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Green polynomials at roots of unity and its application

Hideaki Morita

Abstract. We consider Green polynomials at roots of unity. We obtain a recursive formula for Green
polynomials at appropriate roots of unity, which is described in a combinatorial manner. The coefficients of
the recursive formula are realized by the number of permutations satisfying a certain condition, which leads
to interpretation of a combinatorial property of certain graded modules of the symmetric group in terms of
representation theory.

Résumé. Nous étudions les polynômes de Green évalués en les racines de l’unité. Nous obtenons une for-
mule récursive pour ces polynômes en certaines racines de l’unité, que nous décrivons combinatoirement. Les
coefficients de cette formule récursive énumèrent certaines permutations, ce qui permet d’interpréter une pro-
priété combinatoire de certains modules du groupe symétrique, en termes de la théorie de la représentation.

1. Introduction

The Green polynomials Qµ
ρ(q) at roots of unity are considered. We handle Green polynomials Qµ

ρ(q) of
type A for any partition µ, and consider the behavior of them at l-th roots of unity ζl, where l is not larger
than the maximum multiplicity Mµ of µ. We describe a certain recursive formula of Green polynomials
Qµ

ρ(q) at q = ζl for the partition ρ satisfying Qµ
ρ(ζl) 6= 0. The results of Lascoux-Leclerc-Thibon on Hall-

Littlewood functions at roots of unity play an important role in the argument. Our result includes the result
of Lascoux-Leclerc-Thibon on Green polynomials as a special case.

We also consider the recursive formula in terms of representation theory of the symmetric group Sn.
It is known that the Green polynomials give the graded characters of a family of graded representations of
the symmetric group, called the DeConcini-Procesi-Tanisaki algebras, which includes the coinvariant algebra
as a special case. The DeConcini-Procesi-Tanisaki algebra Rµ was first introduced by C. DeConcini and
C. Procesi [DP] as an algebraic model of the cohomology ring of a certain subvariety of the flag variety
parametrized by a partition µ, and T. Tanisaki [T] gives simple generators of the defining ideal of the
algebra, described by combinatorial information on the partition µ. The DeConcini-Procesi-Tanisaki algebra
Rµ has a structure of graded Sn-modules, and the Green polynomial Qµ

ρ (q) gives its graded character values
at the conjugacy class of which cycle type is ρ. The recursive formula is equivalent to some representation
theoretical interpretation of a certain combinatorial property on the Hilbert polynomial HilbRµ(q) of Rµ,

that is, HilbRµ(q) has l-th roots of unity ζj
l (j = 1, 2, . . . , l − 1) as its zeros for each positive integer l not

larger than the maximum multiplicity Mµ of µ. This property of the Hilbert polynomial is equivalent to
the fact that the direct sums Rµ(k; l) (k = 0, 1, . . . , l − 1) of the homogeneous components of Rµ of which
degrees are congruent to k modulo l, have the same dimension. The recursive formula shows that there exists
a subgroup Hµ(l) of Sn and Hµ(l)-modules Zµ(k; l) of equal dimension such that each Rµ(k; l) is induced
from the corresponding Hµ(l)-modules Zµ(k; l) for each k = 0, 1, . . . , l − 1, which could be regarded as a
representation theoretical interpretation of the property ‘coincidence of dimensions’. This work is a sequel
of [Mt, MN1, MN2].
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2. Preliminaries

We follow [M] for fundamental notation. Let n be a positive integer and µ a partition of n. Define Mµ

to be the maximum multiplicity of the partition µ:

Mµ := max{m1(µ), m2(µ), · · · , mn(µ)},

where mi = mi(µ) denotes the multiplicity of i in the sequence µ. Let µ and ρ be partitions and let q be an
indeterminate. The Green polynomial Xµ

ρ (q) is defined to be the coefficients of the Hall-Littlewood function
Pµ(x; q) in the linear expansion

pρ(x) =
∑

µ

Xµ
ρ (q)Pµ(x; q),

where pρ(x) denotes the power-sum function corresponding to the partition ρ, and the sum is over partitions
µ of the same size as ρ. We also define the polynomial Qµ

ρ(q) for partitions µ and ρ of the same size by

Qµ
ρ(q) = qn(µ)Xµ

ρ (q−1),

where n(µ) =
∑

i≥1(i− 1)µi if µ = (µ1, µ2, . . . ). The polynomial Qµ
ρ (q) is also called the Green polynomial.

The Green polynomial Qµ
ρ (q) is a polynomial with integer coefficients whose degree is n(µ), which was

introduced by J. A. Green [Gr] to describe irreducible character values of the general linear group GLn(Fq)
over a finite field Fq.

Let ϕr(q) be the polynomial (1 − q)(1 − q2) · · · (1 − qr), and bµ(q) the polynomial

bµ(q) =
∏

i≥1

ϕmi(µ)(q),

where mi(µ) is the multiplicity of i in the partition µ. Define

Qµ(x; q) = bµ(q)Pµ(x; q),

which are referred to, as well as the Pµ, as Hall-Littlewood functions. If we replace the variables x =
(x1, x2, . . . ) of Qµ(x; q) by

x/(1 − q) = (x1, x2, . . . ; qx1, qx2, . . . ; q
2x1, q

2x2, . . . ),

then we obtain the modified Hall-Littlewood function, which is denoted by

Q′
µ(x; q)

(

= Qµ

(

x

1 − q
; q

))

.

Equivalently, it is also defined by replacing pk(x) by pk(x)/(1− tk) after expressing Qµ(x; t) as a polynomial
in {pk(x)|k ≥ 1}. It is known (see, e.g., [DLT]) that the Green polynomial Xµ

ρ (q) is obtained as the inner
product value

Xµ
ρ (x) = 〈Q′

µ(x; q), pρ(x)〉

of the modified Hall-Littlewood function Q′
µ(x; q) and the power-sum function pρ(x). The inner product

〈·, ·〉 of the ring Λ[q] is defined by 〈sλ, sµ〉 = δλµ, where sλ denotes the Schur function corresponding to the
partition λ, and δλµ the Kronecker delta.

In the rest of this section, we recall results on (modified) Hall-Littlewood functions at roots of unity due
to Lascoux-Leclerc-Thibon [LLT]. Let µ ` n be a partition, l an integer such that 2 ≤ l ≤ Mµ be fixed, and
mi(µ) = lqi + ri, 0 ≤ ri ≤ l − 1, for each i. Set q = q1 + 2q2 + · · · + nqn and r = r1 + 2r2 + · · · + nrn. Let
µ̃(l) and µ̄(l) be the partitions

µ̃(l) := (1lq12lq2 · · ·nlqn)

and

µ̄(l) := (1r12r2 · · ·nrn).

It is clear that the partition µ decomposes into the disjoint union µ = µ̃(l) ∪ µ̄(l). Also define

µ̃(l)1/l := (1q12q2 · · ·nqn),

which is a partition of q.

Example 2.1. If µ = (3, 3, 3, 2, 2, 1), then Mµ = 3. Let l = 2 be fixed. Then µ̃(l) = (3, 3, 2, 2),

µ̄(l) = (3, 1), and µ = (3, 3, 2, 2) ∪ (3, 1). Also the partition µ̃(l)1/l is (3, 2).
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Let µ be a partition, and l a positive integer such that l ≤ Mµ. The modified Hall-Littlewood function
Q′

µ(x; q) at q = ζl, a primitive l-th root of unity, is factorized in such a way that is consistent with the
decomposition of the partition µ = µ̃(l) ∪ µ̄(l).

Proposition 2.1 ([LLT, Theorem 2.1.]). Q′
µ(x; ζl) = Q′

µ̄(l)(x; ζl)
∏

i≥1

(

Q′
(il)(x; ζl)

)qi

.

Example 2.2. Let µ = (3, 3, 3, 2, 1, 1, 1, 1, 1) and l = 2. Then µ̄(l) = (3, 2, 1), and we have

Q′
(3,3,3,2,1,1,1,1,1)(x; ζ2) = Q′

(3,2,1)(x; ζ2)Q
′
(32)(x; ζ2)

(

Q′
(12)(x; ζ2)

)2

.

Proposition 2.2 ([LLT, Theorem 2.2.]). Q′
(il)(x; ζl) = (−1)(l−1)i(pl ◦ hi)(x), where (pl ◦ hi)(x) denotes

the plethysm.

Remark 2.3. Note that

(pl ◦ hi)(x) =
∑

λ`i

z−1
λ plλ(x), (2.1)

Thus we have for example Q′
(32)(x; ζ2) = (−1)(2−1)3(p2◦h3)(x) = −z−1

(3)p(6)(x)−z−1
(2,1)p(4,2)−z−1

(1,1,1)p(2,2,2)(x).

It follows from Proposition 2.1, Proposition 2.2 and (2.1) that the Green polynomial corresponding to
a rectangular partition µ = (rk) at a primitive k-th root of unity is described by a certain ‘smaller’ Green
polynomial.

Proposition 2.3 ([LLT, Theorem 3.2.]). Let µ = (rk) be a rectangular partition, ζk a primitive k-th
root of unity. If mi(µ) ≥ 1 for some i ≥ 1 divisible by k, then it holds that

Xµ
ρ (ζk) = (−1)(k−1)jkX

((r−j)k)
ρ\{i} (ζk), (2.2)

where i = jk.

If we rewrite the identity (2.2) in terms of the polynomial Qµ
ρ(x), then the sign (−1)(k−1)j is vanished and

we have [Mt, Lemma 7 or Proposition 5]

Qµ
ρ(ζk) = kQ

((r−j)k)
ρ\{i} (ζk).

Applying this identity repeatedly, we also have

Qµ
ρ(ζk) = kl(ρ),

if the partition ρ consists of multiples of k.

3. Roots of unity

Let µ be a partition of n l a positive integer such that 2 ≤ l ≤ Mµ be fixed, and mi(µ) = lqi + ri,
0 ≤ ri ≤ l − 1, for each i. Set q = q1 + 2q2 + · · · + nqn and r = r1 + 2r2 + · · · + nrn. Let µ̃(l), µ̄(l), and
µ̃(l)1/l be as in the previous section. We define ‘partitions of a partition’as follows. Let ν = (ν1, ν2, . . . , νd)
be a partition of n. A partition of the partition ν is by definition a sequence of partitions

λ = (λ(1), λ(2), . . . , λ(d))

such that λ(i) ` νi for each i = 1, 2, . . . , d, which is denoted by λ ` ν. We distinguish any nontrivial
permutation of λ = (λ(1), λ(2), . . . , λ(d)) from the original one. For example, we consider that the following
two partitions ((2), (1, 1)), ((1, 1), (2)) are different as partitions of (2, 2). The length l(λ) of λ ` ν is defined
by

l(λ) =

d
∑

i=1

l(λ(i)),

and the size |λ| is defined by the sum of sizes of the components λ(i) of λ, which is equal to n = |ν|. Also
define

zλ :=
∏

i≥1

zλ(i) ,
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where zπ is defined by

zπ = 1m1m1!2
m2m2! · · ·n

mnmn!

for a partition π = (1m12m2 · · ·nmn) ` n of a positive integer as usual. Let ν = (νi) be a partition of n and
λ = (λ(i)) a partition of ν. Let

mk(λ) :=

d
∑

i=1

mk(λ(i))

for each possible k ≥ 1. Then define

mλ :=
∏

k≥1

(

mk(λ)

mk(λ(1)), mk(λ(2)), . . . , mk(λ(d))

)

.

Also, for each positive integer l, let lλ denotes the partition whose components are those of λ multiplied by
l.

Example 3.1. Let ν = (4, 2). Then the partitions λ of ν are ((4), (2)), ((3, 1), (2)), ((2, 2), (1, 1)),
((2, 1, 1), (1, 1)) and so on. Suppose that λ = ((2, 1, 1), (2)) ` ν. Then mλ is computed as follows:

m((2,1,1),(2)) =
( m1(λ)

m1(λ(1)),m1(λ(2))

)( m2(λ)

m2(λ(1)),m2(λ(2))

)

=
(

2
2,0

)(

2
1,1

)

= 2. For the same λ, if l = 2 for example,

the partition lλ = 2λ is (4, 4, 2, 2).

Let ρ be a partition and ν a subpartition of ρ, i.e., mi(ν) ≤ mi(ρ) for each possible i ≥ 1. Then we
define the binomial coefficient

(

ρ
ν

)

by
(

ρ

ν

)

:=
∏

i≥1

(

mi(ρ)

mi(ν)

)

.

Let µ be a partition, and l an integer such that 2 ≤ l ≤ Mµ be fixed. For a partition ν of |µ̃(l)|, define

C(ν, µ; l) :=
∑

π`µ̃(l)1/l

lπ=ν

mπ.

If there exists no π ` µ̃(l)1/l such that lπ = ν, then C(ν, µ; l) = 0.

Example 3.2. Let µ = (5, 4, 4, 2, 2, 1), and l such that 2 ≤ l ≤ Mµ fixed, say l = 2. Then µ̃(l) =

(4, 4, 2, 2) and µ̃(l)1/2 = (4, 2). Suppose that ν = (4, 4, 4) ` |µ̃(l)|. Then there exists only one π ` µ̃(l)1/2

such that 2π = ν, i.e., π = ((2, 2), (2)). Hence C(ν, µ; 2) = m((2,2),(2)) =
(

3
2,1

)

= 3. On the other hand, if

ν = (4, 4, 2, 2), then there exist two π ` (4, 2) such that 2π = ν, i.e., π = ((2, 2), (1, 1)), ((2, 1, 1), (2)). Hence
we have C(ν, µ; 2) = m((2,2),(1,1)) + m((2,1,1),(2)) =

(

2
0,2

)(

2
2,0

)

+
(

2
2,0

)(

2
1,1

)

= 1 + 2 = 3. On the other hand,

in the case where µ̃(l) is given by (4, 4) for l = 2 and ν = (4, 2, 2), the partitions π ` µ̃(l)1/l satisfying
lπ = ν are π = ((2), (1, 1)), ((1, 1)(2)). Since we distinguish these two partitions, C(ν, µ; l) is obtained by
m((2),(1,1)) + m((1,1),(2)) = 1 + 1 = 2.

Now we can state our main result, which retrieves LLT’s result, Proposition 2.3, if we consider the case
where µ is a rectangle and l = Mµ. Proposition 2.1 and Proposition 2.2 play a crucial role in the proof.

Theorem 3.3. Let µ = (1m12m2 · · ·nmn) be a partition of n, a positive integer l = 1, 2, . . . , Mµ fixed,
and ζl an l-th primitive root of unity. Let mi = lqi + ri, 0 ≤ ri ≤ l − 1, for each i = 1, 2, . . . , n. Let
r = r1 + 2r2 + · · · + nrn, and µ̄(l) = (iri) ` r.

Then we have:

(1) Qµ
ρ(ζl) 6= 0 =⇒ ρ = lρ̃ ∪ ρ̄ for some ρ̃ ` µ̃(l)1/l and ρ̄ ` r.

(2) For such a partition ρ = lρ̃ ∪ ρ̄, it holds that:

Qµ
ρ(ζl) =

∑

ν`|µ̃(l)|
ν⊂ρ

(

ρ

ν

)

C(ν, µ; l)ll(ν)Q
µ̄(l)
ρ\ν (ζl).

Example 3.4. Let µ = (5, 4, 4, 2, 2, 1) ` 18 and l = 2. In this case, we have ˜µ(2) = (4, 4, 2, 2)

and ˜µ(2)
1/2

= (4, 2). Suppose that ρ = (4, 4, 2, 2) ∪ (4, 2) = (4, 4, 4, 2, 2, 2). Then subpartitions ν of ρ

which satisfy ν ` | ˜µ(2)| = 12 are ν = (4, 4, 4), (4, 4, 2, 2). Consider the case where ν = (4, 4, 4). Then
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(

ρ
ν

)

=
(

3
0

)(

3
3

)

= 1. There exists only one λ ` ˜µ(2)
1/2

= (4, 2) such that 2λ = (4, 4, 4), i.e., λ = ((2, 2), (2)),

and we have mλ =
(

2+1
2,1

)

= 3. Thus C(ν, µ; 2) = 3. If ν = (4, 4, 2, 2), then
(

ρ
ν

)

=
(

3
2

)(

3
2

)

= 9. The cor-

responding λ’s satisfying 2λ = ν are λ = ((2, 2), (1, 1)), ((2, 1, 1), (2)), and m((2,2),(1,1)) =
(

2
0,2

)(

2
2,0

)

= 1,

m((2,1,1),(2)) =
(

2
2,0

)(

2
1,1

)

= 2. Hence we have C(ν, µ; 2) = 3 in this case. Thus we have Q
(5,4,4,2,2,1)
(4,4,4,2,2,2)(ζ2) =

(

ρ
(4,4,4)

)

C((4, 4, 4), µ; 2)2l(4,4,4)Q
µ̄(l)
ρ\(4,4,4)(ζ2) +

(

ρ
(4,4,2,2)

)

C((4, 4, 2, 2), µ; 2)2l(4,4,2,2)Q
µ̄(l)
ρ\(4,4,2,2)(ζ2) = 1 × 3 ×

8Q
(5,1)
(2,2,2)(ζ2) + 9 × 3 × 16Q

(5,1)
(4,2)(ζ2).

4. Permutation enumeration

In this section, we shall give a combinatorial characterization of the coefficients
(

ρ

ν

)

C(ν, µ; l)ll(ν),

in the preceding formula. Let µ be a partition of a positive integer n, and an integer l ∈ {2, 3, . . . , Mµ} fixed.
We define a product of cyclic permutations a = aµ(l) corresponding to µ and l as follows. To avoid abuse of
notation, we shall see the definition by the following example. It is clear from the definition that the element
aµ(l) has the order l.

Example 4.1 (Definition of aµ(l)). Let µ = (3, 3, 2, 2, 2, 1) and l = 2(≤ Mµ = 3). We fix the numbering
of the Young diagram of µ as follows:

1 2 3
4 5 6
7 8
9 10
11 12
13 .

Corresponding to the number l = 2, we extract subtableaux

1 2 3
4 5 6

,
7 8
9 10

Then the cyclic permutation product aµ(2) is defined by using the letters corresponding to µ̃(l) as follows:

aµ(2) =

(

1 2 3 4 5 6
4 5 6 1 2 3

) (

7 8 9 10
9 10 7 8

)

�

Let n = ql + r, 0 ≤ r ≤ l − 1. Recall that µ̃(l) is a partition of n − r. Let Sµ̃(l) be the Young subgroup
which permutes the letters corresponding to µ̃(l) in the preceding tableau, and let Sr be the subgroups which
permutes the remaining letters. It is obvious that elements of these groups commute with each other. In the
preceding definition (Example 11), these groups are the following:

Sµ̃(l) = S{1,2,3} × S{4,5,6} × S{7,8} × S{9,10},

Sr = S{11,12,13},

where µ̃(l) = (3, 3, 2, 2), r = 3 and S{i,j,...,k} denotes the symmetric group of the letters {i, j, . . . , k}. Consider
the subgroup of Sn

Hµ(l) :=
(

Sµ̃(l) × Sr

)

o 〈aµ(l)〉 =
(

Sµ̃(l) o 〈aµ(l)〉
)

× Sr.

The following lemma is proved by straightforward computation.

Lemma 4.2. The cycle types ρ of elements of the subgroup Hµ(l) are of the form

ρ = lρ̃ ∪ ρ̄,

where ρ̃ ` µ̃(l)1/l and ρ̄ ` r. Conversely, if ρ is a partition of such a form, then there exists an element of
Hµ(l) whose cycle type is ρ.
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Example 4.3. Consider the case µ = (3, 3, 2, 2, 2, 1) and l = 2. Then the corresponding cyclic permu-
tation product is aµ(2) = (1, 4)(2, 5)(3, 6)(7, 9)(8, 10). If we consider w = (1, 2)(7, 8)aµ(2)(11, 13) ∈ Hµ(2),
then w = (1, 4, 2, 5)(3, 6)(7, 9, 8, 10)(11, 13) and its cycle type is (4, 4, 2, 2, 1), which is the union of (4, 4, 2) and
(2, 1). The partition (4, 4, 2) is written in the form (4, 4, 2) = 2((2, 1), (2)) for ((2, 1), (2)) ` (3, 2) = µ̃(l)1/2.
Conversely, if we consider ρ = 2((2, 1), (1, 1)) ∪ (3) = (4, 3, 2, 2, 2), then choose τ1 = (1, 2) ∈ Sµ̃(l) and
τ2 = (11, 12, 13) ∈ Sr for example. It is easy to see that the cycle type of w = τ1τ2aµ(2) coincides with ρ.

�

A direct but a little complicated enumeration shows the following proposition. Remark that l(λ) = l(kλ)
for any partition λ and any positive integer k.

Proposition 4.1. Let µ ` n be a partition, l = 2, 3, . . . , Mµ fixed, and a = aµ(l) the cyclic permutation

product corresponding to µ and l. Let ρ ` n be a partition of the form ρ = lρ̃∪ ρ̄ where ρ̃ ` µ̃(l)1/l and ρ̄ ` r.
Suppose that w ∈ Sn be a permutation whose cycle type is ρ. Then it follows that

(

ρ

lρ̃

)

C(lρ̃, µ; l)ll(ρ̃) = ]{σ ∈ Sn/Sµ̃(l) × Sr|wσa−1 ≡ σ mod Sµ̃(l) × Sr}.

Example 4.4. Let µ = (2, 2, 2, 2, 2, 1) and l = 2, . . . , Mµ(= 5) be fixed, say l = 2. Then the corre-
sponding product of cyclic permutations is a = (13)(24)(57)(68). The subgroups Sµ̃(l) and Sr = S3 are
S{1,2} × S{3,4} × S{5,6} × S{7,8} and S{9,10,11} respectively. Let us consider the case w = (12)a(9, 10) =
(1324)(57)(68)(9, 10) (τ1 = (12), τ2 = (9, 10)). The cycle type ρ of w is ρ = (4, 2, 2, 2, 1). If we let
ρ̃ = ((2), (1, 1)) ` µ̃(l)1/2 = (2, 2) and ρ̄ = (2, 1) ` r = 3, we have ρ = 2ρ̃ ∪ ρ̄. Then it follows that

∑

λ`µ̃(l)1/2=(2,2)
2λ=(4,2,2)

mλ = m((2),(1,1)) + m((1,1),(2)) = 2,

and
(

ρ
lρ̃

)

=
(

2+1
2

)

= 3. Thus we have

]{σ ∈ S11/S(24) × S3|wσa−1 ≡ σ mod S(24) × S3} =

(

3

2

)

(

m((2),(1,1)) + m((1,1),(2))

)

23 = 48.

5. Representation theory of the symmetric group

In this final section, we understand the main result in terms of representation theory of the symmetric
group.

It is known that the Green polynomial Qµ
ρ(q) gives the graded character value of a certain graded Sn-

module, called the DeConcini-Procesi-Tanisaki algebra [DP]. The DeConcini-Procesi-Tanisaki algebras Rµ

are defined for each partition µ of n, and afford a family of graded representations of Sn. We denote by

Rµ =
⊕

d≥0

Rd
µ

its grading. Geometrically, the algebra Rµ is isomorphic to the cohomology ring

H∗(Xµ,C)

of the fixed point subvariety Xµ of the flag variety, corresponding to the partition µ. In this point of view,
the representation of Sn afforded by Rµ is called the Springer representation [S, L]. As an Sn-module, Rµ is

isomorphic to the induced representation IndSn

Sµ
1.

The graded character charqRµ of the graded module Rµ, evaluated on the conjugacy class corresponding
to ρ ` n, is by definition a polynomial in q

charqRµ(ρ) =
∑

d≥0

qdcharRd
µ(ρ)

with integer coefficients. It is known that it coincides with the Green polynomial

Qµ
ρ(q) = charqRµ(ρ)

for each ρ ` n.
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The aim of this section is to rephrase the recursive formula of the Green polynomials Qµ
ρ(q) in the main

theorem, in terms of the graded algebra Rµ. The formula gives a representation theoretical interpretation
of a certain combinatorial property of the algebra Rµ. By considering behavior of the Hilbert polynomial

Hilbµ(q) =
∑

d≥0

qd dim Rd
µ

of the graded module Rµ at roots of unity, we can show that Rµ has the following property. Let Mµ be the
maximum multiplicity of µ, and let an integer l ∈ {2, 3, . . . , Mµ} be fixed. For each k = 0, 1, . . . , l− 1, define

Rµ(k; l) :=
⊕

d≡k mod l

Rd
µ.

It is clear that these Rµ(k; l)’s are Sn-submodules of Rµ. Then it follows that

Proposition 5.1. The dimensions of the submodules Rµ(k; l) (k = 0, 1, . . . , l − 1) coincides with each
other.

This is a consequence of the fact that the Hilbert polynomial Hilbµ(q) has the roots of unity ζj
l for each

j = 1, 2, . . . , l − 1 as its zeros.
Our problem is to give an interpretation to this property “coincidence of dimensions” in terms of repre-

sentation theory, that is, constructing a subgroup H(l) and its modules Z(k; l) (k = 0, 1, . . . , l − 1) of equal
dimension such that

Rµ(k; l) ∼=Sn IndSn

H(l)Z(k; l), k = 0, 1, . . . , l − 1.

Since the dimension of the induced representation IndSn

H(l)Z(k; l) is dimZ(k; l)|Sn|/|H(l)|, we can convince

ourselves that these isomorphisms are representation theoretical interpretation of the coincidence of di-
mensions. Let µ ` n be a partition, l ∈ {2, 3, . . . , Mµ} fixed, a = aµ(l) the cyclic permutation product
corresponding to µ and l, and Cl = 〈a〉 the cyclic subgroup of Sn generated by a. Recall that the subgroup
Hµ(l) is defined by Hµ(l) =

(

Sµ̃(l) o Cl

)

× Sr. Consider, for each k = 0, 1, . . . , l − 1, Hµ(l)-modules Zµ(k; l)
defined as follows:

Zµ(k; l) =

n(µ̄(l))
⊕

d=1

ϕ
(k−d)
l ⊗ Rd

µ̄(l),

where ϕ
(r)
l is the irreducible representation of the cyclic group Cl = 〈a〉 such that a 7−→ ζr

l . The Young

subgroup Sµ̃(l) acts trivially on Zµ(k; l). Since ϕ
(r)
l ’s are one dimensional, the dimension of Zµ(k; l) is equal

to dim Rµ̄(l) for each k. We shall show that

Rµ(k; l) ∼=Sn IndSn

Hµ(l)Zµ(k; l), k = 0, 1, . . . , l − 1.

Actually, we shall show a certain Sn × Cl-module isomorphism between Rµ and IndSn

Sµ̃(l)×Sr
Rµ̄(l), originally

suggested by T. Shoji, which is equivalent to those isomorphisms.
We define Sn×Cl-modules structures on Rµ and IndSn

Sµ̃(l)×Sr
Rµ̄(l) as follows. In both cases, the Sn-actions

are natural ones. The action of Cl on Rµ is defined by

a.x = ζd
l x, x ∈ Rd

µ.

Recall that the induced modules IndSn

Sµ̃(l)×Sr
Rµ̄(l) has the following realization:

IndSn

Sµ̃(l)×Sr
Rµ̄(l) =

⊕

σ∈Sn/Sµ̃(l)×Sr

σ ⊗ Rµ̄(l).

Then the Cl-action is defined by

a.σ ⊗ x = σa−1 ⊗ a.x, σ ∈ Sn/Sµ̃(l) × Sr, x ∈ Rµ̄(l).

It is easy to see that the Sn-action and the Cl-action commute on each module. These two Sn ×Cl-modules
are isomorphic, which is proved by comparing the characters of these modules.
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Theorem 5.1. Let µ be a partition of a positive integer n, and l an integer such that 2 ≤ l ≤ Mµ fixed.
Suppose that n = ql + r, 0 ≤ r ≤ l − 1, and let Cl be the cyclic group generated by the element a = aµ(l).
Then there exists an isomorphism of Sn × Cl-modules

Rµ
∼= IndSn

Sµ̃(l)×Sr
Rµ̄(l). (5.1)

If we consider the eigenspace decomposition of the action of a in the Sn×Cl-isomorphism (5.1), then we
obtain a representation theoretical interpretation of the property, coincidence of dimension, of the algebra
Rµ.

Proposition 5.2. Let µ ` n be partition and an integer l ∈ {2, 3, . . . , Mµ} fixed. Then there exist
Hµ(l)-modules Zµ(k; l) (k = 0, 1, . . . , l − 1) of equal dimension such that

Rµ(k; l) ∼=Sn IndSn

Hµ(l)Zµ(k; l)

for each k = 0, 1, . . . , l − 1.

Example 5.2. Let µ = (5, 4, 4, 2, 2, 1) and l = 2. Then µ̃(2) = (4, 4, 2, 2), µ̄(l) = (5, 1), and

a = aµ(2) =

(

6 7 8 9 10 11 12 13
10 11 12 13 6 7 8 9

) (

14 15 16 17
16 17 14 15

)

.

The dimensions of Rµ(k; 2), k = 0, 1, equals dimRµ/2 =
(

18
5,4,4,2,2,1

)

/2 = 18!/5!4!4!2!2!1!2. The subgroup

Hµ(2) is defined by Hµ(2) = Sµ(2) o 〈a〉×S6, where Sµ(2) = S{6,7,8,9}×S{10,11,12,13}×S{14,15}×S{16,17} and

Sr = S{1,2,3,4,5,18} (r = 3). Define Hµ(2)-modules Zµ(k; l) (k = 0, 1) by Zµ(k; 2) :=
⊕

d≡k mod 2 ϕ
(k−d)
2 ⊗

Rd
µ̄(l). These spaces are considered as Hµ(2)-modules, where S ˜µ(2) acts on them trivially. The dimension

of these modules are both equal to dimRµ̄(l) =
(

6
5,1

)

= 6!/5!1!. Then, for each k = 0, 1, we have an

isomorphism of S18-modules Rµ(k; 2) ∼= IndS18

(S(4,4,2,2)oC2)×S6
Zµ(k; 2). The induced modules are of dimension

18!/4!4!2!2!6!2× 6!/5!1! = 18!/5!4!4!2!2!1!2 = dimRµ(k; 2) for each k = 0, 1.

Remark 5.3. Recently, the author was informed by T. Shoji that the problem considered in this section
is given an affirmative answer in a largely generalized setting [Sh].
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