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ABSTRACT. This article, based on joint work with Gabriel Carroll, Andy Itsara, Ian Le, Gregg Musiker, Gregory Price,
Dylan Thurston, and Rui Viana, presents a combinatorial model based on perfect matchings that explains the symmetries of
the numerical arrays that Conway and Coxeter dubbed frieze patterns. This matchings model is a combinatorial interpretation
of Fomin and Zelevinsky’s cluster algebras of typeA. One can derive from the matchings model an enumerative meaning for
the Markoff numbers, and prove that the associated Laurent polynomials have positive coefficients as was conjectured (much
more generally) by Fomin and Zelevinsky. Most of this research was conducted under the auspices of REACH (Research
Experiences in Algebraic Combinatorics at Harvard).

RÉSUMÉ. Cet article, basé sur un travail conjoint avec Gabriel Carroll, Andy Itsara, Ian Le, Gregg Musiker, Gregory Price,
Dylan Thurston, et Rui Viana presente un modèle combinatoire expliquant les symétries dans les tableaux numérique appelés
motifs frieze par Conway et Coxeter. Ce modèle, basé sur les couplages parfaits, donne une interprétation combinatoire des
algèbre de cluster de type A de Fomin et Zelevinksy. Ce modèle permet de fournir une interprétation énumérative desnombres
Markoff, et on peut démontrer que les polynômes de Laurentassociés ont des coefficients positifs, ce qui avait été conjecturé
(dans un cadre plus général) par Fomin et Zelevinsky. Cette recherche s’est déroulée dans le cadre du programme REACH
(Research Experiences in Algebraic Combinatorics at Harvard).

1. Introduction

A Laurent polynomialin the variablesx,y, . . . is a polynomial in the variablesx,x−1,y,y−1, . . . . Thus the function
f (x) = (x2 +1)/x = x+x−1 is a Laurent polynomial, but the compositionf ( f (x)) = (x4 +3x2 +1)/x(x2 +1) is not.
This shows that the set of Laurent polynomials in a single variable is not closed under composition. This failure of
closure also holds in the multivariate setting; for instance, if f (x,y), g(x,y) andh(x,y) are Laurent polynomials inx
andy, then we would not expect to find thatf (g(x,y),h(x,y)) is a Laurent polynomial as well. Nonetheless, it has
been discovered that, in broad class of instances (embracedas yet by no general rule), “fortuitous” cancellations occur
that cause Laurentness to be preserved. This is the “Laurentphenomenon” discussed by Fomin and Zelevinsky [13].

Furthermore, in many situations where the Laurent phenomenon holds, there is a certain positivity phenomenon
at work as well, and all the coefficients of the Laurent polynomials turn out to be positive. In these cases, the func-
tions being composed are Laurent polynomials with positivecoefficients; that is, they are expressions involving only
addition, multiplication, and division. It should be notedthat subtraction-free expressions do not have all the closure
properties one might hope for, as the example(x3+y3)/(x+y) illustrates: although the expression is subtraction-free,
its reduced formx2−xy+y2 is not.

Fomin and Zelevinsky have shown that a large part of the Laurentness phenomenon fits in with their general
theory of cluster algebras. In this article I will discuss one important special case of the Laurentness-plus-positivity
phenomenon, namely the case associated with cluster algebras of typeA, discussed in detail in [14]. The purely
combinatorial approach taken in sections 2 and 3 of my article obscures the links with deeper issues (notably the
representation-theoretic questions that motivated the invention of cluster algebras), but it provides the quickest and
most self-contained way to prove the Laurentness-plus-positivity assertion in this case (Theorem 3.1). The frieze
patterns of Conway and Coxeter, and their link with triangulations of polygons, will play a fundamental role, as will
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perfect matchings of graphs derived from these triangulations. (For a different, more algebraic way of thinking about
frieze patterns, see [3].)

In sections 4 and 5 of this article, two variations on the theme of frieze patterns are considered. One is the tropical
analogue, which has bearing on graph-metrics in trees. The other variant is based on a recurrence that looks very
similar to the frieze relation; the variant recurrence appears to give rise to tables of positive integers possessing the
same glide-reflection symmetry as frieze patterns, but positivity, integrality, and symmetry are currently still unproved.

In section 6, the constructions of sections 2 and 3 are specialized to a case in which the triangulated polygons
come from pairs of mutually visible points in a dissection ofthe plane into equilateral triangles. In this case, counting
the matchings of the derived graphs gives us an enumerative interpretation of Markoff numbers (numbers satisfying
the ternary cubicx2 +y2 +z2 = 3xyz). This yields a combinatorial proof of a Laurentness assertion proved by Fomin
and Zelevinsky in [13] (namely a special case of their Theorem 1.10) that falls outside of the framework of cluster
algebras in the strict sense. Fomin and Zelevinsky proved Theorem 1.10 by use of their versatile “Caterpillar Lemma”,
but this proof did not settle the issue of positivity. The combinatorial approach adopted here shows that all of the Lau-
rent polynomials that occur in the three-variable rational-function analogue of the Markoff numbers — the “Markoff
polynomials” — are in fact positive (Theorem 6.2).

Section 7 concludes with some problems suggested by the mainresult of section 6. One can try to generalize the
combinatorial picture by taking other dissections of the plane into triangles, or one can try to generalize by considering
other Diophantine equations. There may be a general link here, but its nature is still obscure.

2. Triangulations and frieze patterns

A frieze pattern [7] is an infinite array such as

... 1 1 1 1 1 1 ...

... 1 5 2
3 3 5

3 2 ...

... 1 4 7
3 1 4 7

3 ...

... 3 5
3 2 1 5 2

3 ...

... 1 1 1 1 1 1 ...

consisting ofn−1 rows, each periodic with periodn, such that all entries in the top and bottom rows are equal to 1
and all entries in the intervening rows satisfy the relation

A

B C

D

: D = (BC−1)/A .

The rationale for the term “frieze pattern” is that such an array automatically possesses glide-reflection symmetry (as
found in some decorative friezes): for 1≤ m≤ n−1, then−mth row is the same as themth row, shifted. Hence the
relationD = (BC−1)/A will be referred to below as the “frieze relation” even though its relation to friezes and their
symmetries is not apparent from the algebraic definition.

Frieze patterns arose from Coxeter’s study of metric properties of polytopes, and served as useful scaffolding for
various sorts of metric data; see e.g. [9] (page 160), [10], and [11]. Typically some of the entries in a frieze pattern are
irrational. Conway and Coxeter completely classify the frieze patterns whose entries are positive integers, and show
that these frieze patterns constitute a manifestation of the Catalan numbers. Specifically, there is a natural association
between positive integer frieze patterns and triangulations of regular polygons with labelled vertices. (In addition
to [7], see the shorter discussion on pp. 74–76 and 96–97 of [8].) Note that for each fixedn, any convexn-gon would
serve here just as well as the regularn-gon, since we are only viewing triangulations combinatorially.

From every triangulationT of a regularn-gon with vertices cyclically labelled 1 throughn, Conway and Coxeter
build an(n− 1)-rowed frieze pattern determined by the numbersa1,a2, . . . ,an, whereak is the number of triangles
in T incident with vertexk. Specifically: (1) the top row of the array is. . . ,1,1,1, . . . ; (2) the second row (offset
from the first) is. . . ,a1,a2, . . . ,an,a1, . . . (with periodn); and (3) each succeeding row (offset from the one before) is
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determined by the frieze relation. E.g., the triangulation

6 5

4

32

1

of the 6-gon determines the data(a1, . . . ,a6) = (1,3,2,1,3,2) and 5-row frieze pattern

... 1 1 1 1 1 1 1 ...

... 1 3 2 1 3 2 ...

... 1 2 5 1 2 5 1 ...

... 1 3 2 1 3 2 ...

... 1 1 1 1 1 1 1 ...

Conway and Coxeter show that the frieze relation, applied tothe initial rows. . . ,1,1,1, . . . and. . . ,a1,a2, . . . ,an, . . . ,
yields a frieze pattern. Note that implicit in this assertion is the assertion that every entry in rows 1 throughn−3 is
non-zero (so that the recurrenceD = (BC−1)/A never involves division by 0). It is not a priori obvious thateach of
the entries in the array is positive (since the recurrence involves subtraction) or that each of the entries is an integer
(since the recurrence involves division). Nor is it immediately clear why for 1≤ m≤ n−1, then−mth row of the
table given by repeated application of the recurrence should be the same as themth row, shifted, so that in particular
then−1st row, like the first row, consists entirely of 1’s.

These and many other properties of frieze patterns are explained by a combinatorial model of frieze patterns dis-
covered by Carroll and Price [5] (based on earlier work of Itsara, Le, Musiker, Price, and Viana). Given a triangulation
T as above, define a bipartite graphG = G(T) whosen black verticesv correspond to the vertices ofT, whosen−2
white verticesw correspond to the triangular faces ofT, and whose edges correspond to all incidences between ver-
tices and faces inT (that is,v andw are joined by an edge precisely ifv is one of the three vertices of the triangle in
T associated withw). For i 6= j in the range 1, ...,n, let Gi, j be the graph obtained fromG by removing black vertices
i and j and all edges incident with them, and letmi, j be the number of perfect matchings ofGi, j (that is, the number
of ways to pair alln−2 of the black vertices with then−2 white vertices, so that every vertex is paired to a vertex of
the opposite color adjacent to it). For instance, for the triangulationT of the 6-gon defined in the preceding figure, the
graphG1,4 is
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and we putm1,4 = 5 since this graph has 5 perfect matchings.

THEOREM 2.1 (Gabriel Carroll and Gregory Price [5]). The Conway-Coxeter frieze pattern of a triangulation T
is just the array

. . . m1,2 m2,3 m3,4 m4,5 . . .

. . . m1,3 m2,4 m3,5 . . .

. . . mn,3 m1,4 m2,5 m3,6 . . .

. . . mn,4 m1,5 m2,6 . . .

...
...

...
...

where here as hereafter we interpret all subscripts mod n.

Note that this claim makes the glide-reflection symmetry of frieze patterns a trivial consequence of the fact that
Gi, j = G j ,i .

PROOF. Here is a sketch of the main steps of the proof:
(1) mi,i+1 = 1: This holds because there is a tree structure on the set of triangles inT that induces a tree structure

on the set of white vertices ofG. If we examine the white vertices ofG, proceeding from outermost to innermost, we
find that we have no freedom in how to match them with black vertices, when we keep in mind that every black vertex
must be matched with a white vertex. (In fact, the same reasoning shows thatmi, j = 1 whenever the triangulationT
contains a diagonal connecting verticesi and j.)

(2) mi−1,i+1 = ai : The argument is similar, except now we have some freedom in how the ith black vertex is
matched: it can be matched with any of theai adjacent white vertices.

(3) mi, j mi−1, j+1 = mi−1, j mi, j+1−1: If we move the 1 to the left-hand side, we can use (1) to writethe equation
in the form

mi, j mi−1, j+1+mi−1,i mj , j+1 = mi−1, j mi, j+1.

This relation is a direct consequence of a lemma due to Eric Kuo (Theorem 2.5 in [17]), which I state here for the
reader’s convenience:

Condensation lemma:If a bipartite planar graphG has 2 more black vertices than white vertices, and the black
verticesa,b,c,d lie in cyclic order on some face ofG, then

m(a,c)m(b,d) = m(a,b)m(c,d)+m(a,d)m(b,c),

wherem(x,y) denotes the number of perfect matchings of the graph obtained fromG by deleting verticesx andy and
all incident edges.

(1) and (2) tell us that Carroll and Price’s theorem applies to the first two rows of the frieze pattern, and (3) tells
us (by induction) that the theorem applies to all subsequentrows. �
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It should be mentioned that Conway and Coxeter give an alternative way of describing the entries in frieze patterns,
as determinants of tridiagonal matrices. Note thatmi−1,i+1 = ai which equals the determinant of the 1-by-1 matrix
whose sole entry isai , while mi−1,i+2 = aiai+1−1 which equals the determinant of the 2-by-2 matrix

(

ai 1
1 ai+1

)

.

One can show by induction using Dodgson’s determinant identity (for a statement and a pretty proof of this identity
see [21]) thatmi−1,i+k equals the determinant of thek-by-k matrix withai, . . . ,ai+k−1 down the diagonal, 1’s in the two
flanking diagonals, and 0’s everywhere else. This is true forany arrays satisfying the frieze relation whose initial row
consists of 1’s, whether or not it is a frieze pattern. Thus, any numerical array constructed via the frieze relation from
initial data consisting of a first row of 1’s and a second row ofpositive integers will be an array of positive integers;
entries in subsequent rows will be positive since they are defined by subtraction-free expressions, and they will be
integers since they are equal to determinants of integer matrices. (One caveat is in order here: although the table of
tridiagonal determinants always satisfies the frieze relation, it may not be possible to compute the table using just the
frieze relation, since some of the expressions that arise might be indeterminate fractions of the form 0/0.) However,
for most choices of positive integersa1, . . . ,an, the resulting table of positive integers will not be an(n− 1)-rowed
frieze pattern. Indeed, Conway and Coxeter show that every(n−1)-rowed frieze pattern whose entries are positive
integers arises from a triangulatedn-gon in the fashion described above.

3. The sideways construction and its periodicity

Recall that any(n−1)-rowed array of real numbers that begins and ends with rows of1’s and satisfies the frieze
relation in between qualifies as a frieze pattern.

Note that if the vertices 1, . . . ,n of ann-gon lie on a circle and we letdi, j be the distance between pointsi and
j, Ptolemy’s theorem on the lengths of the sides and diagonalsof an inscriptible quadrilateral gives us the three-term
quadratic relation

di, j di−1, j+1+di−1,i d j−1, j = di−1, j di, j+1

(with all subscripts interpreted modn). Hence the numbersdi, j with i 6= j, arranged just as the numbersmi, j were,
form an (n− 1)-rowed array that almost qualifies as a frieze pattern (the array satisfies the frieze relation and has
glide-reflection symmetry becausemi, j = mj ,i for all i, j, but the top and bottom rows do not in general consist of 1’s).
The nicest case occurs when then-gon is a regularn-gon of side-length 1; then we get a genuine frieze pattern and
each row of the frieze pattern is constant.

Another source of frieze patterns is an old result from spherical geometry: thepentagramma mirificumof Napier
and Gauss embodies the assertion that the arc-lengths of thesides in a right-angled spherical pentagram can be arranged
to form the middle two rows of a four-rowed frieze pattern.

Conway and Coxeter show that frieze patterns are easy to construct if one proceeds not from top to bottom (since
one is unlikely to choose numbersa1, . . . ,an in the second row that will yield all 1’s in the(n− 1)st row) but from
left to right, starting with a zig-zag of entries connectingthe top and bottom rows (where the zig-zag path need not
alternate between leftward steps and rightward steps but may consist of any pattern of leftward steps and rightward
steps), using the sideways frieze relation

A

B C

D

: C = (AD+1)/B

E.g., consider the partial frieze pattern

... 1 1 1 1 1 ...

x x′

y y′

z z′

... 1 1 1 1 1 ...
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Given non-zero values ofx, y, andz, one can successively computey′ = (xz+1)/y, x′ = (y+1)/x, andz′ = (y+1)/z,
obtaining a new zig-zag of entriesx′,y′,z′ connecting the top and bottom rows. For generic choices of non-zerox,y,z,
one hasx′,y′,z′ non-zero as well, so the procedure can be repeated, yieldingfurther zig-zags of entries. Happily (and
perhaps surprisingly), after six iterations of the procedure one will recover the original numbersx,y,zsix places to the
right of their original position (unless one has unluckily chosenx,y,zso as to cause one to encounter an indeterminate
expression of the form 0/0 from the recurrence).

To dodge the issue of indeterminate expressions, we embraceindeterminacy by regardingx,y,z as formal quanti-
ties, not specific numbers, so thatx′,y′,z′, etc. become rational functions ofx, y, andz. Then our recurrence ceases to be
problematic. Indeed, one finds that the rational functions that arise are of a special kind, namely, Laurent polynomials
with positive coefficients.

We can see why this is so by incorporating weighted edges intoour matchings model. Returning to the triangulated
hexagon from section 2, associate the valuesx, y, andz with the diagonals joining vertices 2 and 6, vertices 2 and 5,
and vertices 3 and 5, respectively. Call these the formal weights of the diagonals. Also assign weight 1 to each of
the 6 sides of the hexagon. Now construct the graphG as before, only this time assigning weights to all the edges.
Specifically, ifv is a black vertex ofG that corresponds to a vertex of then-gon andw is a white vertex ofG that
corresponds to a triangle in the triangulationT that hasv as one of its three vertices (and hasv′ andv′′ as the other two
vertices), then the edge inG that joinsv andw should be assigned the weight of the side or diagonal inT that joins
v′ andv′′. We now defineWi, j as the sum of the weights of all the perfect matchings of the graphGi, j obtained by
deleting verticesi and j (and all their incident edges) fromG, where the weight of a perfect matching is the product of
the weights of its constituent edges, and we defineMi, j asWi, j divided by the product of the weights of all the diagonals
(this product isxyz in our running example). TheseMi, j ’s, which are rational functions ofx, y, andz, generalize the
numbers denoted bymi, j earlier, since we recover themi, j ’s from theMi, j ’s by settingx = y = z= 1. It is clear that
eachWi, j is a polynomial with positive coefficients, so eachMi, j is a Laurent polynomial with positive coefficients.
And, because of the normalization (division byxyz), we have gotten eachMi,i+1 to equal 1. So the table of rational
functionsMi, j is exactly what we get by running our recurrence from left to right. When we pass fromx,y,z to x′,y′,z′,
we are effectively rotating our triangulation by one-sixthof a full turn; six iterations bring us back to where we started.

We have proved:

THEOREM 3.1. Given any assignment of formal weights to n−3 entries in an(n−1)-rowed table that form a
zig-zag joining the top row (consisting of all 1’s) to the bottom row (consisting of all 1’s), there is a unique assignment
of rational functions to all the entries in the table so that the frieze relation is satisfied. These rational functions of
the original n− 3 variables have glide-reflection symmetry that gives each row period n. Furthermore, each of the
rational functions in the table is a Laurent polynomial withpositive coefficients.

Note that a zig-zag joining the top row to the bottom row corresponds to a triangulationT whose dual tree is
just a path. Not every triangulation is of this kind. In general, the entries in a frieze pattern that correspond to the
diagonals of a triangulationT do not form a zig-zag path, so it is not clear from the frieze pattern how to extend the
known entries to the unknown entries. In such a case, it is best to refer directly to the triangulation itself, and to use a
generalization of the frieze relation, namely the (formal)Ptolemy relation [5]

Mi, j Mk,l +M j ,k Mi,l = Mi,k M j ,l

wherei, j,k, l are four vertices of then-gon listed in cyclic order. Since every triangulation of a convexn-gon can be
obtained from every other by means of flips that replace one diagonal of a quadrilateral by the other diagonal, we can
iterate the Ptolemy relation so as to solve for all of theMi, j ’s in terms of the ones whose values were given.

Up until now we have allowed the diagonals, but not the sides,of our n-gon to have indeterminate weights; that
is, the sides have all had weight 1. We can remedy this seeminglack of generality by noting that if we multiply the
weights of the three sides of any triangle in the triangulation T by some constantc, the effect is to multiply byc the
weights of three edges of the graphG, namely, the three edges incident with the white vertexw associated withT.
This has the effect of multiplying the weight of every perfect matching of every graphGi, j by c, and such a scaling has
no effect on the Laurentness phenomenon.

Our combinatorial construction of Laurent polynomials associated with the diagonals of ann-gon is essentially
nothing more than the typeA case (more precisely, theAn−3 case) of the cluster algebra construction of Fomin and
Zelevinsky [14]. The result that our matchings model yields, stated in a self-contained way, is as follows:

THEOREM 3.2. Given any assignment of formal weights xi, j to the 2n− 3 edges of a triangulated convex n-
gon, there is a unique assignment of rational functions to all n(n−3)/2 diagonals of the n-gon such that the rational
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functions assigned to the four sides and two diagonals of anyquadrilateral determined by four of the n vertices satisfies
the Ptolemy relation. These rational functions of the original 2n−3 variables are Laurent polynomials with positive
coefficients.

The formal weights are precisely the cluster variables in the cluster algebra of typeAn−3, and the triangulations are
the clusters. The periodicity phenomenon is a special case of a more general periodicity conjectured by Zamolodchikov
and proved in the typeA case independently by Frenkel and Szenes and by Gliozzi and Tateo; see [14] for details.

4. The tropical analogue

Since the sideways frieze relation involves only subtraction-free expressions in the cluster variables, our whole
picture admits a tropical analogue (for background on tropical mathematics, see [19]) in which multiplication is re-
placed by addition, division by subtraction, addition by max, and 1 by 0. (One could use min instead of max, but max
will be more useful for us.) In this new picture, the Ptolemy relation

di, j dk,l +d j ,kdi,l = di,k d j ,l

becomes the ultrametric relation
max(di, j +dk,l ,d j ,k +di,l) = di,k +d j ,l .

Metrics satisfying this relation arise from finite collections of non-intersecting arcs that join points on the sides ofthe
n-gon (not vertices) in pairs (which we will call finite laminations). For any pair of verticesi, j, we definedi, j as the
smallest possible number of intersections between a path inthen-gon fromi to j and the arcs in the finite lamination
(we choose the path so as to avoid crossing any arc in the finitelamination more than once). Then these quantitiesdi, j

satisfy the ultrametric relation. As in the non-tropical case, we can find all the quantitiesdi, j once we know the values
associated with the sides of then-gon and the diagonals belonging to some triangulation.

For an alternative picture, one can divide the laminatedn-gon into a finite number of sub-regions, each of which
is bounded by pieces of the boundary of then-gon and/or arcs of the finite lamination; the vertices of then-gon
correspond ton special sub-regions (some of which may coincide with one another, if there is no arc in the finite
lamination separating the associated vertices of then-gon). Then the dual of this dissection of then-gon is a tree
with n specified leaf vertices (some of which may coincide), anddi, j is the graph-theoretic distance between leafi and
leaf j (which could be zero). We see that if we know 2n− 3 of these leaf-to-leaf distances, and the 2n− 3 pairs of
leaves correspond to the sides and diagonals of a triangulatedn-gon, then all of the other leaf-to-leaf distances can
be expressed as piecewise-linear functions of the 2n−3 specified distances. (For more on the graph metric on trees,
see [2].)

5. A variant

Before leaving the topic of frieze patterns, I mention an open problem concerning a variant of Conway and
Coxeter’s definition, in which the frieze relation is replaced by the relation

A

B C D

E

: E = (BD−C)/A

and its sideways version
A

B C D

E

: D = (AE+C)/B .

Here, too, it appears that we can construct arrays that have the same sort of symmetries as frieze patterns by starting
with a suitable zig-zag of entries (where successive downwards steps can go left, right, or straight) and proceeding
from left to right. E.g., consider the partial table

... 1 1 1 1 1 ...
A D x

B E y
C F z

... 1 1 1 1 1 ...
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whereA, ...,F are pre-specified, and where we computey= (AC+E)/B, x= (y+D)/A, z= (y+F)/C, etc. Then one
can check that after exactly fourteen iterations of the procedure, one gets back the original numbers (in their original
order). Moreover, along the way one sees Laurent polynomials with positive coefficients.

Define a “double zig-zag” to be a subset of the entries of an(n−2)-rowed table consisting of a pair of adjacent
entries in each of the middlen−4 rows, such that the pair in each row is displaced with respect to the pair in the
preceding and succeeding rows by at most one position.

CONJECTURE: Given any assignment of formal weights to the 2(n−4) entries in a double zig-zag in an(n−2)-
rowed table, there is a unique assignment of rational functions to all the entries in the table so that the variant frieze
relation is satisfied. These rational functions of the original 2(n− 4) variables have glide-reflection symmetry that
gives each row period 2n. Furthermore, each of the rational functions in the table isa Laurent polynomial with
positive coefficients.

There ought to be a way to prove this by constructing the numerators of these Laurent polynomials as sums
of weights of perfect matchings of some suitable graph (or perhaps sums of weights of combinatorial objects more
general than perfect matchings), and the numerators undoubtedly contain abundant clues as to how this can be done.

For n = 5,6,7,8, it appears that the number of positive integer arrays satisfying the variant frieze relation is
respectively 1, 5, 51, 868. This variant of the Catalan sequence does not appear to have been studied before. However,
it should be said that these numbers were not computed in a rigorous fashion. Indeed, it is not clear that there really is
a variant of the Catalan sequence operating here; that is to say, it is conceivable that beyond some point, the sequence
becomes infinite (i.e., for somen there could be infinitely many(n−2)-rowed positive integer arrays satisfying the
variant frieze relation).

6. Markoff numbers

A Markoff triple is a triple(x,y,z) of positive integers satisfyingx2 +y2 +z2 = 3xyz; e.g., the triple (2,5,29). A
Markoff number is a positive integer that occurs in at least one such triple.

Writing the Markoff equation asz2− (3xy)z+(x2 +y2) = 0, a quadratic equation inz, we see that if(x,y,z) is a
Markoff triple, then so is(x,y,z′), wherez′ = 3xy−z= (x2 +y2)/z, the other root of the quadratic inz. (z′ is positive
becausez′ = (x2 +y2)/z, and is an integer becausez′ = 3xy−z.) Likewise forx andy.

The following claim is well-known (for an elegant proof, see[1]): Every Markoff triple(x,y,z) can be obtained
from the Markoff triple(1,1,1) by a sequence of such exchange operations, in fact, by a sequence of exchange
operations that leaves two numbers alone and increases the third. E.g.,(1,1,1) → (2,1,1) → (2,5,1) → (2,5,29).

Create a graph whose vertices are the Markoff triples and whose edges correspond to the exchange operations

(x,y,z) → (x′,y,z), (x,y,z) → (x,y′,z), (x,y,z) → (x,y,z′) wherex′ = y2+z2

x , y′ = x2+z2

y , z′ = x2+y2

z . This 3-regular
graph is connected (see the claim in the preceding paragraph), and it is not hard to show that it is acyclic. Hence the
graph is the 3-regular infinite tree.

This tree can be understood as the dual of the triangulation of the upper half plane by images of the modular do-
main under the action of the modular group. Concretely, we can describe this picture by using Conway’s terminology
of “lax vectors”, “lax bases”, and “lax superbases” ([6]).

A primitive vectoru in a latticeL is one that cannot be written askv for some vectorv in L, with k > 1. A lax
vector is a primitive vector defined only up to sign; ifu is a primitive vector, the associated lax vector is written±u.
A lax base for L is a set of two lax vectors{±u,±v} such thatu andv form a basis forL. A lax superbase for L is
a set of three lax vectors{±u,±v,±w} such that±u± v±w = 0 (with appropriate choice of signs) and any two of
u,v,w form a basis forL.

Each superbase{±u,±v,±w} contains the three bases{±u,±v}, {±u,±w}, {±v,±w} and no others. In the
other direction, each base{±u,±v} is in the two superbases{±u,±v,±(u+v)}, {±u,±v,±(u−v)} and no others.

Thetopograph is the graph whose vertices are lax superbases and whose edges are lax bases, where each super-
base is incident with the three bases in it. This gives a 3-valent tree whose vertices correspond to the lax superbases of
L, whose edges correspond to the lax bases ofL, and whose “faces” correspond to the lax vectors inL.

The latticeL that we will want to use is the triangular latticeL = {(x,y,z) ∈ Z
3 : x+y+z= 0} (or Z

3/Zv where
v = (1,1,1), if you prefer).

Using this terminology, I can now state the main idea of this section: Unordered Markoff triples are associated
with lax superbases of the triangular lattice, and Markoff numbers with lax vectors of the triangular lattice. For
example, the unordered Markoff triple 2,5,29 will correspond to the lax superbase{±u,±v,±w} whereu = ~OA,
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v = ~OB, andw = ~OC, with O, A, B, andC forming a fundamental parallelogram for the triangular lattice, as shown
below.

O

A B

C

The Markoff numbers 1, 2, 5, and 29 will correspond to the primitive vectors~AB, ~OA, ~OB, and ~OC.
To find the Markoff number associated with a primitive vector~OX, take the unionR of all the triangles that

segmentOX passes through. The underlying lattice provides a triangulation ofR. E.g., for the vectoru = ~OC from the
previous figure, the triangulation is

O

A B

C

Turn this into a planar bipartite graph as in Part I, letG(u) be the graph that results from deleting verticesO andC,
and letM(u) be the number of perfect matchings ofG(u). (If u is a shortest vector in the lattice, putM(u) = 1.)

THEOREM 6.1 (Gabriel Carroll, Andy Itsara, Ian Le, Gregg Musiker, Gregory Price, and Rui Viana).If {u,v,w}
is a lax superbase of the triangular lattice, then(M(u),M(v),M(w)) is a Markoff triple. Every Markoff triple arises
in this fashion. In particular, ifu is a primitive vector, then M(u) is a Markoff number, and every Markoff number
arises in this fashion.

(The association of Markoff numbers with the topograph is not new; what is new is the combinatorial interpretation
of the association, by way of perfect matchings.)

PROOF. The base case, with

(M(e1),M(e2),M(e3)) = (1,1,1),

is clear. The only non-trivial part of the proof is the verification that

M(u+ v) = (M(u)2 +M(v)2)/M(u−v).

E.g., in the picture below, we need to verify that

M( ~OC)M( ~AB) = M( ~OA)2 +M( ~OB)2.
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O

A B

C

But if we rewrite the desired equation as

M( ~OC)M( ~AB) = M( ~OA)M( ~BC)+M( ~OB)M( ~AC)

we see that this is just Kuo’s lemma. �

Remark 1: Some of the work done by the REACH students used a square lattice picture; this way of interpreting
the Markoff numbers combinatorially was actually discovered first, in 2001–2002 (see [4]).

Remark 2: the original combinatorial model for the Conway-Coxeter numbers (found by Price) involved paths,
not perfect matchings. Carroll turned this into a perfect matchings model, which made it possible to arrive at the
matchings model of Itsara, Le, Musiker, and Viana via a different route.

More generally, one can putM(e1) = x, M(e2) = y, andM(e3) = z (with x,y,z> 0) and recursively define

M(u+ v) = (M(u)2 +M(v)2)/M(u−v).

Then for all primitive vectorsu, M(u) is a Laurent polynomial inx,y,z; that is, it can be written in the formP(x,y,z)/
xaybzc, whereP(x,y,z) is an ordinary polynomial inx,y,z (with non-zero constant term). The numeratorP(x,y,z) of
each Markoff polynomial is the sum of the weights of all the perfect matchings of the graphG(u), where edges have
weightx, y, or zaccording to orientation. The triplesX = M(u), Y = M(v), Z = M(w) of rational functions associated
with lax superbases are solutions of the equation

X2+Y2 +Z2 =
x2 +y2+z2

xyz
XYZ.

We have seen that these numeratorsP(x,y,z) are polynomials with positive coefficients. This proves thefollowing
theorem:

THEOREM6.2. Consider the initial triple(x,y,z), along with any triple of rational functions in x, y, and z that can
be obtained from the initial triple by a sequence of operations of the form(X,Y,Z) 7→ (X′,Y,Z), (X,Y,Z) 7→ (X,Y′,Z),
or (X,Y,Z) 7→ (X,Y,Z′), where X′ = (Y2 +Z2)/X, Y′ = (X2 +Z2)/Y, and Z′ = (X2 +Y2)/Z, Every rational function
of x, y, and z that occurs in such a triple is a Laurent polynomial with positive coefficients.

Fomin and Zelevinsky proved in [13] (Theorem 1.10) that the rational functionsX(x,y,z),Y(x,y,z),Z(x,y,z) are
Laurent polynomials, but their methods did not prove positivity. An alternative proof of positivity, based on topological
ideas, was given by Dylan Thurston [20].

It can be shown that ifu inside the cone generated by+e1 and−e3, thena < b > c and(c+1)e1− (a+1)e3 = u.
(Likewise for the other sectors ofL.) This implies that all the “Markoff polynomials”M(u) are distinct (aside from the
fact thatM(u) = M(−u)), and thusM(u)(x,y,z) 6= M(v)(x,y,z) for all primitive vectorsu 6=±v as long as(x,y,z) lies
in a denseGδ set of real triples. This fact can be used to show [20] that, for a generic choice of hyperbolic structure
on the once-punctured torus, no two simple geodesics have the same length.

7. Other directions for exploration

7.1. Other ternary cubics. Neil Herriot (another member of REACH) showed [15] that if we replace the tri-
angular lattice used above by the tiling of the plane by isosceles right triangles (generated from one such triangle
by repeated reflection in the sides), superbases of the square lattice correspond to triples(x,y,z) of positive integers
satisfying either

x2 +y2+2z2 = 4xyz

or
x2 +2y2+2z2 = 4xyz.
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(Note that these two Diophantine equations are essentiallyequivalent, as the map(x,y,z) 7→ (2z,y,x) gives a bijection
between solutions to the former and solutions to the latter.) This result, considered in conjunction with the result on
Markoff numbers, raises the question of whether there mightbe some more general combinatorial approach to ternary
cubic equations of similar shape.

Rosenberger [18] showed that there are exactly three ternary cubic equations of the shapeax2 + by2 + cz2 =
(a+b+c)xyzfor which all the positive integer solutions can be derived from the solution(x,y,z) = (1,1,1) by means
of the exchange operations(x,y,z) → (x′,y,z), (x,y,z) → (x,y′,z), and(x,y,z) → (x,y,z′), with x′ = (by2 + cz2)/ax,
y′ = (ax2 +cz2)/by, andz′ = (ax2 +by2)/cz. These three ternary cubic equations are

x2 +y2 +z2 = 3xyz,

x2 +y2+2z2 = 4xyz,

and
x2 +2y2+3z2 = 6xyz.

Note that the triples of coefficients that occur here — (1,1,1), (1,1,2), and (1,2,3) — are precisely the triples that
occur in the classification of finite reflection groups in the plane. Specifically, the ratios 1:1:1, 1:1:2, and 1:2:3 describe
the angles of the three triangles — the 60-60-60 triangle, the 45-45-90 triangle, and the 30-60-90 triangle — that arise
as the fundamental domains of the three irreducible two-dimensional reflection groups.

Since the solutions to the ternary cubicx2+y2+z2 = 3xyzdescribe properties of the tiling of the plane by 60-60-60
triangles, and solutions to the ternary cubicx2+y2+2z2 = 4xyzdescribe properties of the tiling of the plane by 45-45-
90 triangles, the solutions to the ternary cubicx2+2y2+3z2 = 6xyz“ought” to be associated with some combinatorial
model involving the reflection-tiling of the plane by 30-60-90 triangles. Unfortunately, the most obvious approach
(based on analogy with the 60-60-60 and 45-45-90 cases) doesnot work. So we are left with two problems that may
or may not be related: first, to find a combinatorial interpretation for the integers (or, more generally, the Laurent
polynomials) that arise from solving the ternary cubicx2+2y2+3z2 = 6xyz; and second, to find algebraic recurrences
that govern the integers (or, more generally, the Laurent polynomials) that arise from counting (or summing the weights
of) perfect matchings of graphs derived from the reflection-tiling of the plane by 30-60-90 triangles.

If there is a way to make the analogy work, one might seek to extend the analysis to other ternary cubics. It is
clear how this might generalize on the algebraic side. On thegeometric side, one might drop the requirement that the
triangle tile the plane by reflection, and insist only that each angle be a rational multiple of 360 degrees. There is a
relatively well-developed theory of “billiards flow” in such a triangle (see e.g. [16]) where a particle inside the triangle
bounces off the sides following the law of reflection (angle of incidence equals angle of reflection) and travels along
a straight line in between bounces. The path of such a particle can be unfolded by repeatedly reflecting the triangular
domain in the side that the particle is bouncing off of, so that the unfolded path of the particle is just a straight line in
the plane. Of special interest in the theory of billiards aretrajectories joining a corner to a corner (possibly the same
corner or possibly a different one); these are called saddleconnections. The reflected images of the triangular domain
form a triangulated polygon, and the saddle connection itself is a combinatorial diagonal of this polygon. It is unclear
whether the combinatorics of such triangulations might contain dynamical information about the billiards flow, but if
this prospect were to be explored, enumeration of matchingson the derived bipartite graphs would be one thing to try.

7.2. More variables. Another natural variant of the Markoff equation isw2 +x2 +y2 +z2 = 4wxyz(one special
representative of a broader class called Markoff-Hurwitz equations; see [1]). The Laurent phenomenon applies here
too: The four natural exchange operations convert an initial formal solution(w,x,y,z) into a quadruple of Laurent
polynomials. (This is a special case of Theorem 1.10 in [13].)

Furthermore, the coefficients of these Laurent polynomialsappear to be positive, although this has not been
proved.

The numerators of these Laurent polynomials ought to be weight-enumerators for some combinatorial model, but
I have no idea what this model looks like.
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