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Shellable complexes and topology of diagonal arrangements
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Abstract. We prove that if a simplicial complex ∆ is shellable, then the intersection lattice L∆ for the
corresponding diagonal arrangement A∆ is homotopy equivalent to a wedge of spheres. Furthermore, we
describe precisely the spheres in the wedge, based on the data of shelling.

Résumé. Nous prouvons que si un complexe simplicial ∆ est shellable, alors le treillis d’intersection L∆ pour
le correspondre l’arrangement diagonal A∆ est l’équivalent de homotopy à un bouquet de sphères. De plus,
nous décrivons précisément les sphères dans le bouquet, basé sur les données d’écaler.

1. Introduction

Consider Rn with coordinates u1, . . . , un. A diagonal subspace Ui1···ir
is a linear subspace of the form

ui1 = · · · = uir
with r ≥ 2. A diagonal arrangement (or a hypergraph arrangement) A is a finite set of

diagonal subspaces of Rn.
For a simplicial complex ∆ on [n] = {1, . . . , n} such that dim ∆ ≤ n − 3, one can associate a diagonal

arrangement A∆ as follows. For a facet F of ∆, let UF be the diagonal subspace ui1 = · · · = uir
where

F = [n] − F = {i1, . . . , ir}. Define
A∆ = {UF |F is a facet of ∆}.

For each diagonal arrangement A, one can find a simplicial complex ∆ such that A = A∆.
Two important spaces associated with an arrangement A of linear subspaces in Rn are

MA = Rn −
⋃

H∈A

H and V◦
A = Sn−1 ∩

⋃

H∈A

H,

called the complement and the singularity link of A.
We are interested in the topology of MA and V◦

A for a diagonal arrangement A. We mention here some
applications. In computer science, Björner, Lovász and Yao [3] find lower bounds on complexity of k-equal
problems using the topology of diagonal arrangements (see also [2]). In group cohomology, it is well-known
that MBn

for the braid arrangement Bn in Cn is a K(π, 1) space with the fundamental group isomorphic to
the pure braid group ([6]). Khovanov [9] shows that MAn,3

for the 3-equal arrangement An,3 in Rn is also
a K(π, 1) space.

Note that MA and V◦
A are related by Alexander duality as follows:

Hi(MA; F) = Hn−2−i(V
◦
A; F) (F is any field)(1.1)

In the mid 1980’s Goresky and MacPherson [7] found a formula for the Betti numbers of MA, while the
homotopy type of V◦

A was computed by Ziegler and Živaljević [14] (see Section 4). The answers are phrased
in terms of the lower intervals in the intersection lattice LA of the subspace arrangement A, that is the
collection of all nonempty intersections of subspaces of A ordered by reverse inclusion. For general subspace
arrangements, these lower intervals in LA can have arbitrary homotopy type (see [14, Corollary 3.1]).
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Our goal is to find a general sufficient condition for the intersection lattice LA of a diagonal arrangement
A to be well-behaved. Björner and Welker [4] show that LAn,k

is shellable, and hence has the homotopy
type of a wedge of spheres, where An,k is the k-equal arrangement consisting of all Ui1···ik

for all 1 ≤ i1 <

· · · < ik ≤ n (see Section 2). Kozlov [11] shows that LA is shellable if A satisfies some conditions (see
Section 2). Suggested by a homological calculation (Theorem 4.4 below), we will prove the following main
result, capturing the homotopy type assertion from [11] (see Section 3).

Theorem 1.1. Let ∆ be a shellable simplicial complex. Then the intersection lattice L∆ for the diagonal
arrangement A∆ is homotopy equivalent to a wedge of spheres.

Furthermore, one can describe precisely the spheres in the wedge, based on the shelling data. Let ∆
have vertex set [n] with a shelling order F1, . . . , Fq on its facets. Let σ be the intersection of all facets, and
σ̄ its complement. For each i, let Gi be the face of Fi obtained by intersecting the walls of Fi that lie in the
subcomplex generated by F1, . . . , Fi−1, where a wall of Fi is a codimension 1 face of Fi. An (unordered)
shelling-trapped decomposition (of σ̄ over ∆) is defined to be a family {(σ̄1, Fi1 ), . . . , (σ̄p, Fip

)} such that
{σ̄1, . . . , σ̄p} is a decomposition of σ̄ as a disjoint union

σ̄ =

p⊔

j=1

σ̄j

and Fi1 < · · · < Fip
are facets of ∆ such that Gij

⊆ σj ⊆ Fij
for all j. Then the wedge of spheres in

Theorem 1.1 consists of (p − 1)! copies of spheres of dimension

p(2 − n) +

p∑

j=1

|Fij
| + |σ̄| − 3

for each shelling-trapped decomposition D = {(σ̄1, Fi1), . . . , (σ̄p, Fip
)} of σ̄. Moreover, for each shelling-

trapped decomposition D of σ̄ and a permutation ω of [p − 1], there exists a saturated chain CD,ω (see

Section 3) such that removing the simplices corresponding to these chains in L∆ leaves a contractible sim-
plicial complex.

The following example shows that the intersection lattice in Theorem 1.1 is not shellable in general, even
though it has the homotopy type of a wedge of spheres.

Example 1.2. Let ∆ be a simplicial complex on {1, 2, 3, 4, 5, 6, 7, 8} with the shelling 123456, 127, 237,

137, 458, 568, 468. Then ∆(U78, 1̂) is a disjoint union of two circles, hence is not shellable. Therefore, the
intersection lattice L∆ for the diagonal arrangement A∆ is also not shellable. The intersection lattice L∆ is
shown in Figure 1 (thick lines represent the open interval (U78, 1̂)).

The next example shows that there is a nonshellable simplicial complex whose intersection lattice is
shellable.

Example 1.3. Let ∆ be a simplicial complex on {1, 2, 3, 4} whose facets are 12 and 34. Then ∆ is not
shellable. But the order complex of L∆ consists of two vertices, hence is shellable.

2. Some known special cases

In this section, we give Kozlov’s theorem and show how its consequence for homotopy type follows from
Theorem 1.1. Also, we give Björner and Welker’s theorem about the intersection lattice of the k-equal
arrangements which can be recovered using Theorem 1.1.

Kozlov [11] shows that A∆ has shellable intersection lattice if ∆ satisfies some conditions. This class
includes k-equal arrangements and all other diagonal arrangements for which the intersection lattice was
proved shellable up to now.

Theorem 2.1. ([11, Corollary 3.2]) Consider a partition of

[n] = E1 ∪ · · · ∪ Er

such that maxEi < min Ei+1 for i = 1, . . . , r − 1. Let

f : {1, 2, . . . , r} → {2, 3, . . .}

be a nondecreasing map. Let ∆ be a simplicial complex on [n] such that F is a facet of ∆ if and only if
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Figure 1. The intersection lattice for A∆

min F F w min F F w min F F w

1 23456 17 2 1356 247 3 1256 347
23457 16 1357 246 1257 346
23467 15 1367 245 1267 345
23567 14
24567 13
34567 12

Table 1. Table for Example 2.2

(1) |Ei − F | ≤ 1 for i = 1, . . . , r;
(2) if min F ∈ Ei then |F | = n − f(i).

Then the intersection lattice for A∆ is shellable.

In particular, this intersection lattice has the homotopy type of a wedge of spheres.

Proposition 2.1. ∆ in Theorem 2.1 is shellable.

Proof Sketch. One checks that a shelling order is F1, F2, . . . , Fq such that the words w1, w2, . . . , wq

are in lexicographic order, where wi is the increasing array of elements in F i. �

Example 2.2. Consider the partition of

[7] = {1} ∪ {2, 3} ∪ {4} ∪ {5, 6, 7}

and the function f given by f(1) = 2, f(2) = 3, f(3) = 4, and f(4) = 5. Then the facets of the simplicial
complex that satisfy the conditions of Theorem 2.1 and the corresponding words can be found in Table 1.
Thus the ordering 34567, 24567, 23567, 23467, 23457, 23456, 1367, 1357, 1356, 1267, 1257 and 1256 is a
shelling for this simplicial complex.

One can also use Theorem 1.1 to recover the following theorem of Björner and Welker [4].
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Theorem 2.3. The order complex of the intersection lattice LAn,k
has the homotopy type of a wedge of

spheres consisting of

(p − 1)!
∑

0=i0≤i1≤···≤ip=n−pk

p−1∏

j=0

(
n − jk − ij − 1

k − 1

)
(j + 1)ij+1−ij

copies of (n − 3 − p(k − 2))-dimensional spheres for 1 ≤ p ≤ bn
k
c.

3. Proof of main theorem

Theorem 1.1 will be deduced from a more general statement about homotopy types of lower intervals
∆(0̂, H) in LA, Theorem 3.1 below.

Theorem 3.1. Let ∆ be a shellable simplicial complex on [n] with a shelling F1, . . . , Fq and dim ∆ ≤ n−3.

Let Uσ̄ be a subspace in L∆ for some subset σ̄ of [n]. Then ∆(0̂, Uσ̄) is homotopy equivalent to a wedge of
spheres, consisting of (p − 1)! copies of spheres of dimension

δ(D) := p(2 − n) +

p∑

j=1

|Fij
| + |σ̄| − 3

for each shelling-trapped decomposition D = {(σ̄1, Fi1), . . . , (σ̄p, Fip
)} of σ̄.

Moreover, for each such shelling-trapped decomposition D and each permutation ω of [p − 1], one can
construct a saturated chain CD,ω (see Section 3.1 below), such that if one removes the corresponding δ(D)-

dimensional simplices for all pairs (D, ω), the remaining simplicial complex ∆̂(0̂, Uσ̄) is contractible.

To prove this result, we begin with some preparatory lemmas.
First of all, one can characterize exactly which subspaces lie in L∆ when ∆ is shellable. Recall that for

σ̄ = {i1, . . . , ir} ⊆ [n], we denote by Uσ̄ the linear subspace of the form ui1 = · · · = uir
.

Lemma 3.2. Let ∆ be a simplicial complex on [n] with dim∆ ≤ n − 3.

(1) Every subspace H in L∆ has the form

H = Uσ̄1
∩ · · · ∩ Uσ̄p

for pairwise disjoint subsets σ̄1, . . . , σ̄p of [n] such that σi can be expressed as an intersection of
facets of ∆ for i = 1, 2, . . . , p.

(2) Conversely, when ∆ is shellable, every subspace H of Rn that has the above form lies in L∆.

The next example shows that Lemma 3.2(2) can fail when ∆ is not assumed to be shellable.

Example 3.3. Let ∆ be a simplicial complex with two facets 123 and 345. Then ∆ is not shellable.
Since L∆ has only three subspaces U12, U45 and U12 ∩U45, it does not have the subspace U1245, even though
1245 = 3 is an intersection of facets 123 and 345 of ∆. Thus Lemma 3.2(2) fails for ∆.

In fact, Lemma 3.2(2) is true for a more general class of simplicial complexes. A simplicial complex is
called locally gallery-connected if any pair F, F ′ of facets are connected by a path

F = F0, F1, . . . , Fr−1, Fr = F ′

of facets in which Fi ∩ Fi−1 share a (min{dimFi, dim Fi−1} − 1)-dimensional face for each i. It is not hard
to show that sequentially Cohen-Macaulay simplicial complexes (and hence shellable simplicial complexes)
are locally gallery-connected. One can show that Lemma 3.2(2) is true when ∆ is locally gallery-connected.
Although Lemma 3.2(2) is true for locally gallery-connected simplicial complexes, Theorem 3.1 can fail when
∆ is locally gallery-connected. E.g., any triangulation of RP2 gives a counterexample.

The following lemma shows that every lower interval [0̂, H ] can be written as a product of lower intervals

of the form [0̂, Uσ̄].

Lemma 3.4. Let ∆ be a simplicial complex on [n] with dim∆ ≤ n − 3 and let H ∈ L∆ be a subspace of
the form

H = Uσ̄1
∩ · · · ∩ Uσ̄p
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Figure 2. The upper interval (U67, 1̂) in L∆

for pairwise disjoint subsets σ̄1, . . . , σ̄p of [n]. Then

[0̂, H ] = [0̂, Uσ̄1
] × · · · × [0̂, Uσ̄p

].

In particular,

∆(0̂, H) = ∆(0̂, Uσ̄1
) ∗ · · · ∗ ∆(0̂, Uσ̄p

) ∗ Sp−2,

where ∗ denotes the join of topological spaces.

Proof. The first assertion is straightforward, and the second then follows from [13, Theorem 4.3]. �

The next lemma, whose proof is completely straightforward and omitted, shows that the lower interval
[0̂, Uσ̄] is isomorphic to the intersection lattice for the diagonal arrangement corresponding to link∆σ.

Lemma 3.5. Let ∆ be a simplicial complex on [n] with dim ∆ ≤ n − 3 and let Uσ̄ be a subspace in L∆

for some face σ of ∆. Then the lower interval [0̂, Uσ̄] is isomorphic to the intersection lattice of the diagonal
arrangement Alink∆(σ) corresponding to link∆(σ) on the vertex set σ̄.

The following lemma shows that upper intervals in L∆ are at least still homotopy equivalent to the
intersection lattice of a diagonal arrangement.

Lemma 3.6. Let ∆ be a simplicial complex on [n] with dim∆ ≤ n − 3 and let Uσ̄ be a subspace in

L∆ for some face σ = {v1, . . . , vt} of ∆. Then the upper interval [Uσ̄, 1̂] is homotopy equivalent to the
intersection lattice of the diagonal arrangement A∆σ

corresponding to the simplicial complex ∆σ on the
vertex set {v1, . . . , vt, v} whose facets are obtained in the following way:

(A) If F ∩ σ is maximal among

{F ∩ σ | F is a facet of ∆ such that σ * F and F ∪ σ 6= [n]},

then F̃ = F ∩ σ is a facet of ∆σ.

(B) If a facet F of ∆ satisfies F ∪ σ = [n], then F̃ = (F ∩ σ) ∪ {v} is a facet of ∆σ.

Example 3.7. Let ∆ be a simplicial complex on {1, 2, 3, 4, 5, 6, 7} with facets 12367, 12346, 13467, 34567,

13457, 14567, 12345 and let σ = {1, 2, 3, 4, 5}. The open interval (U67, 1̂) is shown in Figure 2. Then ∆F is a
simplicial complex on {1, 2, 3, 4, 5, v} and its facets are 123v, 1234, 134v, 345v, 1345, 145v. The proper part
of the intersection lattice L∆F

is shown in Figure 3 and it is easy to see that its order complex is homotopy

equivalent to (U67, 1̂).
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Figure 3. The interval (0̂, 1̂) in L∆F

In general, the simplicial complex ∆σ of Lemma 3.6 is not shellable, even though ∆ is shellable (see
Example 1.2). However, the next lemma shows that ∆F is shellable if F is the last facet in the shelling
order.

Lemma 3.8. Let ∆ be a shellable simplicial complex on [n] such that dim∆ ≤ n− 3 and let F be the last
facet in a shelling order of ∆. Then ∆F is shellable.

Proof. Using the notation of Lemma 3.6, a shelling order for ∆F is the ordering of facets of type (A)
in any order, followed by the facets of type (B) according to the order of the corresponding facets of ∆. �

Example 3.9. The simplicial complex ∆ in Example 3.7 is shellable with a shelling 12367, 12346, 13467,

34567, 13457, 14567, 12345. Since 1234, 1345 are facets of ∆F of type (A) and 123v, 134v, 345v, 145v are facets
of ∆F of type (B), 1234, 1345, 123v, 134v, 345v, 145v is a shelling of ∆F .

We next construct the saturated chains appearing in the statement of Theorem 3.1.

3.1. Constructing the chains CD,ω. Let ∆ be a shellable simplicial complex on [n] with dim∆ ≤ n−3
and let Uσ̄ is a subspace in L∆. Let D = {(σ̄1, Fi1 ), . . . , (σ̄p, Fip

)} be a shelling-trapped decomposition of σ̄

and let ω be a permutation on [p − 1]. We define a chain CD,ω in [0̂, Uσ̄] as follows:

(1) By Lemma 3.2, the interval [0̂, Uσ̄] contains Uσ̄1
∩ · · · ∩Uσ̄p

and the interval [Uσ̄1
∩ · · · ∩Uσ̄p

, Uσ̄] is

isomorphic to the set partition lattice Πp. It is well known that the order complex of Πp = Πp−{0̂, 1̂}
is homotopy equivalent to a wedge of (p − 1)! spheres of dimension p − 3 and there is a saturated

chain Cω in Πp for each permutation ω of [p− 1] such that removing {Cω = Cω −{0̂, 1̂}|ω ∈ Sp−1}
from the order complex of Πp gives a contractible subcomplex (see [1, Example 2.9]). Identify

Uσ̄1
, · · · , Uσ̄p

with 1, . . . , p in this order and take the saturated chain C̃ω in [Uσ̄1
∩ · · · ∩ Uσ̄p

, Uσ̄]
which corresponds to the chain Cω in Πp.

(2) By Lemma 3.4,

[0̂, Uσ̄1
∩ · · · ∩ Uσ̄p

] ∼= [0̂, Uσ̄1
] × · · · × [0̂, Uσ̄p

].

Since ∆ is shellable and Gij
⊆ σj ⊆ Fij

for all j, one can see that [0̂, Uσ̄j
] has a subinterval

[UF ij
, Uσ̄j

] which is isomorphic to the boolean algebra of the set of order |σ̄j | − |F ij
|. Thus

[UF i1
∩ · · · ∩ UF ip

, Uσ̄1
∩ · · · ∩ Uσ̄p

]
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is isomorphic to
[UF i1

, Uσ̄1
] × · · · × [UF ip

, Uσ̄p
]

and hence is isomorphic to the boolean algebra of the set of order
∑p

j=1

(
|σ̄j | − |F ij

|
)
. Take any

saturated chain C̃ in
[UF i1

∩ · · · ∩ UF ip
, Uσ̄1

∩ · · · ∩ Uσ̄p
].

(3) Define a saturated chain CD,ω by

0̂ ≺ UF ip
≺ UF ip

∩ UF ip−1

≺ · · · ≺ UF ip
∩ · · · ∩ UF i1

followed by the chains C̃ and C̃ω (where ≺ means the covering relation in L∆).

Let
CD,ω = CD,ω − {0̂, Uσ̄}.

Then CD,ω ∈ ∆(0̂, Uσ̄).

Note that the length of this chain CD,ω is

l(CD,ω) = p +

p∑

j=1

(
|σ̄j | − |F ij

|
)

+ (p − 1) − 2

= p(2 − n) +

p∑

j=1

|Fij
| + |σ̄| − 3.

Example 3.10. Let ∆ be the shellable simplicial complex in Example 3.7. Then one can see that

D = {(45, F1 = 12367), (123, F6 = 14567), (67, F7 = 12345)}

is a shelling-trapped decomposition of {1, 2, 3, 4, 5, 6, 7}. Let ω be a permutation in S2 with ω(1) = 2 and
ω(2) = 1. Then the maximal chain Cω in Π3 corresponding to ω is (1 | 2 | 3)−(1 | 23)−(123). By identifying
U45, U123, U67 with 1, 2, 3 in this order, one can get

C̃ω = U45 ∩ U123 ∩ U67 ≺ U45 ∩ U12367 ≺ U1234567.

Since [U45 ∩U23 ∩U67, U45 ∩U123 ∩U67] is isomorphic to a boolean algebra of the set of order 1, one can take

C̃ = U45 ∩ U23 ∩ U67 ≺ U45 ∩ U123 ∩ U67.

Thus CD,ω is the chain

0̂ ≺ U67 ≺ U23 ∩ U67 ≺ U45 ∩ U23 ∩ U67

≺ U45 ∩ U123 ∩ U67 ≺ U45 ∩ U12367 ≺ U1234567.

The chain CD,ω is represented by thick lines in Figure 2.

The following lemma gives the relationship between the shelling-trapped decompositions of [n] containing
F and the shelling-trapped decompositions of F ∪ {v}.

Lemma 3.11. Let ∆ be a shellable simplicial complex on [n] such that dim∆ ≤ n − 3 and let F be the
last facet in the shelling order of ∆.

Then there is a one-to-one correspondence between the set of all pairs (D, ω) of shelling-trapped decom-

positions D of [n] over ∆ containing F and ω ∈ S|D|−1, and the set of all pairs (D̃, ω̃) of shelling-trapped

decompositions D̃ of F ∪ {v} over ∆F and ω̃ ∈ S| eD|−1. Moreover, one can choose CD,ω and C eD,ω̃
so that

CD,ω − UF corresponds to C eD,ω̃
under the homotopy equivalence in Theorem 3.6.

Example 3.12. Let ∆ be the shellable simplicial complex in Example 3.7. In Example 3.10, we had

CD,ω =0̂ ≺ U67 ≺ U23 ∩ U67 ≺ U45 ∩ U23 ∩ U67

≺ U45 ∩ U123 ∩ U67 ≺ U45 ∩ U12367 ≺ U1234567

for a shelling-trapped decomposition

D = {(45, F1 = 12367), (123, F6 = 14567), (67, F7 = 12345)}

of {1, 2, 3, 4, 5, 6, 7} and a permutation ω in S2 with ω(1) = 2 and ω(2) = 1.
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Decomposition Facets

1234 G3 = ∅ ⊆ 1234 = ∅ ⊆ F3 = 23
1234 G5 = ∅ ⊆ 1234 = ∅ ⊆ F5 = 34

24 ∪ 13 G2 = 1 ⊆ 24 = 13 ⊆ F2 = 13,
G4 = 2 ⊆ 13 = 24 ⊆ F4 = 24

34 ∪ 12 G1 = 12 ⊆ 34 = 12 ⊆ F1 = 12,
G5 = ∅ ⊆ 12 = 34 ⊆ F5 = 34

Table 2. Shelling-trapped decompositions of σ̄ = 1234

123

1234

123 13/2412/34 234134124

12 13 14 24 34

R 4

134 13

14

34

234 24

13/24
12/34 12

124

Figure 4. The intersection lattice for ∆ and the order complex for its proper part

Since 67 = F 7, the corresponding shelling-trapped decomposition D̃ of {1, 2, 3, 4, 5, v} is

D̃ = {(45, F̃1 = 123v), (123v, F̃6 = 145v)}

and the corresponding permutation ω̃ ∈ S1 is the identity.
The corresponding chain C eD,ω̃

is

0̂ ≺ U23 ≺ U45 ∩ U23 ≺ U45 ∩ U123 ≺ U45 ∩ U123v.

Proof Sketch of Theorem 3.1. One can consider the following decomposition of ∆̂(L):

∆̂(L) = ∆̂(L − {H}) ∪ ∆̂(L≥H),

where ∆̂(L − {H}) is obtained by removing all chains CD,ω not containing H from L − {H} and ∆̂(L≥H)

is obtained by removing CD,ω and CD,ω − H from L≥H for all CD,ω containing H . Then one can show

that all three spaces ∆̂(L − {H}), ∆̂(L≥H) and their intersection are contractible, and hence ∆̂(L) is also
contractible. �

Example 3.13. Let ∆ be a simplicial complex with a shelling

F1 = 12, F2 = 13, F3 = 23, F4 = 24, F5 = 34.

Then

G1 = 12, G2 = 1, G3 = ∅, G4 = 2, G5 = ∅.

Let σ̄ = 1234. Then there are four possible shelling-trapped decompositions of σ̄ (see Table 2). Thus

∆(0̂, U1234) is homotopy equivalent to a wedge of four circles. The intersection lattice and the order complex
for its proper part are shown in Figure 4. Note that the chains and the simplices corresponding to each
shelling-trapped decomposition are represented by thick lines.

4. The homology of the singularity link of A∆

In this section, we give the corollary about the homotopy type of the singularity link of A∆ when ∆ is
shellable. Also we give the homology version of the corollary.

Ziegler and Živaljević [14] show the following theorem about the homotopy type of V◦
A.
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Theorem 4.1. For every subspace arrangement A in Rn,

V◦
A '

∨

x∈LA−{0̂}

(∆(0̂, x) ∗ Sdim(x)−1).

From this and our results in Section 3, one can deduce the following.

Corollary 4.2. Let ∆ be a shellable simplicial complex on [n] with dim∆ ≤ n − 3. The singularity
link of A∆ has the homotopy type of a wedge of spheres, consisting of p! spheres of dimension

n + p(2 − n) +

p∑

j=1

|Fij
| − 2

for each shelling-trapped decomposition {(σ̄1, Fi1), . . . , (σ̄p, Fip
)}.

Remark 4.3. The following theorem is a homology version of this corollary.

Theorem 4.4. Let ∆ be a shellable simplicial complex on [n] with dim∆ ≤ n− 3 and F1, . . . , Fq be the
shelling order on facets of ∆. Then dimF Hi(V◦

A∆
; F) is the number of ordered shelling-trapped decompositions

((σ̄1, Fi1 ), . . . , (σ̄p, Fip
)) with i = n + p(2 − n) +

∑p

j=1 |Fij
| − 2.

This last result can be proven without Theorem 3.1 by combining

(1) a result of Peeva, Reiner and Welker [12, Theorem 1.3],
(2) results of Herzog, Reiner and Welker [8, Theorem 4, Theorem 9],
(3) the theory of Golod rings.

It is what motivated Corollary 4.2 and eventually Theorem 1.1.

5. K(π, 1) examples from matroids

Davis, Januszkiewicz and Scott [5] show the following theorem.

Theorem 5.1. Let H be a simplicial real hyperplane arrangement in Rn. Let A be any arrangement of
codimension-2 intersection subspaces in H which intersects every chamber in a codimension-2 subcomplex.
Then MA is K(π, 1).

Remark 5.2. In order to apply this to diagonal arrangements, we need to consider hyperplane arrange-
ments H which are subarrangements of the braid arrangement Bn and also simplicial. It turns out (and we
omit the straightforward proof) that all such arrangements H are direct sums of smaller braid arrangements.
So we only consider H = Bn itself here.

Corollary 5.3. Let A be diagonal arrangement of codimension 2 subspaces inside H = Bn, so that

A = {Uijk | {i, j, k} ∈ TA},

for some collection TA of 3-element subsets of [n]. Then A satisfies the hypothesis of Theorem 5.1 (and
hence MA is K(π, 1)) if and only if every permutation w in Sn has at least one triple in TA consecutive.

Proof. It is easy to see that there is a bijection with chambers of Bn and permutations w = w1 · · ·wn

in Sn. Moreover, each chamber has the form xw1
> · · · > xwn

with bounding hyperplanes xw1
=

xw2
, . . . , xwn−1

= xwn
and intersects the 3-equal subspaces of the form xwi

= xwi+1
= xwi+2

for i =
1, 2, . . . , n − 2. �

A rich source of shellable complexes are the matroid complexes I(M), that is the independent sets of a
matroid M . If ∆ = I(M) for some matroid M , then facets of ∆ are bases of M . Therefore

A∆ = {Uijk | {i, j, k} = [n] − B for some B ∈ B(M)}

= {Uijk | {i, j, k} ∈ B(M⊥)},

where M⊥ is the dual matroid of M .

Definition 5.4. Say a rank 3 matroid M on [n] is DJS if its bases B(M) satisfies the condition of
Corollary 5.3.
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Note that a matroid M which is DJS gives rise to a diagonal arrangement A∆ for ∆ = I(M⊥) which
has MA∆

K(π, 1) and with the homotopy type of L∆,V◦
A∆

all predicted by Theorem 3.1. Unfortunately,
the following example shows that matroids are not always DJS in general.

Example 5.5. Let ∆ be the boundary of an octahedron. Then it is a simplicial complex on {1, 2, 3, 4, 5, 6}
whose facets are 123, 134, 145, 125, 236, 346, 456 and 256. It is easy to see that it is vertex-decomposable,
hence is shellable. Also note that ∆ is the independent set complex I(M) of a matroid M of rank 3 which
has three distinct parallel classes {1, 6}, {2, 4} and {3, 5}. But,

TA∆
= {123, 134, 145, 125, 236, 346, 456, 256}

and w = 124356 is a permutation that does not satisfy the condition of Corollary 5.3.

Thus we look for some subclasses of matroids which are DJS. The following two propositions give some
rank 3 matroids which are DJS.

Proposition 5.1. Let M be a rank 3 matroid on the ground set [n] with no circuits of size 3. Let
P1, . . . , Pk be distinct parallel classes which have more than one element and let N be the set of all elements

which are not parallel with anything else. Then, M is DJS if and only if b |P1|
2 c+ · · ·+ b |Pk|

2 c − k < |N | − 2.

A simplicial complex ∆ on [n] is shifted if, for any face of ∆, replacing any vertex i by a vertex j(< i)
gives another face in ∆. The Gale ordering on all k element subsets of [n] is given by {x1 < · · · < xk} is less
than {y1 < · · · < yk} if

xi ≤ yi for all i and {x1, . . . , xk} 6= {y1, . . . , yk}.

Then it is known that shifted complexes are exactly the order ideals of Gale ordering. Klivans [10] shows
the following theorem.

Theorem 5.6. Let M be a rank 3 loop-coloop free matroid on the ground set [n] such that I(M) is also
shifted. Then its bases are the principal order ideal generated by {a, b, n} in the Gale ordering such that
1 < a < b < n. Moreover, M has the following form:

(1) elements b + 1, b + 2, . . . , n form the unique non-trivial parallel class.
(2) elements a + 1, a + 2, . . . , n form a rank 2 flat, and this is the only rank 2 flat which can contain

more than two parallelism classes.

From this, one can see the following.

Proposition 5.2. Let M be the rank 3 matroid on the ground set [n] corresponding to the principal
order ideal generated by {a, b, n}. Then, M is DJS if and only if bn−b

2 c < a.

Problem: Characterize the rank 3 matroids which are DJS.
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