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Bounds on the number of inference functions of a graphical model

Sergi Elizalde and Kevin Woods

ABSTRACT. We give an upper bound on the number of inference functions of any directed graphical model.
This bound is polynomial on the size of the model, for a fixed number of parameters, thus improving the
exponential upper bound given in [Pachter and Sturmfels, Tropical Geometry of Statistical Models, Proc.
Natl. Acad. Sci. 101, n. 46 (2004), 16132-16137]. Our proof reduces the problem to the enumeration of
vertices of a Minkowski sum of polytopes. We also show that our bound is tight up to a constant factor, by
constructing a family of hidden Markov models whose number of inference functions agrees asymptotically
with the upper bound. Finally, we apply this bound to a model for sequence alignment that is used in
computational biology.

RESUME. Nous donnons une limite supérieure sur le nombre de fonctions d’inférence de tout modéle gra-
phique dirigé. Cette limite est polynomielle sur la grosseur du modéle, pour un nombre fixe de parametres,
améliorant ainsi la limite supérieure exponentielle donnée dans [Pachter and Sturmfels, Tropical Geome-
try of Statistical Models, Proc. Natl. Acad. Sci. 101, n. 46 (2004), 16132-16137]. Notre preuve réduit le
probléme & I’énumération de sommets d’une somme de Minkowski de polytopes. Nous montrons aussi que
notre limite est serrée jusqu’a un facteur constant, en construisant une famille de modeles de Markov cachés
dont le nombre de fonctions d’inférence coincide asymptotiquement avec la limite supérieure. Finalement,
nous appliquons cette limite & un modele pour I'alignmement de séquences qui est utilisé dans la biologie
computationnelle.

1. Introduction

Many statistical models seek, given a set of observed data, to find the hidden (unobserved) data which
best explains these observations. In this paper we consider graphical models, also called Bayesian networks, a
broad class that includes many useful models, such as hidden Markov models (HMMs), pair hidden Markov
models, and hidden tree models (background on graphical models will be given in Section 2.1). These
graphical models relate the hidden and observed data probabilistically, and a natural problem is to determine,
given a particular observation, what is the most likely hidden data (which is called the explanation). These
models rely on parameters that are the probabilities relating the hidden and observed data. Any fixed values
of the parameters determine a way to assign an explanation to each possible observation. This gives us a
map, called an inference function, from observations to explanations.

An example of an inference function is the popular “Did you mean” feature from google, which could
be implemented as a hidden Markov model, where the observed data is what we type into the computer,
and the hidden data is what we were meaning to type. Graphical models are frequently used in these sorts
of probabilistic approaches to artificial intelligence (see [5] for an introduction).

Inference functions for graphical models are also important in computational biology [6, Section 1.5].
For example, consider the gene-finding functions, which were discussed in [7, Section 5]. These inference
functions (corresponding to a particular HMM) are used to identify gene structures in DNA sequences. An
observation in such a model is a sequence of nucleotides in the alphabet ¥/ = {A,C, G, T}, and an explanation
is a sequence of 1’s and 0’s which indicate whether the particular nucleotide is in a gene or is not. We seek
to use the information in the observed data (which we can find via DNA sequencing) to decide on the hidden
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information of which nucleotides are part of genes (which is hard to figure out directly). Another class of
examples is that of sequence alignment models [6, Section 2.2]. In such models, an inference function is a
map from a pair of DNA sequences to an optimal alignment of those sequences. If we change the parameters
of the model, which alignments are optimal may change, and so the inference functions may change.

A surprising conclusion of this paper is that there cannot be too many different inference functions,
though the parameters may vary continuously over all possible choices. For example, in the homogeneous
binary HMM of length 5 (see Section 2.1 for some definitions; they are not important at the moment), the
observed data is a binary sequence of length 5, and the explanation will also be a binary sequence of length
5. At first glance, there are

3232 = 1 461 501 637 330 902 918 203 684 832 716 283 019 655 932 542 976

possible maps from observed sequences to explanations. In fact, Christophe Weibel has computed that only
5266 of these possible maps are actually inference functions [9].

Different inference functions represent different criteria to decide what is the most likely explanation
for each observation. A bound on the number of inference functions is important because it indicates how
badly a model may respond to changes in the parameter values (which are generally known with very little
certainty and only guessed at). Also, the polynomial bound given in Section 3 suggests that it might be
feasible to precompute all the inference functions of a given graphical model, which would yield an efficient
way to provide an explanation for each given observation.

This paper is structured as follows. In Section 2 we introduce some preliminaries about graphical models
and inference functions, as well as some facts about polytopes. In Section 3 we present our main result.
We call it the Few Inference Functions Theorem, and it states that in any graphical model the number of
inference functions grows polynomially in the size of the model (if the number of parameters is fixed). The
proof involves combinatorial tools, and a key step consists in reducing the enumeration of inference functions
to the problem of counting the number of vertices of a certain polytope that is obtained as a Minkowski
sum of smaller polytopes. In Section 4 we prove that our upper bound on the number of inference functions
of a graphical model is sharp, up to a constant factor, by constructing a family of HMMs whose number
of inference functions asymptotically matches the bound. In Section 5 we show that the bound is also
asymptotically tight on a model for sequence alignment which is actually used in computational biology. In
particular, this bound will be quadratic on the length of the input DNA sequences. We conclude with a few
remarks and possible directions for further research.

2. Preliminaries

2.1. Graphical models. A statistical modelis a family of joint probability distributions for a collection
of discrete random variables Z = (Z1, ..., Z,,), where each Z; takes on values in some finite state space %;.
Here we will focus on directed graphical models. A directed graphical model (or Bayesian network) is a finite
directed acyclic graph G where each vertex v; corresponds to a random variable Z;. Each vertex v; also has
an associated probability map

i : 11 v | — [0,1)%.

j: v; a parent of v;

Given the states of each Z; such that v; is a parent of v;, the probability that v; has a given state is
independent of the values of all other vertices that are not descendants of v;, and this map p; gives that
probability. In particular, we have the equality

Prob(Z=17) = H Prob (Z; = 7;, given that Z; = 7; for all parents v; of v;) = H i (7155 i) s
i i
where vj,,...,v;, are the parents of v;. Sources in the digraph (which have no parents) are generally given
the uniform probability distribution on their states, though more general distributions are possible. See [6,
Section 1.5] for general background on graphical models.

EXAMPLE 2.1. The hidden Markov model (HMM) is a model with random variables X = (X1,..., X,,)
and Y = (Y1,...,Y,,). Edges go from X; to X;+1 and from X; to ;.
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F1GURE 1. The graph of an HMM for n = 3.

Generally, each X; has the same state space ¥ and each Y; has the same state space ¥'. An HMM is
called homogeneous if the px,, for 1 <1i < n are identical and the py, are also identical. In this case, the px;
each correspond to the same |X| x |X| matrix T' = (¢;;) (the transition matriz) and the py, each correspond
to the same |X| x |¥'| matrix S = (s;5) (the emission matrix).

In the example, we have partitioned the variables into two sets. In general graphical models, we also have
two kinds of variables: observed variables Y = (Y7,Y2,...,Y,,) and hidden variables X = (X1, X», ..., Xj).
Generally, the observed variables are exactly the sinks of the directed graph, but this does not need to be
the case. To simplify the notation, we make the assumption, which is often the case in practice, that all the
observed variables take their values in the same finite alphabet ¥/, and that all the hidden variables are on
the finite alphabet X.

Notice that for given ¥ and ¥’ the homogeneous HMMs in this example depend only on a fixed set of
parameters, t;; and s;;, even as n gets large. These are the sorts of models we are interested in. Let the
number of parameters be a fixed integer d. We will name our parameters 61, 6s,...,04. By a graphical model
with d parameters, we mean a graphical model such that each probability [p; (75, ..., Tjk)]Ti is a monomial
in our parameters, and furthermore the degree of this monomial is bounded by the number of parents of v;.
This is a natural assumption, because this probability is usually a product of one parameter for each edge
incoming to v, as long as the parameters affect the probability of state v; independently. This bound on
degrees encompasses most interesting and useful graphical models. For example, in the homogeneous HMM,
each v; has only one parent, and the coordinates of p; are degree one monomials (one of ¢;; or s;;).

In what follows we denote by E the number of edges of the underlying graph of a graphical model,
by n the number of observed random variables, and by ¢ the number of hidden random variables. The
observations, then, are sequences in (X')™ and the explanations are sequences in X9. Let [ = |X| and
=%

For each observation 7 and hidden variables h, Prob(X =h, Y = 7) is a monomial f, - of degree at
most F in the parameters 61,6s,...,60;5. Then for each observation 7 € (X')", the observed probability
Prob(Y = 7) is the sum over all hidden data h of Prob(X =h, Y =7), and so Prob(Y = 7) is the
polynomial fr =", fu - in the parameters 6;,6s,...,604. The degree of f; is at most E.

Note that we have not assumed that the appropriate probabilities sum to 1. It turns out that the
analysis is much easier if we do not place that restriction on our probabilities. At the end of the analysis,
these restrictions may be added if desired (there are many models in use, however, which never place that
restriction; these can no longer be properly called “probabilistic” models, but in fact belong to a more general
class of “scoring” models which our analysis encompasses).

2.2. Inference functions. For fixed values of the parameters, the basic inference problem is to deter-
mine, for each given observation 7, the value h € 3 of the hidden data that maximizes Prob(X = h | Y =1).
A solution to this optimization problem is denoted h and is called an explanation of the observation 7. Each
choice of parameter values (61, 0s,...,04) defines an inference function T +— h from the set of observations
(3')™ to the set of explanations 39.

It is possible that there is more than one value of h attaining the maximum of Prob(X =h ‘ Y =r).
In this case, for simplicity, we will pick only one such explanation, according to some consistent tie-breaking
rule decided ahead of time. For example, we can pick the least such h in some given total order of the set 3¢
of hidden states. Another alternative would be to define inference functions as maps from (X')™ to subsets
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of X2, This would not affect the results of this paper, so for the sake of simplicity, we consider only inference
functions as defined above.

It is interesting to observe that the total number of maps (2/)" — %9 is (19))" = 190" which is
doubly-exponential in the length n of the observations. However, most of these maps are not inference
functions for any values of the parameters. Before our results, the best upper bound in the literature was an
exponential bound given in [8, Corollary 10]. In Section 3 we give a polynomial upper bound on the number
of inference functions of a graphical model.

2.3. Polytopes. Here we review some facts about convex polytopes, and we introduce some notation.
Recall that a polytope is a bounded intersection of finitely many closed halfspaces, or equivalently, the convex
hull of a finite set of points. For the basic definitions about polytopes we refer the reader to [10].

Given a polynomial f(6) = sz\; 071057 - 05", its Newton polytope, denoted by NP(f), is defined as
the convex hull in R? of the set of points {(ay i, az,,...,aa;) : i = 1,...,N}. For example, if f(61,02) =
203 + 360203 + 6103 + 361 + 503, then its Newton polytope NP(f) is given in Figure 2.

FIGURE 2. The Newton polytope of f(01,02) = 203 + 36203 + 6103 + 36, + 505.

Given a polytope P C R? and a vector w € R?, the set of all points in P at which the linear functional
T +— - w attains its maximum determines a face of P. It is denoted

face,(P) = {ze€P :z-w>y wforalyeP}.
Faces of dimension 0 (consisting of a single point) are called vertices, and faces of dimension 1 are called

edges. If d is the dimension of the polytope, then faces of dimension d — 1 are called facets.
Let P be a polytope and F' a face of P. The normal cone of P at F is

Np(F) = {we RY : face, (P) = F}.
The collection of all cones Np(F) as F runs over all faces of P is denoted N'(P) and is called the normal
fan of P. Thus the normal fan N(P) is a partition of R? into cones. The cones in N(P) are in bijection

with the faces of P, and if w € Np(F') then the linear functional z - w is maximized on F. Figure 3 shows
the normal fan of a polytope.

FIGURE 3. The normal fan of a polytope.



THE NUMBER OF INFERENCE FUNCTIONS

The Minkowski sum of two polytopes P and P’ is defined as
P+P :={x+x":xeP x' €P}.

The common refinement of two or more normal fans is the collection of cones obtained as the intersection of
a cone from each of the individual fans. For polytopes Py, Ps, ..., Pk, the common refinement of their normal
fans is denoted N (Py) A--- AN (P). The following lemma states the well-known fact that the normal fan of
a Minkowski sum of polytopes is the common refinement of their individual fans (see [10, Proposition 7.12]
or [2, Lemma 2.1.5)):

LEMMA 2.2. N(Py + -+ Py) = N(P) A--- AN (Py).

We finish with a result of Gritzmann and Sturmfels that will be useful later. It gives a bound on the
number of vertices of a Minkowski sum of polytopes.

THEOREM 2.3 ([2]). Let Py, P, ..., Py be polytopes in R, and let m denote the number of non-parallel
edges of P1,..., Py. Then the number of vertices of Py + - - - + Py is at most

=1,
2> (")
=0~/
Note that this bound is independent of the number k of polytopes.

3. An upper bound on the number of inference functions

For fixed parameters, the inference problem of finding the explanation h that maximizes Prob(X =
h | Y = 7) is equivalent to identifying the monomial fp , = 67""65>" .- 65" of f. with maximum value.

Since the logarithm is a monotonically increasing function, the desired monomial also maximizes the quantity

log(67""05>™ - - -Hgd‘h) = aijnlog(f)+ aznlog(f2) + - + agnlog(bs)

= @1nU1 + A2 K02 + -+ A nVd,

where we replace log(6;) with v;. This is equivalent to the fact that the corresponding point (a1 n, a2 h,- - -, ad,h)
maximizes the linear expression v1x1 +- - - +v424 on the Newton polytope NP(f;). Thus, the inference prob-
lem for fixed parameters becomes a linear programming problem.

Each choice of the parameters 8 = (61,603, ..., 60;) determines an inference function. If v = (v1,ve,...,vq)
is the vector in R? with coordinates v; = log(6;), then we denote the corresponding inference function by

o, : (X" — 29

For each observation 7 € (X)", its explanation ®,(7) is given by the vertex of NP(f,) that is maximal
in the direction of the vector v. Note that for certain values of the parameters (if v is perpendicular to a
positive-dimensional face of NP(f;)) there may be more than one vertex attaining the maximum. It is also
possible that a single point (a1 h, a2 h, - - -, aq4,n) in the polytope corresponds to several different values of the
hidden data. In both cases, we pick the explanation according to the tie-breaking rule determined ahead of
time. This simplification does not affect the asymptotic number of inference functions.

Different values of 8 yield different directions v, which can result in distinct inference functions. We are
interested in bounding the number of different inference functions that a graphical model can have. The
next theorem gives an upper bound which is polynomial in the size of the graphical model. In fact, very few
of the 190" functions (X/)" — % are inference functions.

THEOREM 3.1 (The Few Inference Functions Theorem). Let d be a fized positive integer. Consider a
graphical model with d parameters, and let E be the number of edges of the underlying graph. Then, the
number of inference functions of the model is at most O(EHd=1),

Before proving this theorem, observe that the number E of edges depends on the number n of observed
random variables. In most graphical models of interest, E is a linear function of n, so the bound becomes
O(n®4=1). For example, the hidden Markov model has E = 2n — 1 edges. The only property of the number
E that we actually need in the proof is that it is a bound on the degrees of the monomials f, -.
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PROOF. In the first part of the proof we will reduce the problem of counting inference functions to
the enumeration of the vertices of a certain polytope. We have seen that an inference function is specified
by a choice of the parameters, which is equivalent to choosing a vector v € R?. The function is denoted
Dy : (¥)" — X9, and the explanation @ (7) of a given observation 7 is determined by the vertex of NP(f;)
that is maximal in the direction of v. Thus, cones of the normal fan A(NP(f,)) correspond to sets of vectors
v that give rise to the same explanation for the observation 7. Non-maximal cones (i.e., those contained in
another cone of higher dimension) correspond to directions v for which more than one vertex is maximal.
Since ties are broken using a consistent rule, we disregard this case for simplicity. Thus, in what follows we
consider only maximal cones of the normal fan.

FIGURE 4. Two different inference functions, ®, (left column) and ®, (right column). In
each row is the Newton polytope corresponding to a different observation. The respective
explanations are given by the marked vertices in each polytope.

Let v/ = (v}, v5,...,v}) be another vector corresponding to a different choice of parameters (see Figure
4). By the above reasoning, @ (7) = ®/(7) if and only if v and v’ belong to the same cone of N(NP(f;)).
Thus, ®, and @,/ are the same inference function if and only if v and v’ belong to the same cone of
N(NP(f;)) for all observations 7 € (¥')". Consider the common refinement of all these normal fans,
A N(NP(f;)). Then, ®, and P,  are the same inference function exactly when v and v’ lie in
the same cone of this common refinement. This implies that the number of inference functions equals the
number of cones in A ¢y N(NP(f7)). By Lemma 2.2, this common refinement is the normal fan of
NP(f) = >, ¢(s)» NP(fr), the Minkowski sum of the polytopes NP(f-) for all observations 7. It follows
that enumerating inference functions is equivalent to counting vertices of NP(f). In the remaining part of
the proof we give an upper bound on the number of vertices of NP(f).

Note that for each 7, the polytope NP(f,) is contained in the hypercube [0, E]?, since each parameter
0; can appear as a factor of a monomial of f; at most E times. Also, the vertices of NP(f,) have integral
coordinates, because they are exponent vectors. Polytopes whose vertices have integral coordinates are called
lattice polytopes. Tt follows that the edges of NP(f;) are given by vectors where each coordinate is an integer
between —E and E. There are only (2F + 1)¢ such vectors, so this is an upper bound on the number of
different directions that the edges of the polytopes NP(f.) can have.

This property of the Newton polytopes of the coordinates of the model will allow us to give an upper
bound on the number of vertices of their Minkowski sum NP(f). The last ingredient that we need is
Theorem 2.3. In our case we have a sum of polytopes NP(f,), one for each observation 7 € (X')™, having



THE NUMBER OF INFERENCE FUNCTIONS

at most (2E + 1)¢ non-parallel edges in total. Hence, by Theorem 2.3, the number of vertices of NP (f) is at

most
(2F 1 —1
) Z ( +! ) |

As E goes to infinity, the dominant term of thlb expression is
9d®—d+1

d—1)

Thus, we get an O(E¥¢=1) upper bound on the number of inference functions of the graphical model. [

d(d—1)

In the next section we show that the bound given in Theorem 3.1 is tight up to a constant factor.

4. A lower bound

As before, we fix d, the number of parameters in our model. The Few Inference Functions Theorem
(Theorem 3.1) tells us that the number of inference functions is bounded from above by some function
cEUd=1) wwhere ¢ is a constant (depending only on d) and E is the number of edges in the graphical model.
Here we show that this bound is tight up to a constant, by constructing a family of graphical models whose
number of inference functions is at least ¢EH@=1)  where ¢ is another constant. In fact, we will construct a
family of hidden Markov models with this property. To be precise, we have the following theorem.

THEOREM 4.1. Fiz d. There is a constant ¢’ = ¢’(d) such that, given n € Z,., there exists an HMM of
length n, with d parameters, 2d+2 hidden states, and 2 observed states, such that there are at least ¢/'n®d=1)
distinct inference functions. (For HMMs, E = 2n — 1, so this also gives us the lower bound in terms of E).

In the proof of this theorem, we will state several lemmas that must be used. We omit the proofs of
some of them here due to lack of space. Given n, we first construct the appropriate HMM, M,,, using the
following lemma.

LEMMA 4.2. Givenn € Z, there is an HMM, M,,, of length n, with d parameters, 2d+ 2 hidden states,
and 2 observed states, such that for any a = (a1,...,a,) € Zi with )", a; < n, there is an observed sequence
which has one explanation if

ay log(61) + -+ - + aqlog(fq) > 0
and another explanation if
a1 log(61) + - - - + aqlog(fq) < 0.

PROOF. Given d and n, define a length n HMM with parameters 61, ...,04, as follows. The observed
states will be S and C (for “start of block,” and “continuing block,” respectively). The hidden states will be
Si, 84, ¢y and ¢, for 1 < i < d+1 (think of s; and s as “start of the ith block” and ¢; and ¢ as “continuing
the ith block”).

Here’s the idea of what we want this HMM to do: if the observed sequence has S’s in position 1, a; + 1,
a1 +as+1,...,and a1 +--- + aq + 1 and C’s elsewhere, then there will be only two possibilities for the
sequence of hidden states, either

b=s1€C1---CL82Co " Car o S4Cd " CdSd41 Cdtl Cdyl
~——  —— —— —_———

a1—1 az—1 ag—1 n—aj—-—aq—1
or
o VAN AN /! AN ! / /!
t _Slcl...018202...cQ...Sdcd...cdeJrl cd+1...cd+1 .
~——  —— —— ————
a;—1 az—1 ag—1 n—ai—-—ag—1
We will also make sure that ¢ has a priori probability
aq aq
9o 6%

and t' has a priori probability 1. Then ¢ is the explanation if aj log(61) + - - - + aglog(fs) > 0 and ¢’ is the
explanation if aq log(61) + - - - + aq log(f4) < 0. Remember that we are not constraining our probability sums
to be 1. A very similar HMM could be constructed that obeys that constraint, if desired. But to simplify
notation it will be more convenient to treat the transition probabilities as parameters that do not necessarily
sum to one at each vertex, even if this forces us to use the term “probability” somewhat loosely.
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Here is how we set up the transitions/emmisions. Let s; and s}, for 1 < i < d + 1, all emit S with
probability 1 and C with probability 0. Let ¢; and ¢, emit C with probability 1 and S with probability 0. Let
s, for 1 <4 < d, transition to ¢; with probability 6; and transition to everything else with probability 0. Let
Sd+1 transition to ¢4y with probability 1 and to everything else with probability 0. Let s}, for 1 <14 < d+1,
transition to ¢} with probability 1 and to everything else with probability 0. Let ¢;, for 1 < i < d, transition
to ¢; with probability 6;, to s; 11 with probability 6;, and to everything else with probability 0. Let c¢g41
transition to cg11 with probability 1, and to everything else with probability 0. Let ¢, for 1 < i < d
transition to ¢, with probability 1, to s,11 with probability 1, and to everything else with probability 0. Let
¢y transition to ¢, with probability 1 and to everything else with probability 0.

Starting with the uniform probability distribution on the first hidden state, this does exactly what
we want it to: given the correct observed sequence, t and t' are the only explanations, with the correct
probabilities. O

This means that, for the HMM provided by this lemma, the decomposition of (log-)parameter space into
inference cones includes all of the hyperplanes {z : (a,z) = 0} such that a € Z¢ with >, a; < n. Call
the arrangement of these hyperplanes H,,. It suffices to show that the arrangement H,, consists of at least
¢n*4=1 chambers (full dimensional cones determined by the arrangement). There are ¢;n? ways to choose
one of the hyperplanes from H,,, for some constant ¢;. Therefore there are c‘li_lnd(d’l) ways to choose d — 1
of the hyperplanes; their intersection is, in general, a 1-dimensional face of H,, (that is, the intersection is a
ray which is an extreme ray for the cones it is contained in). It is quite possible that two different ways of
choosing d — 1 hyperplanes give the same extreme ray. The following lemma says that some constant fraction
of these choices of extreme rays are actually distinct.

LEMMA 4.3. Fiz d. Given n, let H, be the hyperplane arrangement consisting of the hyperplanes of
the form {z : (a,z) = 0} with a € Z¢ and >, a; < n. Then the number of 1-dimensional faces of H, is
cznd(d’l), for some constant cs.

Each chamber will have a number of these extreme rays on its boundary. The following lemma gives a
constant bound on this number.

LEMMA 4.4. Fiz d. Given n, define H, as above. Each chamber of H, has at most 2441 extreme
Tays.

Conversely, each ray is an extreme ray for at least 1 chamber. Therefore there are at least sz n

chambers, and Theorem 4.1 is proved.

d(d—1)

5. Inference functions for sequence alignment

In this section we give an application of Theorem 3.1 to a basic model for sequence alignment. Sequence
alignment is one of the most frequently used techniques in determining the similarity between biological
sequences. In the standard instance of the sequence alignment problem, we are given two sequences (usually
DNA or protein sequences) that have evolved from a common ancestor via a series of mutations, insertions
and deletions. The goal is to find the best alignment between the two sequences. The definition of “best”
here depends on the choice of scoring scheme, and there is often disagreement about the correct choice. In
parametric sequence alignment, this problem is circumvented by instead computing the optimal alignment as
a function of variable scores. Here we consider one such scheme, in which all matches are equally rewarded,
all mismatches are equally penalized and all spaces are equally penalized. Efficient parametric sequence
alignment algorithms are known (see for example [6, Chapter 7]). Here we are concerned with the different
inference functions that car arise when the parameters vary. For a detailed treatment on the subject of
sequence alignment, we refer the reader to [3].

Given two strings o! and o2 of lengths n; and ny respectively, an alignment is a pair of equal length
strings (u!, pu?) obtained from o, 02 by inserting dashes “—" in such a way that there is no position in which
both x!' and p? have a dash. A match is a position where p' and p? have the same character, a mismatch is
a position where p! and p? have different characters, and a space is a position in which one of p! and p? has
a dash. A simple scoring scheme consists of two parameters o and 3 denoting mismatch and space penalties
respectively. The reward of a match is set to 1. The score of an alignment with z matches, x mismatches,
and y spaces is then z — xa — y. Observe that these numbers always satisfy 2z 4+ 2z + y = ny + na.
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This model for sequence alignment is a particular case of a so-called pair hidden Markov model. The
problem of determining the highest scoring alignment for given values of « and ( is equivalent to the inference
problem in the pair hidden Markov model. In this setting, an observation is a pair of sequences 7 = (¢!, 02),
and the number of observed variables is n = ny + no. The values of the hidden variables in an explanation
indicate the positions of the spaces in the optimal alignment. We will refer to this as the 2-parameter model
for sequence alignment.

For each pair of sequences 7, the Newton polytope of the polynomial f is the convex hull of the points
(z,y, z) whose coordinates are the number of mismatches, spaces, and matches, respectively, of each possible
alignment of the pair. This polytope is only two dimensional, as it lies on the plane 2z 4+ 2z 4+ y = ny + na.
No information is lost by considering its projection onto the xy-plane instead. This projection is just the
convex hull of the points (z,y) giving the number of mismatches and spaces of each alignment. For any
alignment of sequences of lengths n; and ng, the corresponding point (z,y) lies inside the square [0, n)?,
where n = n; + na. Therefore, since we are dealing with lattice polygons inside [0,7n]?, it follows from the
proof of the Few Inference Functions Theorem (Theorem 3.1) that the number of inference functions of this
model is O(n?2~1)) = O(n?). Next we show that this quadratic bound is tight, even in the case of the
binary alphabet.

ProrosIiTION 5.1. Consider the 2-parameter model for sequence alignment for two observed sequences
of length n. and let X' = {0, 1} be the binary alphabet. Then, the number of inference functions of this model
is O(n?).

PROOF. The above argument shows that O(n?) is an upper bound on the number of inference functions
of the model. To prove the proposition, we will argue that there are at least (n?) such functions.

Since the two sequences have the same length, the number of spaces in any alignment is even. For
convenience, we define y' = y/2 and ' = 28, and we will work with the coordinates (z,v’,2) and the
parameters a and 3’. The value y' is called the number of insertions (half the number of spaces), and ' is
the insertion penalty. For fixed values of o and (', the explanation of an observation 7 = (0!, 0?) is given
by the vertex of NP(f;) that is maximal in the direction of the vector (—a, —/’,1). In this model, NP(f,)
is the convex hull of the points (x,4’, z) whose coordinates are the number of mismatches, insertions and
matches of the alignments of o' and 2.

The argument in the proof of Theorem 3.1 shows that the number of inference functions of this model
is the number of cones in the common refinement of the normal fans of NP(f;), where 7 runs over all pairs
of sequences of length n in the alphabet X/, Since the polytopes NP(f;) lie on the plane x +y’ + z = n, it is
equivalent to consider the normal fans of their projections onto the 3’z-plane. These projections are lattice
polygons contained in the square [0,n]?. We denote by P, the projection of NP(f,) onto the y’z-plane.

We will construct, for any relatively prime positive integers u and v with v < v and 6v — 2u < n, a pair
7 = (0!, 0?) of binary sequences of length n such that P, has an edge of slope u/v. Such an edge gives rise
to the line u - a4+ v - 3’ = 0 separating regions in the normal fan A (P;) and hence in A_N(P:), where 7
ranges over all pairs of binary sequences of length n. The number of such choices u, v is Q(n?) (this relies on
the fact, see [1, Chapter 3], that a positive fraction of choices of (u,v) € Z? have u and v relatively prime).
This implies that the number of different inference functions is Q(n?).

Thus, it only remains to construct such a 7, given positive integers v and v as above. Let a := 2v,
b:= v —u. Assume first that n = 6v — 2u = 2a + 2b. Consider the sequences o' = 0%1°0°1%, o2 = 120°1°0¢,
where 0% indicates that the symbol 0 is repeated a times. Let 7 = (o!,02). Then, it is not hard to see that
the polygon P, for this pair of sequences has four vertices: vg = (0,0), v1 = (b,3b), v2 = (a + b,a + b) and
v3 = (n,0). The slope of the edge between vy and vy is “’T% = 2.

If n > 6v—2u = 2a+ 2b, we just append 072272 to both sequences o' and 2. In this case, the vertices
of Pr are (0,n — 2a —2b), (b,n —2a+b), (a+b,n—a—>), (n,0)and (n — 2a — 2b,0).

Note that if v — u is even, the construction can be done with sequences of length n = 3v — u by taking
a:=wv, b:= *5*. Figure 5 shows the alignment graph and the polygon P; for a =7, b = 2. O

In most cases, one is interested only in those inference functions that are biologically meaningful. This
corresponds to parameter values with o, > 0, which means that mismatches and spaces are penalized
instead of rewarded. Sometimes one also requires that o < (3, which means that a mismatch should be
penalized less than two spaces. It is interesting to observe that our construction in the proof of Proposition 5.1
not only shows that the total number of inference functions is 2(n?), but also that the number of biologically



SERGI ELIZALDE AND KEVIN WOODS

a b b a
lreXste
111111100110000000

QD

ath -

30

o o o
PRRPRPPRPROORROO000000

b ath

FIGURE 5. A pair of binary sequences of length 18 giving the slope 3/7 in their alignment
polytope. The four paths in the alignment graph on the left correspond to the four vertices;
a right step in the graph corresponds to a space in o', a down step to a space in o2, and
a diagonal step to a match or mismatch. See [6, Section 2.2] for a full definition of the
alignment graph.

meaningful ones is still Q(n?). This is because the different rays created in our construction have a biologically
meaningful direction in the parameter space.

6. Final remarks

An interpretation of Theorem 3.1 is that the ability to change the values of the parameters of a graphical
model does not give as much freedom as it may appear. There is a very large number of possible ways to
assign an explanation to each observation. However, only a tiny proportion of these come from a consistent
method for choosing the most probable explanation for a certain choice of parameters. Even though the
parameters can vary continuously, the number of different inference functions that can be obtained is at
most polynomial in the number of edges of the model, assuming that the number of parameters is fixed.

In the case of sequence alignment, the number of possible functions that associate an alignment to each
pair of sequences of length n is doubly-exponential in n. However, the number of functions that pick the
alignment with highest score in the 2-parameter model, for some choice of the parameters o and (3, is only
©(n?). Thus, most ways of assigning alignments to pairs of sequences do not correspond to any consistent
choice of parameters. If we use a model with more parameters, say d, the number of inference functions may
be larger, but still polynomial in 7, namely O(n4=1).

Having shown that the number of inference functions of a graphical model is polynomial in the size of the
model, an interesting next step would be to find an efficient way to precompute all the inference functions
for given models. This would allow us to give the answer (the explanation) to a query (an observation) very
quickly. Theorem 3.1 suggests that it might be computationally feasible to precompute the polytope NP(f),
whose vertices correspond to the inference functions. However, the difficulty arises when we try to describe
a particular inference function efficiently. The problem is that the characterization of an inference function
involves an exponential number of observations.
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