (α, β, r) = 0 if k < 0 or k > n

and

(1.8) S
1,p,q
n+1,k(α, β, r) = S

1,p,q
n,k−1(α, β, r) + ([kβ]p,q − [nα + r]p,q)S

1,p,q
n,k (α, β, r),

(1.9) S
2,p,q
0,0 (α, β, r) = 1 and S

2,p,q
n,k (α, β, r) = 0 if k < 0 or k > n

and

(1.10) S
2,p,q
n+1,k(α, β, r) = S

2,p,q
n,k−1(α, β, r) + ([kα + r]p,q − [nβ]p,q)S

2,p,q
n,k (α, β, r).

For their type-II (p, q)-analogues of S1
n,k(α, β, r) and S2

n,k(α, β, r), Remmel and Wachs replaced (t − γ)

by [t − γ]p,q in (1.3) and (1.4). That is, they defined S̃
1,p,q
n,k (α, β, r) and S̃

2,p,q
n,k (α, β, r) for 0 ≤ k ≤ n by the

following equations:

(1.11) [t − r]p,q [t − r − α]p,q · · · [t − r − (n − 1)α]p,q =

n
∑

k=0

S̃
1,p,q
n,k (α, β, r)[t]p,q [t − β]p,q · · · [t − (k − 1)β]p,q

and

(1.12) [t]p,q[t − β]p,q · · · [t − (k − 1)β]p,q =

n
∑

k=0

S̃
2,p,q
n,k (α, β, r)[t − r]p,q[t − r − α]p,q · · · [t − r − (k − 1)α]p,q.
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Figure 1. A placement in (N|F)23(BBIP(1, 0, 3, 3, 5, 6, 7, 8)).

They further proved that when 0 ≤ k ≤ n, the S̃
1,p,q
n,k (α, β, r) and S̃

2,p,q
n,k (α, β, r) defined according to

equations (1.11) and (1.12) satisfy the following recursions:

(1.13) S̃
1,p,q
n+1,k(α, β, r) = q(k−1)β−nα−r S̃

1,p,q
n,k−1(α, β, r) + pt−kβ [kβ − nα − r]p,qS̃

1,p,q
n,k (α, β, r),

with initial conditions S̃
1,p,q
0,0 (α, β, r) = 1 and S̃

1,p,q
n,k (α, β, r) = 0 if k < 0 or k > n, and

(1.14) S̃
2,p,q
n+1,k(α, β, r) = qr+(k−1)α−nβ S̃

2,p,q
n,k−1(α, β, r) + pt−r−kα[kα + r − nβ]p,qS̃

2,p,q
n,k (α, β, r),

with initial conditions S̃
2,p,q
0,0 (α, β, r) = 1 and S̃

2,p,q
n,k (α, β, r) = 0 if k < 0 or k > n.

Remmel and Wachs gave rook theory interpretations to c
i,j
n,k(p, q) = (−1)n−kS

1,p,q
n,k (j, 0, i) and S

i,j
n,k(p, q) =

S
2,p,q
n,k (j, 0, i) as well as c̃

i,j
n,k(p, q) = (−1)n−kS̃

1,p,q
n,k (j, 0, i) and S̃

i,j
n,k(p, q) = S̃

1,p,q
n,k (j, 0, i) where i, j are nonneg-

ative integers. Moreover, they were able to give combinatorial proofs of certain product formulas involving
these polynomials. In this paper, we provide a generalization of their results by giving combinatorial in-
terpretations to S

i,p,q
n,k (α, β, r) and S̃

i,p,q
n,k (α, β, r) when α, β and r are integers and i ∈ {1, 2}, and we give

combinatorial proofs to the product formulas that Remmel and Wachs did not provide.

2. A Rook Theoretic Model for S
1,p,q
n,k (α, β, r) and S

2,p,q
n,k (α, β, r)

In this section, we give a rook theoretic model to interpret the type-I generalized p, q-Stirling numbers
S

1,p,q
n,k (α, β, r) and S

2,p,q
n,k (α, β, r). The boards in our model are constructed as follows. Given any two

finite sequences of nonnegative integers {a1, a2, . . . , an} and {b1, b2, . . . , bn}, we construct the bipartite board

BBIP(a1, b1, a2, b2, . . . , an, bn) whose column heights from left to right are a1, b1, a2, b2, . . . , an, bn. We will
call the collection of columns whose heights are a1, a2, . . . , an, the Premier-columns (P -columns), and the
collection of columns whose heights are b1, b2, . . . , bn the Secondary-columns (S-columns). For example, from
the sequences {1, 3, 5, 7} and {0, 3, 6, 8}, we obtain the board BBIP(1, 0, 3, 3, 5, 6, 7, 8) which is illustrated in
Figure 1 with the P -columns given in white and the S-columns shaded in gray.

For any bipartite board B = BBIP(a1, b1, a2, b2, . . . , an, bn), a rook r placed in a P -column (resp.
S-column) of B is said to j-attack the cells in the P -columns of B that are strictly to the right of r in
the first j rows that are weakly above r (resp. in the first j rows beginning with row 1) that are not
j-attacked by any other rook that lies in a column to the left of r. Then, a placement P of rooks in
BBIP(a1, b1, a2, b2, . . . , an, bn) is called j-nonattacking if no rook in P is j-attacked by any rook in P to its

left and there is at most one j-attacking rook per column pair {ai, bi} for each 1 ≤ i ≤ n. We let (N|F)j
k(B)

denote the set of all placements of k j-nonattacking rooks in B.
A placement in (N|F)23(BBIP(1, 0, 3, 3, 5, 6, 7, 8)) is illustrated in Figure 1. As usual, rooks are denoted

in the figure by an “x”. In this example, the leftmost rook in B is placed in row 2 of column a1 and 2-attacks
the cells in rows 2 and 3 of columns a3 and a4. These cells 2-attacked by the leftmost rook contain an “a” in
Figure 1. The second rook from the left in row 3 of column b3 2-attacks the cells in rows 1 and 4 of column
a4. These cells 2-attacked by this second rook contain a “b” in Figure 1. The final rook of the placement is
in row 6 of column a4. Since there are no P -columns to the right of a4, this rook does not j-attack any cells
in the board.
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Figure 2. The p, q-weight of P ∈ (N|F)23(BBIP(1, 0, 3, 3, 5, 6, 7, 8)) as contributed to r
j
k(B, p, q).

For a nonnegative integer j, we say that a board B = BBIP(a1, b1, a2, b2, . . . , an, bn) is a j-attacking

bipartite board if 0 ≤ a1 ≤ a2 ≤ · · · ≤ an, 0 ≤ b1 ≤ b2 ≤ · · · ≤ bn, and for all placements of rooks in B, there
are a sufficient number of cells in the P -columns of B for each rook to j-attack. By this definition, note that
in the case when b1 = · · · = bn = 0, the board BBIP(a1, 0, a2, 0, · · · , an, 0) is a j-attacking bipartite board
provided that for all 1 ≤ i < n, ai 6= 0 implies that ai+1 ≥ ai + j − 1. However, in the case when bi 6= 0 for
some 1 ≤ i < n, B is a j-attacking bipartite board provided that aj+1 ≥ aj + j for all j > i ≥ 1. In Figure 1,
the board BBIP(1, 0, 3, 3, 5, 6, 7, 8) is a 2-attacking bipartite board.

Suppose that P ∈ (N|F)j
k(B) and set

nS(P) = the number of rooks of P placed in an S-column,
AB = the number of non-attacked cells in B directly above some rook in P,
BB = the number of non-attacked cells in B directly below some rook in P,

w
j
p,q,B(P) = (−1)nS(P)qABpBB .

The type-I p, q-rook numbers, denoted r
j
k(B, p, q), are defined by

(2.1) r
j
k(B, p, q) =

∑

P∈(N|F)j

k
(B)

w
j
p,q,B(P).

Here and in what follows, we will place a “•” in the cells j-attacked by rooks in a given placement P, a
q in the cells that contribute a factor of q to w

j
p,q,B(P), and a p in the cells that contribute a factor of p to

w
j
p,q,B(P). As illustrated in Figure 2 for P ∈ (N|F)23(BBIP(1, 0, 3, 3, 5, 6, 7, 8)), w

j
p,q,B(P) = (−1)2q9p5 .

Our first result is a p, q-analogue of Goldman, Joichi, and White’s product formula [5].

Theorem 2.1. Let B = BBIP(s, b1, s + j, b2, . . . , s + (n − 1)j, bn). Then

n
∑

k=0

r
j
n−k(B, p, q)([x]p,q − [s]p,q)([x]p,q − [s + j]p,q) · · · ([x]p,q − [s + (k − 1)j]p,q)(2.2)

= ([x]p,q − [b1]p,q)([x]p,q − [b2]p,q) · · · ([x]p,q − [bn]p,q).

Proof. Given B = BBIP(s, b1, s+ j, b2, . . . , s+(n− 1)j, bn), we let B(x,j) be the board obtained from B

by adjoining a single column of height x + s + (i − 1)j beneath the column pair {ai, bi} for each 1 ≤ i ≤ n.
Here we call the line separating B from the adjoined rows the bar, the first x rows below the bar in B(x,j)

the x-adjoined rows and the last s + (n − 1)j rows in B(x,j) below the bar the j-adjoined rows. Further, we
will call the collection of cells in the column pair {ai, bi} together with the x + s + (i − 1)j adjoined cells
below it the ith joined column. The augmented board B(x,j) is illustrated in Figure 3.

For a given board B, placements of j-attacking rooks placed above the bar in B(x,j) will j-attack the
same cells above the bar as described above. Additionally, any j-attacking rook r placed above the bar will
attack all of the cells below it in its joined column as well as the first j rows in the j-adjoined rows strictly
to the right of r not attacked by any rook to the left. A rook that is placed in one of the x-adjoined rows will
attack all of the cells directly above it in the board B as well as the cells directly below it in the j-adjoined
rows. A rook that is placed in a j-adjoined row will attack the cells directly above it in the x-adjoined
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Figure 3. The board B(x,j)(s, b1, s + j, b2, . . . , s + (n − 1)j, bn)

rows and in the board B. The cells attacked by rooks of a placement in B(x,j)(1, 0, 3, 3, 5, 6, 7, 8) have been
illustrated in Figure 4.

Let (N|F)j
n(B(x,j)) be the set of all placements of n rooks in B(x,j) such that no two rooks lie in the

same joined column, no rook in B(x,j) is j-attacked by any rook in B(x,j) to its left. Thus, the placement in

Figure 4 is in (N|F)24(BBIP(1, 0, 3, 3, 5, 6, 7, 8)(x,2)).
Then for positive integers x, the identity in (2.2) arises from two ways of counting

(2.3) N =
∑

P∈(N|F)j
n(B(x,j))

w
j
p,q,B(x,j)

(P),

where w
j
p,q,B(x,j)

(P) is defined as

w
j
p,q,B(x,j)

(P) = (−1)nS+nj q
AB(x,j) p

BB(x,j) ,

with
nS(P) = the number of rooks of P placed in an S-column,
nj(P) = the number of rooks of P placed in a j-adjoined row,

AB(x,j)
= the number of non-attacked cells in B(x,j) directly above some rook in P,

BB(x,j)
= the number of non-attacked cells in B(x,j) directly below some rook in P.

First we note that each placement P ∈ (N|F)j
n(B(x,j)) can be obtained by placing exactly one rook in

each of the joined columns of B(x,j) proceeding from left to right. In the first joined column, the rook can
be placed in either the first P -column, the first S-column, below the bar in the x-adjoined rows, or in the
j-adjoined rows. It is easy to see that the contribution of the first joined column to N by placing the rook in
the ith row from the top in the first P -column is qi−1ps−i for a total contribution of [s]p,q to N . Likewise,
the contribution of the first joined column to N by placing the rook in the ith row from the top in the first
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Figure 4. A placement in the board B(x,2)(B(1, 0, 3, 3, 5, 6, 7, 8)).

S-column is −qi−1pb1−i for a total contribution of −[b1]p,q to N . Using the same analysis, we find that when
the rook is placed below the bar in the x-adjoined rows, the contribution of the first joined column to N is
[x]p,q while the total contribution is −[s]p,q from the placements in the j-adjoined rows. Therefore, the total
contribution of the first joined column to N is [x]p,q − [b1]p,q.

We now argue that regardless of the placement of the rook in the first joined column, the contributions
from the P -column and the j-adjoined of the second adjoined column will cancel. To see this, first consider
the case when a rook in the first joined column had been placed in B. Such a rook would attack exactly
j cells in the P -columns as well as j cells in each row of the j-adjoined columns weakly to the right of the
rook. In this case, the contribution from the second P -column is [s]p,q while the contribution from the second
j-adjoined column is −[s]p,q. On the other hand, if the rook in the first joined column had been placed below
the bar, then the contribution from the second P -column is [s + j]p,q while the contribution from the second
j-adjoined column is −[s + j]p,q. To this end, we can argue as above, that the contribution of the second
adjoined column to N is [x]p,q − [b2]p,q.

Continuing in this way, we find that the total contribution of all n adjoined columns to N is

([x]p,q − [b1]p,q)([x]p,q − [b2]p,q) · · · ([x]p,q − [bn]p,q).

Now suppose that a placement Q of n−k rooks is fixed in B. Then a placement P ∈ (N|F)j
n(B(x,j)) can

be obtained from Q by placing the remaining k rooks below the bar. As prescribed, each of the n− k rooks
in B will attack j cells in the j-adjoined rows in the columns weakly to the right of each rook. As such, there
will be x places in the x-adjoined rows and s + (i − 1)j places in the j-adjoined rows in which to place the
ith rook below the bar from the left, for 1 ≤ i ≤ k. Therefore, the placement of the k rooks below the bar
will contribute a factor of ([x]p,q − [s]p,q)([x]p,q − [s + j]p,q) · · · ([x]p,q − [s + (k − 1)j]p,q) to N . Furthermore,

each rook placed below the bar will attack the cells above it in B implying that w
j
p,q,B(Q) = w

j
p,q,B(P ∩ B).
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Thus,

N =

n
∑

k=0

∑

Q∈(N|F)j

n−k
(B)

∑

P∈(N|F)
j
n(B(x,j))

P∩B=Q

w
j
p,q,B(x,j)

(P)

=

n
∑

k=0

∑

Q∈(N|F)j

n−k
(B)

w
j
p,q,B(P ∩ B)([x]p,q − [s]p,q)([x]p,q − [s + j]p,q) · · · ([x]p,q − [s + (k − 1)j]p,q)

=

n
∑

k=0

r
j
n−k(B, p, q)([x]p,q − [s]p,q)([x]p,q − [s + j]p,q) · · · ([x]p,q − [s + (k − 1)j]p,q).

�

We are now in a position to give combinatorial interpretations to S
1,p,q
n,k (α, β, r) and S

2,p,q
n,k (α, β, r) defined

by (1.5) and (1.6). To begin, let x, y, µ and ν be nonnegative integers and let Bx,y
µ,ν,n denote the bipartite

board BBIP(x, y, x + µ, y + ν, x + 2µ, y + 2ν, . . . , x + (n − 1)µ, y + (n − 1)ν). Then,

Theorem 2.2. If n and k are nonnegative integers for which 0 < k < n, then

S
1,p,q
n,k (α, β, r) = r

β
n−k(B0,r

β,α,n, p, q) and(2.4)

S
2,p,q
n,k (α, β, r) = rα

n−k(Br,0
α,β,n, p, q).(2.5)

Proof. We begin by noting that the identities in (2.4) and (2.5) can be proved by showing that the

p, q-rook numbers r
β
n−k(B0,r

β,α,n, p, q) satisfy the same recursion as S
1,p,q
n,k (α, β, r) given in (1.7) and (1.8) and

that rα
n−k(Br,0

α,β,n, p, q) satisfy the same recursion as S
2,p,q
n,k (α, β, r) given in (1.9) and (1.10).

For n = 0, B
x,y
µ,ν,0 = ∅. So, it immediately follows from our definition that

r
β
0 (B0,r

β,α,0, p, q) = 1 and rα
0 (Br,0

α,β,0, p, q) = 1.

Clearly, r
β
n−k(B0,r

β,α,n, p, q) = 0 and rα
n−k(Br,0

α,β,n, p, q) = 0 if k > n or k < 0 since both (N|F)β
n−k(B0,r

β,α,n)

and (N|F)α
n−k(Br,0

α,β,n) are empty if k > n or k < 0. Therefore, to verify the equalities in (2.4) and (2.5), it
remains to show that for all n ≥ 1 and 0 ≤ k ≤ n,

(2.6) r
β
n+1−k(B0,r

β,α,n+1, p, q) = r
β

n−(k−1)(B
0,r
β,α,n, p, q) + ([kβ]p,q − [nα + r]p,q) r

β
n−k(B0,r

β,α,n, p, q)

and

(2.7) rα
n+1−k(Br,0

α,β,n+1, p, q) = rα
n−(k−1)(B

r,0
α,β,n, p, q) + ([kα + r]p,q − [nβ]p,q) rα

n−k(Br,0
α,β,n, p, q).

To prove (2.6), we note that the set of elements in (N|F)β
n+1−k(B0,r

β,α,n+1) can be partitioned into the

sets No, P − Last, and S − Last where No consists of the placements of (N|F)β
n+1−k(B0,r

β,α,n+1) with no

rook in the column pair {an+1, bn+1}, P −Last consists of the placements of (N|F)β
n+1−k(B0,r

β,α,n+1) with a

rook in the P -column an+1, and S − Last consists of the placements of (N|F)β
n+1−k(B0,r

β,α,n+1) with a rook
in the S-column bn+1. Then,

r
β
n+1−k(B0,r

β,α,n+1, p, q) =
∑

P∈(N|F)β

n+1−k
(B0,r

β,α,n+1)

w
β

p,q,B
0,r

β,α,n+1

(P)

=
∑

P∈No

w
β

p,q,B
0,r

β,α,n+1

(P) +
∑

P∈P−Last

w
β

p,q,B
0,r

β,α,n+1

(P) +
∑

P∈S−Last

w
β

p,q,B
0,r

β,α,n+1

(P).

It is easy to see that a placement in P ∈ No has n − (k − 1) rooks to the left of the column pair

{an+1, bn+1}. Thus, w
β

p,q,B
0,r

β,α,n+1

(P) = w
β

p,q,B
0,r

β,α,n

(Q) where Q ∈ (N|F)β

n−(k−1)(B
0,r
β,α,n) is the placement

that would result in eliminating the last pair of columns {an+1, bn+1} from B
0,r
β,α,n+1. Therefore,

∑

P∈No

w
β

p,q,B
0,r

β,α,n+1

(P) =
∑

Q∈(N|F)β

n−(k−1)
(B0,r

β,α,n
)

w
β

p,q,B
0,r

β,α,n

(Q) = r
β

n−(k−1)(B
0,r
β,α,n, p, q).
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To compute
∑

P∈P−Last w
β

p,q,B
0,r

β,α,n+1

(P), we first observe that each Q ∈ (N|F)β
n−k(B0,r

β,α,n) can be ex-

tended to kβ placements in P − Last by placing an additional rook in a non-attacked cell of column an+1.

This follows since each of the n − k rooks of a fixed Q ∈ (N|F)β
n−k(B0,r

β,α,n) attacks β cells in column an+1

leaving nβ − (n − k)β = kβ non-attacked cells in column an+1 in which to place the additional rook. Next,
we note that nS(P) = nS(Q). So, if the additional rook is placed in the ith non-attacked cell from the top,

then the weight of the corresponding placement Pi is qi−1pkβ−iw
β

p,q,B
0,r

β,α,n

(Q). Therefore,

∑

P∈P−Last

w
β

p,q,B
0,r

β,α,n+1

(P) =
∑

Q∈(N|F)β

n−k
(B0,r

β,α,n
)

(pkβ−1 + qpkβ−2 + · · · + qkβ−2p + qkβ−1) w
β

p,q,B
0,r

β,α,n

(Q)

= [kβ]p,qr
β
n,k(B0,r

β,α,n, p, q).

Finally, we observe that each rook of P ∈ S −Last attacks β cells of column an+1 but no cells of column

bn+1. Accordingly,
∑

P∈S−Last w
β

p,q,B
0,r

β,α,n+1

(P) could be computed by extending each Q ∈ (N|F)β
n−k(B0,r

β,α,n)

to nα + r distinct placements in (N|F)β
n−k+1(B

0,r
β,α,n+1) by placing an additional rook in any of the nα + r

non-attacked cells of column bn+1. For such a placement Pi obtained by placing the additional rook in the

ith non-attacked cell from the top, we note that nS(Pi) = 1 + nS(Q) and consequently w
β

p,q,B
0,r

β,α,n+1

(Pi) =

−qi−1pnα+r+iw
β

p,q,B
0,r

β,α,n

(Q). Therefore, it follows that

∑

P∈S−Last

w
β

p,q,B
0,r

β,α,n+1

(P)

=
∑

Q∈(N|F)β

n−k
(B0,r

β,α,n
)

−(pnα+r−1 + qpnα+r−2 + · · · + qnα+r−2p + qnα+r−1) w
β

p,q,B
0,r

β,α,n

(Q)

= −[nα + r]p,q r
β
n,k(B0,r

β,α,n, p, q).

In the same way, we prove (2.7) by partitioning (N|F)α
n+1−k(Br,0

α,β,n+1) into the sets No, P −Last, and

S − Last where No consists of the placements of (N|F)α
n+1−k(Br,0

α,β,n+1) with no rook in the column pair

{an+1, bn+1}, P − Last consists of the placements of (N|F)α
n+1−k(Br,0

α,β,n+1) with a rook in the P -column

an+1, and S − Last consists of the placements of (N|F)α
n+1−k(Br,0

α,β,n+1) with a rook in the S-column bn+1.

The recursion in (2.7) will follow by showing that

rα
n+1−k(B0,r

β,α,n+1, p, q) =
∑

P∈(N|F)α
n+1−k

(Br,0
α,β,n+1)

wα

p,q,B
r,0
α,β,n+1

(P)

=
∑

P∈No

wα

p,q,B
r,0
α,β,n+1

(P) +
∑

P∈P−Last

wα

p,q,B
r,0
α,β,n+1

(P) +
∑

P∈S−Last

wα

p,q,B
r,0
α,β,n+1

(P).

Again, it is easy to see that
∑

P∈No

wα

p,q,B
r,0
α,β,n+1

(P) = rα
n−(k−1)(B

r,0
α,β,n, p, q).

To compute
∑

P∈P−Last wα

p,q,B
r,0
α,β,n+1

(P), we observe that each fixed placement Q ∈ (N|F)α
n−k(Br,0

α,β,n)

can be extended to kα + r distinct placements in (N|F)α
n−k(Br,0

α,β,n) by placing an additional rook in one of

the nα + r − α(n − k) = kα + r non-attacked cells of column an+1. If the additional rook is placed in the
ith non-attacked cells from the top of column an+1, then the weight of the corresponding placement Pi is
qi−1pkα+r−iwα

p,q,B
r,0
α,β,n

(Q). It follows that

∑

P∈P−Last

wα

p,q,B
r,0
α,β,n+1

(P) =
∑

Q∈(N|F)α
n−k

(Br,0
α,β,n

)

(pkα+r−1 + qpkα+r−2 + · · · + qkα+r−2p + qkα+r−1) wα

p,q,B
r,0
α,β,n

(Q)

= [kα + r]p,qr
α
n,k(Br,0

α,β,n, p, q).



A ROOK THEORY MODEL FOR THE GENERALIZED p, q-STIRLING NUMBERS

As above, we observe that each rook of P ∈ S−Last attacks α cells of column an+1 but no cells of column

bn+1. Therefore,
∑

P∈S−Last wα

p,q,B
r,0
α,β,n+1

(P) could be computed by extending each Q ∈ (N|F)α
n−k(Br,0

α,β,n) to

nβ distinct placements in (N|F)α
n−k+1(B

r,0
α,β,n+1) by placing an additional rook in any of the nβ non-attacked

cells of column bn+1. For such a placement Pi obtained by placing the additional rook in the ith non-attacked
cell from the top, we note that nS(Pi) = 1 + nS(Q) and thus wα

p,q,B
0,r

β,α,n+1

(Ps) = −qi−1pnβ+iwα

p,q,B
0,r

β,α,n

(Q).

To this end,
∑

P∈S−Last

wα

p,q,B
r,0
α,β,n+1

(P) =
∑

Q∈(N|F)α
n−k

(Br,0
α,β,n

)

−(pnβ−1 + qpnβ−2 + · · · + qnβ−2p + qnβ−1) wα

p,q,B
r,0
α,β,n

(Q)

= −[nβ]p,qr
α
n,k(Br,0

α,β,n, p, q).

�

We end this section by noting that as a consequence of Theorems 2.1 and 2.2, our single model described
above yields a combinatorial interpretation to both (1.5) and (1.6). In particular, (1.5) is obtained from
(2.2) by setting s = 0, j = β, and bi = r + (i− 1)α. Likewise, setting s = r, j = α, and bi = (i− 1)β in (2.2)
produces (1.5).

3. A Rook Theoretic Model for S̃
1,p,q
n,k (α, β, r) and S̃

2,p,q
n,k (α, β, r)

To define the second type of p, q-rook numbers, let B be a j-attacking bipartite board and suppose
P ∈ (N|F)j

k(B). Assume additionally that the k rooks are in the column pairs {ai, bi} with labels 1 ≤ c1 <

· · · < ck ≤ n and that there are ji non-attacked cells in the column containing the rook among the pair
{aci

, bci
} for 1 ≤ i ≤ k. Setting

aB = the number of non-attacked cells in B directly above some rook in P,
bB = the number of non-attacked cells in B directly below some rook in P,
εB = the number of non-attacked cells in a P -column of an {ai, bi} pair containing no rook,

we define the type-II p, q-rook numbers, denoted r̃
j
k(B, p, q), by

(3.1) r̃
j
k(B, p, q) = q−(b1+···+bn)

∑

P∈(N|F)j

k
(B)

(−1)nS qεB(P)+aB(P)pbB(P)+kt−(j1+j2+···+jk).

The following result gives the generalized product formula for the type-II p, q-rook numbers.

Theorem 3.1. Let B = BBIP(a1, b1, a2, b2, . . . , an, bn) be a j-attacking bipartite board. Then for each

nonnegative integer n,

n
∑

k=0

r̃
j
n−k(B, p, q)[t]p,q[t − j]p,q · · · [t − (k − 1)j]p,q(3.2)

=

n
∏

i=1

q−bi
(

[t + ai − (i − 1)j]p,q − pt+ai−(i−1)j−bi [bi]p,q

)

.

The proof of Theorem 3.1 is similar to that of Theorem 2.1. The idea is to consider all placements of
n j-attacking rooks in the board B

j
t (a1, b1, a2, b2, . . . , an, bn) which is obtained from B by adjoining t rows

below the n P -columns, labeled from bottom to top by 1, 2, . . . , t. The board B
j
t (a1, b1, a2, b2, . . . , an, bn) is

illustrated in Figure 5. Here, rooks placed in B will j-attack in the P -columns as usual, while a rook that
is placed in row i below a P -column will j-attack the cells to the right in the first j rows weakly above it
in the list of rows i, i + 1, . . . , t, 1, . . . , i − 1 that have not been j-attacked by a rook from the left. Such a
placement of n rooks is illustrated in Figure 5 with j = 2.

It can also be shown that the type-II p, q-rook numbers on specific j-attacking bipartite boards satisfy
the same recursions as the type-II Stirling numbers of the first and second kind. To see this, we first note
that

(3.3) [kβ − nα − r]p,q = q−nα−r
(

[kβ]p,q − pkβ−nα−r[nα + r]
)
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t

x

x

x

x

x

Figure 5. The board B
j
t (a1, b1, a2, b2, . . . , an, bn)

and

(3.4) [kα + r − nβ]p,q = q−nβ
(

[kα + r]p,q − pkα+r−nβ [nβ]
)

.

Then, substituting the identity (3.3) into the recursion (1.13) and (3.4) into (1.14) yields the following
three term recursions:

S̃
1,p,q
n+1,k(α, β, r) = q(k−1)β−nα−r S̃

1,p,q
n,k−1(α, β, r) + pt−kβq−nα−r[kβ]p,qS̃

1,p,q
n,k (α, β, r)(3.5)

−pt−nα−rq−nα−r[nα + r]p,qS̃
1,p,q
n,k (α, β, r).

S̃
2,p,q
n+1,k(α, β, r) = qr+(k−1)α−nβ S̃

2,p,q
n,k−1(α, β, r) + pt−r−kαq−nβ [kα + r]p,qS̃

2,p,q
n,k (α, β, r)(3.6)

−pt−nβq−nβ [nβ]p,qS̃
2,p,q
n,k (α, β, r).

As in the proof of Theorem 2.2, we can show that the rook numbers r̃
β
n−k(B0,r

β,α,n) and r̃α
n−k(Br,0

α,β,n) satisfy

the respective recursions in (3.5) and (3.5) by again partitioning the set of placements (N|F)β
n+1(B

0,r
β,α,n+1)

and (N|F)α
n+1(B

r,0
α,β,n+1) into No, P − Last, and S − Last. We summarize these results in the following:

Theorem 3.2. If n and k are nonnegative integers for which 0 < k < n, then

S̃
1,p,q
n,k (α, β, r) = r̃

β
n−k(B0,r

β,α,n) and(3.7)

S̃
2,p,q
n,k (α, β, r) = r̃α

n−k(Br,0
α,β,n).(3.8)

As a consequence of Theorems 3.1 and 3.2, this single rook theoretic model yields a combinatorial
interpretation for the identities given in (1.11) and (1.12). To see this, we observe that

q−bi
(

[t + ai − (i − 1)j]p,q − pt+ai−(i−1)j−bi [bi]p,q

)

= [t + ai − (i − 1)j − bi]p,q.

Then from (3.2), (1.11) is obtained by setting j = β, ai = (i − 1)β, and bi = r + (i − 1)α as is (1.12) by
setting j = α, ai = r + (i − 1)α, and bi = (i − 1)β, and replacing t with t − r.
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4. Directions

While our models have provided a rook theoretic interpretation for both types of p, q-analogues of the
generalized Stirling numbers of the first and second kind, their product formulas and recursions, we have yet
to produce analogues of the orthogonality relations given by Hsu and Shiue [7] for arbitrary parameters α,
β, and r:

n
∑

k=i

S
1

n,k(α, β, r)S
2

k,i(α, β, r) =

n
∑

k=i

S
2

n,k(α, β, r)S
1

k,i(α, β, r) = χ(i = n).

Although, Remmel and Wachs gave direct combinatorial interpretations of the following p, q-analogues
of the orthogonality relations

n
∑

k=r

S
2,p,q
n,k (j, 0, i)S1,p,q

k,r (j, 0, i) = χ(r = n)

and
n

∑

k=r

p(n−k+1
2 )S̃2,p,q

n,k (j, 0, i)(pq)(
k

2)jp−irq−ikS̃
1,p,q
k,r (j, 0, i) = χ(r = n),

they did not provide the p, q-orthogonality relations for arbitrary parameters α, β, and r. We will pursue
this problem in a subsequent paper.
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