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The combinatorics of frieze patterns and Markoff numbers
James Propp

ABSTRACT. This article, based on joint work with Gabriel Carroll, Anéisara, lan Le, Gregg Musiker, Gregory Price,
Dylan Thurston, and Rui Viana, presents a combinatorialehbdsed on perfect matchings that explains the symmetiies o
the numerical arrays that Conway and Coxeter dubbed friazerps. This matchings model is a combinatorial integtiah

of Fomin and Zelevinsky's cluster algebras of tylaeOne can derive from the matchings model an enumerative ingeéor

the Markoff numbers, and prove that the associated Lau@phpmials have positive coefficients as was conjecturaacfm
more generally) by Fomin and Zelevinsky. Most of this reskawas conducted under the auspices of REACH (Research
Experiences in Algebraic Combinatorics at Harvard).

RESUME. Cet article, basé sur un travail conjoint avec Gabrielr@grAndy ltsara, lan Le, Gregg Musiker, Gregory Price,
Dylan Thurston, et Rui Viana presente un modele combirewipliquant les symétries dans les tableaux numérigpelés
motifs frieze par Conway et Coxeter. Ce modeéle, basé surdeplages parfaits, donne une interprétation comhneaties
algebre de cluster de type A de Fomin et Zelevinksy. Ce fequErmet de fournir une interprétation énumérativerdesbres
Markoff, et on peut déemontrer que les polyndmes de Lawasstciés ont des coefficients positifs, ce qui avait @vgecturé
(dans un cadre plus général) par Fomin et ZelevinskyeCettherche s’est déroulée dans le cadre du programme REAC
(Research Experiences in Algebraic Combinatorics at Hdyva

1. Introduction

A Laurent polynomiain the variables,y, . .. is a polynomial in the variablesx 1,y,y 1, .... Thus the function
f(x) = (X +1)/x=x+x"Lis a Laurent polynomial, but the compositiéaf (x)) = (x* +3x? + 1) /x(x> + 1) is not.
This shows that the set of Laurent polynomials in a singléatde is not closed under composition. This failure of
closure also holds in the multivariate setting; for ins@nt f (x,y), g(x,y) andh(x,y) are Laurent polynomials ir
andy, then we would not expect to find th&tg(x,y),h(x,y)) is a Laurent polynomial as well. Nonetheless, it has
been discovered that, in broad class of instances (embaacgat by no general rule), “fortuitous” cancellations accu
that cause Laurentness to be preserved. This is the “Laphemomenon” discussed by Fomin and Zelevindi@}.[

Furthermore, in many situations where the Laurent phenoméaolds, there is a certain positivity phenomenon
at work as well, and all the coefficients of the Laurent polyinas turn out to be positive. In these cases, the func-
tions being composed are Laurent polynomials with posttvefficients; that is, they are expressions involving only
addition, multiplication, and division. It should be nott subtraction-free expressions do not have all the obosu
properties one might hope for, as the exanfgfer-y®) /(x+y) illustrates: although the expression is subtraction;free
its reduced formx? — xy+ y? is not.

Fomin and Zelevinsky have shown that a large part of the lr#ness phenomenon fits in with their general
theory of cluster algebras. In this article | will discussedmportant special case of the Laurentness-plus-pdgitivi
phenomenon, namely the case associated with cluster algebrtypeA, discussed in detail irlld]. The purely
combinatorial approach taken in sections 2 and 3 of my artidscures the links with deeper issues (notably the
representation-theoretic questions that motivated thenition of cluster algebras), but it provides the quickest a
most self-contained way to prove the Laurentness-plugtipios assertion in this case (Theorem 3.1). The frieze
patterns of Conway and Coxeter, and their link with triaagiohs of polygons, will play a fundamental role, as will
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perfect matchings of graphs derived from these trianguiati (For a different, more algebraic way of thinking about
frieze patterns, se8].)

In sections 4 and 5 of this article, two variations on the therffrieze patterns are considered. One is the tropical
analogue, which has bearing on graph-metrics in trees. Ter eariant is based on a recurrence that looks very
similar to the frieze relation; the variant recurrence aupeo give rise to tables of positive integers possessiag th
same glide-reflection symmetry as frieze patterns, butipitgj integrality, and symmetry are currently still urgqued.

In section 6, the constructions of sections 2 and 3 are dxiao a case in which the triangulated polygons
come from pairs of mutually visible points in a dissectioritef plane into equilateral triangles. In this case, cogntin
the matchings of the derived graphs gives us an enumerategpietation of Markoff numbers (numbers satisfying
the ternary cubie?® +y? + 2% = 3xy2. This yields a combinatorial proof of a Laurentness agsegroved by Fomin
and Zelevinsky in[13] (namely a special case of their Theorem 1.10) that fallsidatof the framework of cluster
algebras in the strict sense. Fomin and Zelevinsky provesidm 1.10 by use of their versatile “Caterpillar Lemma”,
but this proof did not settle the issue of positivity. The donatorial approach adopted here shows that all of the Lau-
rent polynomials that occur in the three-variable ratiefnalction analogue of the Markoff numbers — the “Markoff
polynomials” — are in fact positive (Theorem 6.2).

Section 7 concludes with some problems suggested by theremsiit of section 6. One can try to generalize the
combinatorial picture by taking other dissections of themglinto triangles, or one can try to generalize by congideri
other Diophantine equations. There may be a general lird, foert its nature is still obscure.

2. Triangulationsand frieze patterns

A frieze pattern [[/] is an infinite array such as

1 1 1 1 1 1
1 5 z 3 3 2
1 4 I 1 4 :
3 2 2 1 5 z
1 1 1 1 1 1

consisting ofn — 1 rows, each periodic with periag such that all entries in the top and bottom rows are equal to 1
and all entries in the intervening rows satisfy the relation

A
B C : D=(BC-1)/A.
D

The rationale for the term “frieze pattern” is that such arapaautomatically possesses glide-reflection symmetry (as
found in some decorative friezes): fodm < n— 1, then— mth row is the same as theth row, shifted. Hence the
relationD = (BC— 1)/A will be referred to below as the “frieze relation” even thbuts relation to friezes and their
symmetries is not apparent from the algebraic definition.

Frieze patterns arose from Coxeter’s study of metric prigeeof polytopes, and served as useful scaffolding for
various sorts of metric data; see elg].(page 160),10], and [11]. Typically some of the entries in a frieze pattern are
irrational. Conway and Coxeter completely classify the#@ patterns whose entries are positive integers, and show
that these frieze patterns constitute a manifestationeoCdtalan numbers. Specifically, there is a natural assatiat
between positive integer frieze patterns and triangulatiof regular polygons with labelled vertices. (In addition
to [[4], see the shorter discussion on pp. 74—76 and 96—9d] 9flote that for each fixed, any convexn-gon would
serve here just as well as the regulagon, since we are only viewing triangulations combinatibyi

From every triangulatioil of a regulam-gon with vertices cyclically labelled 1 through Conway and Coxeter
build an (n— 1)-rowed frieze pattern determined by the numbarsy, . ..,an, whereay is the number of triangles
in T incident with vertexk. Specifically: (1) the top row of the array is.,1,1,1,...; (2) the second row (offset
from the first) is...,a;,ap,...,an,a1,... (with periodn); and (3) each succeeding row (offset from the one before) is
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determined by the frieze relation. E.g., the triangulation

of the 6-gon determines the dd&, ... ,as) = (1,3,2,1,3,2) and 5-row frieze pattern

Conway and Coxeter show that the frieze relation, appli¢ddadnitial rows...,1,1,1,... and...,a;,az,...,an,..-,
yields a frieze pattern. Note that implicit in this assertis the assertion that every entry in rows 1 throngh3 is
non-zero (so that the recurrenbe= (BC— 1)/A never involves division by 0). It is not a priori obvious ttestch of
the entries in the array is positive (since the recurreneelves subtraction) or that each of the entries is an integer
(since the recurrence involves division). Nor is it immeelin clear why for 1< m < n-—1, then— mth row of the
table given by repeated application of the recurrence shioeithe same as tmth row, shifted, so that in particular
then — 1st row, like the first row, consists entirely of 1's.

These and many other properties of frieze patterns areiegplédy a combinatorial model of frieze patterns dis-
covered by Carroll and PricB][ (based on earlier work of Itsara, Le, Musiker, Price, anand). Given a triangulation
T as above, define a bipartite graBh= G(T ) whosen black verticess correspond to the vertices &f whosen— 2
white verticesw correspond to the triangular facesf and whose edges correspond to all incidences between ver-
tices and faces ifi (that is,v andw are joined by an edge preciselwifs one of the three vertices of the triangle in
T associated witlw). Fori # j in the range 1..,n, letG; ; be the graph obtained fro@ by removing black vertices
i andj and all edges incident with them, and iat; be the number of perfect matchings®f; (that is, the number
of ways to pair alh — 2 of the black vertices with the— 2 white vertices, so that every vertex is paired to a vertex of
the opposite color adjacent to it). For instance, for tregulationT of the 6-gon defined in the preceding figure, the
graphGy 4 is
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and we putm 4 = 5 since this graph has 5 perfect matchings.

THEOREM 2.1 (Gabriel Carroll and Gregory Pricg]]. The Conway-Coxeter frieze pattern of a triangulation T
is just the array

m 2 M3 M3 4 My 5
M3 M4 M35
Mh,3 Mg M5 M3 6

Mh.4 My 5 M6

where here as hereafter we interpret all subscripts mod n.

Note that this claim makes the glide-reflection symmetryradze patterns a trivial consequence of the fact that
Gij=Gii-

PROOF Here is a sketch of the main steps of the proof:

(1) mii41 = 1: This holds because there is a tree structure on the séangkes inT that induces a tree structure
on the set of white vertices @. If we examine the white vertices &, proceeding from outermost to innermost, we
find that we have no freedom in how to match them with blackieest when we keep in mind that every black vertex
must be matched with a white vertex. (In fact, the same reagamows thatn; j = 1 whenever the triangulation
contains a diagonal connecting verticesd j.)

(2) m_1iy1 = &: The argument is similar, except now we have some freedonow theith black vertex is
matched: it can be matched with any of #gedjacent white vertices.

(3)m jm_1j+1=m_1;m j+1— 1: If we move the 1 to the left-hand side, we can use (1) to vihiégeequation
in the form

M Mi—g MMy j1 = M1 j M jy1.
This relation is a direct consequence of a lemma due to Eriw @ineorem 2.5 ind7]), which | state here for the
reader’s convenience:

Condensation lemmdf a bipartite planar grapks has 2 more black vertices than white vertices, and the black
verticesa, b, c,d lie in cyclic order on some face @, then

m(a,c)m(b,d) = m(a,b)m(c,d) + m(a,d)m(b,c),

wherem(x,y) denotes the number of perfect matchings of the graph olatdioen G by deleting verticeg andy and
all incident edges.

(1) and (2) tell us that Carroll and Price’s theorem appliethe first two rows of the frieze pattern, and (3) tells
us (by induction) that the theorem applies to all subseqroevs. O
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It should be mentioned that Conway and Coxeter give an atiesway of describing the entries in frieze patterns,
as determinants of tridiagonal matrices. Note that;j, 1 = & which equals the determinant of the 1-by-1 matrix
whose sole entry ig;, whilem_1 > = &a4+1 — 1 which equals the determinant of the 2-by-2 matrix

(%)
1 a1 )

One can show by induction using Dodgson’s determinant igefibr a statement and a pretty proof of this identity
see 1)) thatm,_ j 1 equals the determinant of thkeby-k matrix witha;, ..., a1 down the diagonal, 1's in the two
flanking diagonals, and 0's everywhere else. This is truafgrarrays satisfying the frieze relation whose initial row
consists of 1's, whether or not it is a frieze pattern. Thay,mumerical array constructed via the frieze relation from
initial data consisting of a first row of 1's and a second rovpositive integers will be an array of positive integers;
entries in subsequent rows will be positive since they afmee by subtraction-free expressions, and they will be
integers since they are equal to determinants of integeniceat (One caveat is in order here: although the table of
tridiagonal determinants always satisfies the friezeimatt may not be possible to compute the table using just the
frieze relation, since some of the expressions that arigltie indeterminate fractions of the forni®0) However,

for most choices of positive integess, ..., an, the resulting table of positive integers will not be @ 1)-rowed
frieze pattern. Indeed, Conway and Coxeter show that efreryl)-rowed frieze pattern whose entries are positive
integers arises from a triangulatedjon in the fashion described above.

3. Thesideways construction and its periodicity

Recall that anyn— 1)-rowed array of real numbers that begins and ends with rovtssaind satisfies the frieze
relation in between qualifies as a frieze pattern.

Note that if the vertices,1..,n of ann-gon lie on a circle and we lat; ; be the distance between poimtand
j, Ptolemy’s theorem on the lengths of the sides and diagafals inscriptible quadrilateral gives us the three-term
guadratic relation

dijdi—1j41+di—1idj_1j=0di_1jdij+1

(with all subscripts interpreted mag. Hence the numberd ; with i # j, arranged just as the numbens; were,
form an (n— 1)-rowed array that almost qualifies as a frieze pattern (theyasatisfies the frieze relation and has
glide-reflection symmetry becausg; = m;; for all i, j, but the top and bottom rows do not in general consist of 1's).
The nicest case occurs when thgon is a regulan-gon of side-length 1; then we get a genuine frieze pattedh an
each row of the frieze pattern is constant.

Another source of frieze patterns is an old result from sighbgeometry: thgpentagramma mirificurof Napier
and Gauss embodies the assertion that the arc-lengthsafltssin a right-angled spherical pentagram can be arranged
to form the middle two rows of a four-rowed frieze pattern.

Conway and Coxeter show that frieze patterns are easy teraohs one proceeds not from top to bottom (since
one is unlikely to choose numbeas, .. .,a, in the second row that will yield all 1's in then — 1)st row) but from
left to right, starting with a zig-zag of entries connectthg top and bottom rows (where the zig-zag path need not
alternate between leftward steps and rightward steps bytomasist of any pattern of leftward steps and rightward
steps), using the sideways frieze relation

A

B C : C=(AD+1)/B
D

E.g., consider the partial frieze pattern

1 1 1 1 1
X X

y Y
z b4
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Given non-zero values of y, andz, one can successively compyte= (xz+1)/y, X = (y+1)/x, andZ = (y+1)/z,
obtaining a new zig-zag of entrig§y’,Z connecting the top and bottom rows. For generic choices ofzgvox, y, z,

one ha(,y,Z non-zero as well, so the procedure can be repeated, yididitier zig-zags of entries. Happily (and
perhaps surprisingly), after six iterations of the progedane will recover the original numbexsy, z six places to the
right of their original position (unless one has unluckihosenx,y,z so as to cause one to encounter an indeterminate
expression of the form/@® from the recurrence).

To dodge the issue of indeterminate expressions, we emin@etrminacy by regardingy,z as formal quanti-
ties, not specific numbers, so thaty', Z, etc. become rational functionsxfy, andz. Then our recurrence ceases to be
problematic. Indeed, one finds that the rational functitias arise are of a special kind, namely, Laurent polynomials
with positive coefficients.

We can see why this is so by incorporating weighted edge®imtmatchings model. Returning to the triangulated
hexagon from section 2, associate the valkjgs andz with the diagonals joining vertices 2 and 6, vertices 2 and 5,
and vertices 3 and 5, respectively. Call these the formafjmisiof the diagonals. Also assign weight 1 to each of
the 6 sides of the hexagon. Now construct the graps before, only this time assigning weights to all the edges.
Specifically, ifv is a black vertex ofs that corresponds to a vertex of thegon andw is a white vertex ofG that
corresponds to a triangle in the triangulatibthat hass as one of its three vertices (and haandv”’ as the other two
vertices), then the edge @ that joinsv andw should be assigned the weight of the side or diagonal that joins
v andv’. We now definéM ; as the sum of the weights of all the perfect matchings of tlaglyG; ; obtained by
deleting verticesandj (and all their incident edges) frof®, where the weight of a perfect matching is the product of
the weights of its constituent edges, and we de¥inpasW ; divided by the product of the weights of all the diagonals
(this product isxyzin our running example). Thedd; ;'s, which are rational functions of y, andz, generalize the
numbers denoted by j earlier, since we recover ths j's from theM; j's by settingx =y =1z= 1. Itis clear that
eachW ; is a polynomial with positive coefficients, so eddh; is a Laurent polynomial with positive coefficients.
And, because of the normalization (division xy2), we have gotten ead; ;1 to equal 1. So the table of rational
functionsM,; j is exactly what we get by running our recurrence from lefight. When we pass fromy,ztox,y,Z,
we are effectively rotating our triangulation by one-sigfla full turn; six iterations bring us back to where we stdrte

We have proved:

THEOREM 3.1. Given any assignment of formal weights te- 8 entries in an(n— 1)-rowed table that form a
zig-zag joining the top row (consisting of all 1's) to the towh row (consisting of all 1's), there is a unique assignment
of rational functions to all the entries in the table so thia¢ ffrieze relation is satisfied. These rational functions of
the original n— 3 variables have glide-reflection symmetry that gives eaghperiod n. Furthermore, each of the
rational functions in the table is a Laurent polynomial wigbsitive coefficients.

Note that a zig-zag joining the top row to the bottom row cep@nds to a triangulatiol whose dual tree is
just a path. Not every triangulation is of this kind. In gealethe entries in a frieze pattern that correspond to the
diagonals of a triangulatiol do not form a zig-zag path, so it is not clear from the frieztgga how to extend the
known entries to the unknown entries. In such a case, it istba@efer directly to the triangulation itself, and to use a
generalization of the frieze relation, namely the (forniblemy relation]

Mi,j M| + M «Mi | = M; M

wherei, j, k| are four vertices of tha-gon listed in cyclic order. Since every triangulation ofaeexn-gon can be
obtained from every other by means of flips that replace oagatfial of a quadrilateral by the other diagonal, we can
iterate the Ptolemy relation so as to solve for all ofkfig’s in terms of the ones whose values were given.

Up until now we have allowed the diagonals, but not the sidésur n-gon to have indeterminate weights; that
is, the sides have all had weight 1. We can remedy this seeladkgof generality by noting that if we multiply the
weights of the three sides of any triangle in the triangalali by some constart, the effect is to multiply by the
weights of three edges of the gra@h namely, the three edges incident with the white vertexssociated withT .
This has the effect of multiplying the weight of every petfertching of every grap@; j by ¢, and such a scaling has
no effect on the Laurentness phenomenon.

Our combinatorial construction of Laurent polynomialsaasated with the diagonals of amgon is essentially
nothing more than the typ& case (more precisely, th, 3 case) of the cluster algebra construction of Fomin and
Zelevinsky [I4]. The result that our matchings model yields, stated in facgmitained way, is as follows:

THEOREM 3.2. Given any assignment of formal weightg %o the 2n— 3 edges of a triangulated convex n-
gon, there is a unique assignment of rational functions km@ — 3) /2 diagonals of the n-gon such that the rational
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functions assigned to the four sides and two diagonals ofjaagrilateral determined by four of the n vertices satisfies
the Ptolemy relation. These rational functions of the ar&@i2n — 3 variables are Laurent polynomials with positive
coefficients.

The formal weights are precisely the cluster variablesércihster algebra of typ&, 3, and the triangulations are
the clusters. The periodicity phenomenonis a special dasmore general periodicity conjectured by Zamolodchikov
and proved in the typA case independently by Frenkel and Szenes and by Gliozziaed;Tse€14] for details.

4. Thetropical analogue

Since the sideways frieze relation involves only subtoacfree expressions in the cluster variables, our whole
picture admits a tropical analogue (for background on tralpinathematics, sedd]) in which multiplication is re-
placed by addition, division by subtraction, addition byxyand 1 by 0. (One could use min instead of max, but max
will be more useful for us.) In this new picture, the Ptolersiation

di jdg) +djkdi| =didj)

becomes the ultrametric relation

max(du + dk,|,dj,k—|— di,|) = di,k+dj’|.
Metrics satisfying this relation arise from finite collemts of non-intersecting arcs that join points on the siddhef
n-gon (not vertices) in pairs (which we will call finite lamith@ns). For any pair of verticesj, we defined; ; as the
smallest possible number of intersections between a paltieimgon fromi to j and the arcs in the finite lamination
(we choose the path so as to avoid crossing any arc in thelanii@ation more than once). Then these quantiigs
satisfy the ultrametric relation. As in the non-tropicateawe can find all the quantitiels; once we know the values
associated with the sides of thegon and the diagonals belonging to some triangulation.

For an alternative picture, one can divide the laminakggbn into a finite number of sub-regions, each of which
is bounded by pieces of the boundary of thgon and/or arcs of the finite lamination; the vertices of tigon
correspond ta special sub-regions (some of which may coincide with ondtarpif there is no arc in the finite
lamination separating the associated vertices ofntigen). Then the dual of this dissection of thejon is a tree
with n specified leaf vertices (some of which may coincide), énds the graph-theoretic distance between leaid
leaf j (which could be zero). We see that if we know-2 3 of these leaf-to-leaf distances, and the-23 pairs of
leaves correspond to the sides and diagonals of a triamgliagon, then all of the other leaf-to-leaf distances can
be expressed as piecewise-linear functions of the 2 specified distances. (For more on the graph metric on trees,
seelP].)

5. A variant

Before leaving the topic of frieze patterns, | mention anropeoblem concerning a variant of Conway and
Coxeter’s definition, in which the frieze relation is reddy the relation

A
B C D : E=(BD-C)/A

E
and its sideways version
A
B C D : D=(AE+C)/B.

E
Here, too, it appears that we can construct arrays that Ihaveaime sort of symmetries as frieze patterns by starting
with a suitable zig-zag of entries (where successive dowtsvsteps can go left, right, or straight) and proceeding
from left to right. E.g., consider the partial table

1 1 1 11
A D x
B E vy
C F z
1 1 1 11
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whereA, ..., F are pre-specified, and where we compute(AC+E)/B,x= (y+D)/A, z= (y+F)/C, etc. Then one
can check that after exactly fourteen iterations of the @doce, one gets back the original numbers (in their original
order). Moreover, along the way one sees Laurent polynsmith positive coefficients.

Define a “double zig-zag” to be a subset of the entries ofren 2)-rowed table consisting of a pair of adjacent
entries in each of the middie— 4 rows, such that the pair in each row is displaced with resigethe pair in the
preceding and succeeding rows by at most one position.

CONJECTURE Given any assignment of formal weights to th@ 2 4) entries in a double zig-zag in g¢n— 2)-
rowed table, there is a unique assignment of rational fonstto all the entries in the table so that the variant frieze
relation is satisfied. These rational functions of the o@i2(n — 4) variables have glide-reflection symmetry that
gives each row periodr2 Furthermore, each of the rational functions in the tabla isaurent polynomial with
positive coefficients.

There ought to be a way to prove this by constructing the natoes of these Laurent polynomials as sums
of weights of perfect matchings of some suitable graph (ohges sums of weights of combinatorial objects more
general than perfect matchings), and the numerators utedylrontain abundant clues as to how this can be done.

Forn=5,6,7,8, it appears that the number of positive integer arraysfyaty the variant frieze relation is
respectively 1, 5, 51, 868. This variant of the Catalan segeieoes not appear to have been studied before. However,
it should be said that these numbers were not computed ireorig fashion. Indeed, it is not clear that there really is
a variant of the Catalan sequence operating here; that &ytdt $s conceivable that beyond some point, the sequence
becomes infinite (i.e., for somethere could be infinitely mangn — 2)-rowed positive integer arrays satisfying the
variant frieze relation).

6. Markoff numbers

A Markoff tripleis a triple(x,y, z) of positive integers satisfying +y? 4 zZ> = 3xyz e.g., the triple (2,5,29). A
Markoff number is a positive integer that occurs in at least one such triple.

Writing the Markoff equation ag® — (3xy)z+ (x* +y?) = 0, a quadratic equation ip we see that ifx,y,z) is a
Markoff triple, then so igx,y,Z), whereZ = 3xy— z= (x? 4 y?) /z, the other root of the quadratic i (Z is positive
becaus& = (x> +Yy?)/z and is an integer becauge= 3xy— z.) Likewise forx andy.

The following claim is well-known (for an elegant proof, §8§): Every Markoff triple (x,y,z) can be obtained
from the Markoff triple (1,1,1) by a sequence of such exchange operations, in fact, by a rsegwé exchange
operations that leaves two numbers alone and increasdsittieE.g.,(1,1,1) — (2,1,1) — (2,5,1) — (2,5,29).

Create a graph whose vertices are the Markoff triples andse/ledlges correspond to the exchange operations
xy,2) — X,v,2), (x,¥,2) — (X,Y,2), (X,¥,2) — (X,y,Z) wherex = yzizz, y = XZ;ZZ, Z= XZ?’Z. This 3-regular
graph is connected (see the claim in the preceding paragrapthit is not hard to show that it is acyclic. Hence the
graph is the 3-regular infinite tree.

This tree can be understood as the dual of the triangulafitmeaupper half plane by images of the modular do-
main under the action of the modular group. Concretely, wedascribe this picture by using Conway’s terminology
of “lax vectors”, “lax bases”, and “lax superbase&|j[

A primitive vectoru in a latticeL is one that cannot be written &g for some vectow in L, with k > 1. A lax
vector is a primitive vector defined only up to sign;tifis a primitive vector, the associated lax vector is writtem
A lax base for L is a set of two lax vector§+u,+v} such thau andv form a basis fot.. A lax superbase for L is
a set of three lax vectorstu, +v, +w} such thattu + v +w = 0 (with appropriate choice of signs) and any two of
u,v,w form a basis foL..

Each superbasgtu,+v,+w} contains the three bas¢du,+v}, {+u,+w}, {£v,+w} and no others. In the
other direction, each bage-u, +v} is in the two superbasds-u, +v,+(u+v)}, {+u,+v,£+(u—v)} and no others.

Thetopograph is the graph whose vertices are lax superbases and whosseadgax bases, where each super-
base is incident with the three bases in it. This gives a 8ntditee whose vertices correspond to the lax superbases of
L, whose edges correspond to the lax basés ahd whose “faces” correspond to the lax vectors.in

The latticel that we will want to use is the triangular lattite= {(x,y,2z) € Z3 : x+y+z= 0} (or Z3/Zv where
v=(1,1,1), if you prefer).

Using this terminology, | can now state the main idea of teistion: Unordered Markoff triples are associated
with lax superbases of the triangular lattice, and Markaffnibers with lax vectors of the triangular lattice. For
example, the unordered Markoff triple 229 will correspond to the lax superbas¢u, +v,+w} whereu = OA,
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v = OB, andw = OC, with O, A, B, andC forming a fundamental parallelogram for the triangulatidat as shown

NCONLNL NS N

ANANANAYNA

The Markoff numbers 1, 2, 5, and 29 will correspond to the '[t'w'mvectorsATB, OA, OB, andOC.

To find the Markoff number associated with a primitive veofX, take the uniorR of all the triangles that
segmenOX passes through. The underlying lattice provides a triaatgr ofR. E.g., for the vectou = OC from the
previous figure, the triangulation is

Turn this into a planar bipartite graph as in Part |,&t) be the graph that results from deleting verti€andC,
and letM(u) be the number of perfect matchings®fu). (If u is a shortest vector in the lattice, gui{u) = 1.)

THEOREM®6.1 (Gabriel Carroll, Andy Itsara, lan Le, Gregg Musikere@ory Price, and Rui Viana)lf {u,v,w}
is a lax superbase of the triangular lattice, thévi(u),M(v),M(w)) is a Markoff triple. Every Markoff triple arises
in this fashion. In particular, ifu is a primitive vector, then Ku) is a Markoff number, and every Markoff number
arises in this fashion.

(The association of Markoff numbers with the topograph isTeev; what is new is the combinatorial interpretation
of the association, by way of perfect matchings.)

PROOF The base case, with
(M(er),M(ez),M(e3)) = (1,1,1),
is clear. The only non-trivial part of the proof is the verdfiion that
M(u+V) = (M(u)? +M(v)?)/M(u—v).
E.g., in the picture below, we need to verify that

M(OC)M(AB) = M(OA)? + M(OB)2.
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But if we rewrite the desired equation as
M(OC)M(AB) = M(OA)M(BC) + M(OB)M(AC)
we see that this is just Kuo’s lemma. O

Remark 1: Some of the work done by the REACH students usedasstpttice picture; this way of interpreting
the Markoff numbers combinatorially was actually discagkfirst, in 2001-2002 (sed]).

Remark 2: the original combinatorial model for the Conwayx€&er numbers (found by Price) involved paths,
not perfect matchings. Carroll turned this into a perfectainiags model, which made it possible to arrive at the
matchings model of Itsara, Le, Musiker, and Viana via a déffe route.

More generally, one can pM(e;) = x, M(e;) =y, andM(e3) = z (with x,y,z > 0) and recursively define

M(u+Vv) = (M(U)?+M(Vv)2)/M(u—v).

Then for all primitive vectorsi, M(u) is a Laurent polynomial ii, y, z; that is, it can be written in the forf(x,y,z)/
x2yPZ, whereP(x,y, 2) is an ordinary polynomial ixx,y, z (with non-zero constant term). The numera®gx,y, z) of
each Markoff polynomial is the sum of the weights of all thefpet matchings of the grap®(u), where edges have
weightx, y, or zaccording to orientation. The triple6= M(u), Y = M(v), Z = M(w) of rational functions associated
with lax superbases are solutions of the equation

2 2
X2 4y +sz
Xyz

We have seen that these numeraf(s y,z) are polynomials with positive coefficients. This proves tbéowing
theorem:

X24+Y24+27%= YZ

THEOREMG6.2. Consider the initial triple(x, y, z), along with any triple of rational functions in x, y, and z tltan
be obtained from the initial triple by a sequence of openmadiof the form(X,Y,Z) — (X',Y,Z), (X,Y,2) — (X,Y',Z),
or (X,Y,Z) — (X,Y,Z'), where X = (Y2+2Z2)/X,Y' = (X2+2Z?) /Y, and Z = (X?2+Y?)/Z, Every rational function
of X, y, and z that occurs in such a triple is a Laurent polyredwith positive coefficients.

Fomin and Zelevinsky proved ilLB] (Theorem 1.10) that the rational functiol$x,y,z),Y (x,Y,2),Z(x,y,z) are
Laurent polynomials, but their methods did not prove paigiti An alternative proof of positivity, based on topologl
ideas, was given by Dylan Thurstdz0].

It can be shown that ifi inside the cone generated by, and—es, thena< b > cand(c+1)e; — (a+1)es=u.
(Likewise for the other sectors f) This implies that all the “Markoff polynomiald¥(u) are distinct (aside from the
fact thatM(u) = M(—u)), and thusM(u)(x,y,z) # M(v)(x,Y, 2) for all primitive vectorau # +v as long agx,y, z) lies
in a denseG; set of real triples. This fact can be used to sh@@] fhat, for a generic choice of hyperbolic structure
on the once-punctured torus, no two simple geodesics hav&athe length.

7. Other directionsfor exploration

7.1. Other ternary cubics. Neil Herriot (another member of REACH) showéth] that if we replace the tri-
angular lattice used above by the tiling of the plane by istescright triangles (generated from one such triangle
by repeated reflection in the sides), superbases of theestpttice correspond to triples,y,z) of positive integers
satisfying either

X2 4 Y2+ 27 = dxyz
or
X2+ 2y + 22 = 4xyz
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(Note that these two Diophantine equations are essenéiglijvalent, as the max,y, z) — (2zy,X) gives a bijection
between solutions to the former and solutions to the Iatleris result, considered in conjunction with the result on
Markoff numbers, raises the question of whether there niigltstome more general combinatorial approach to ternary
cubic equations of similar shape.

Rosenbergerig] showed that there are exactly three ternary cubic equaitidrihe shapevé + by? + cZ =
(a+ b+ c)xyzfor which all the positive integer solutions can be derivenhf the solution(x,y,z) = (1,1,1) by means
of the exchange operatioifs,y,z) — (X,y,2), (X,¥,2) — (X,Y,2), and(x,y,2) — (x,y,Z), with X = (by? 4 cZ)/ax,
y = (& +c2) /by, andZ = (ax? + by?) /cz These three ternary cubic equations are

X4+ y* 4+ 22 =3xyz

X2 +y? 427 = Axyz
and
X2+ 2y? + 32 = 6xyz

Note that the triples of coefficients that occur here — (1,11,1,2), and (1,2,3) — are precisely the triples that
occur in the classification of finite reflection groups in theeye. Specifically, the ratios 1:1:1, 1:1:2, and 1:2:3 dbscr
the angles of the three triangles — the 60-60-60 triangke48:45-90 triangle, and the 30-60-90 triangle — that arise
as the fundamental domains of the three irreducible twoedsional reflection groups.

Since the solutions to the ternary cultfcr y?+ 72 = 3xyzdescribe properties of the tiling of the plane by 60-60-60
triangles, and solutions to the ternary cukie- y* + 22> = 4xyzdescribe properties of the tiling of the plane by 45-45-
90 triangles, the solutions to the ternary cukfie- 2y? + 32> = 6xyz“ought” to be associated with some combinatorial
model involving the reflection-tiling of the plane by 30-60-triangles. Unfortunately, the most obvious approach
(based on analogy with the 60-60-60 and 45-45-90 cases)mdegork. So we are left with two problems that may
or may not be related: first, to find a combinatorial intergtien for the integers (or, more generally, the Laurent
polynomials) that arise from solving the ternary cukfie- 2y* + 322 = 6xyz and second, to find algebraic recurrences
that govern the integers (or, more generally, the Laurelytyponials) that arise from counting (or summing the weights
of) perfect matchings of graphs derived from the reflectiting of the plane by 30-60-90 triangles.

If there is a way to make the analogy work, one might seek terekthe analysis to other ternary cubics. It is
clear how this might generalize on the algebraic side. Omg#wmnetric side, one might drop the requirement that the
triangle tile the plane by reflection, and insist only thatleangle be a rational multiple of 360 degrees. There is a
relatively well-developed theory of “billiards flow” in sha triangle (see e.d1f]) where a particle inside the triangle
bounces off the sides following the law of reflection (andliécidence equals angle of reflection) and travels along
a straight line in between bounces. The path of such a padan be unfolded by repeatedly reflecting the triangular
domain in the side that the particle is bouncing off of, sd tha unfolded path of the particle is just a straight line in
the plane. Of special interest in the theory of billiards taagectories joining a corner to a corner (possibly the same
corner or possibly a different one); these are called sadiieections. The reflected images of the triangular domain
form a triangulated polygon, and the saddle connectioff issa combinatorial diagonal of this polygon. It is unclear
whether the combinatorics of such triangulations mightaiondynamical information about the billiards flow, but if
this prospect were to be explored, enumeration of matclindbe derived bipartite graphs would be one thing to try.

7.2. Morevariables. Another natural variant of the Markoff equatiorvi8 + x2 + y2 + 22 = 4wxyz(one special
representative of a broader class called Markoff-Hurwifzagions; se€ll]). The Laurent phenomenon applies here
too: The four natural exchange operations convert an irftiamal solution(w,X,y,z) into a quadruple of Laurent
polynomials. (This is a special case of Theorem 1.1{18}.]

Furthermore, the coefficients of these Laurent polynonmagigear to be positive, although this has not been
proved.

The numerators of these Laurent polynomials ought to behtr@igumerators for some combinatorial model, but
| have no idea what this model looks like.
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