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A new construction of the Loday-Ronco algebra
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Abstract. We provide a new construction of the Loday-Ronco algebra by realizing it in terms of non-
commutative polynomials in infinitely many variables. This construction relies on a bijection between words
and labeled binary trees which can be regarded as a kind of degenerate Robinson-Schensted correspondence
and leads to a new Knuth type correspondence involving binary trees.

Résumé. Nous donnons une nouvelle construction de l’algèbre de Loday et Ronco en termes de polynômes
non-commutatifs en une infinité de variables. Cette construction repose sur une bijection entre les mots et
les arbres binaires étiquetés qui permet de définir une correspondence de type Robinson-Schensted dégénérée
et aboutit à la construction d’une nouvelle correspondence de type Knuth mettant en jeu les arbres binaires.

1. Introduction

We give a new construction of the Loday-Ronco algebra of the plane binary trees, also known as the
free dendriform dialgebra on one generator (see [8]). We first use, in Section 3, the argument given in [9]
on dendriform trialgebras in order to prove that the algebra of non-commutative polynomials in infinitely
variables can be endowed with the structure of a dendriform dialgebra. We then state that the sub-dialgebra
generated by the sum of the letters is free as a dendriform dialgebra. To prove this statement, we introduce in
Section 4 a bijection between words and labeled binary trees, which leads to a degenerate kind of Robinson-
Schensted correspondence, reminiscent of the degenerate correspondence with ribbons and quasi-ribbon
diagrams in [5], and dual to the Sylvester Schensted Algorithm of [2] as explained in Section 5. This leads,
in Section 6, to a new Knuth type correspondence between integer matrices and some pairs of labeled binary
trees. In Section 7 we define a family of elements indexed by binary trees that permits to prove that our
dendriform dialgebra on one generator is free, using a bijection between binary trees and its elements.

2. Preliminaries and Notations

In this paper, K stands for a field of any characteristic. Let A = {a1, a2, ...} be a totally ordered (infinite)
alphabet and denote by A∗ the free monoid on A. The map max : A∗ → A maps a word w to its greatest
letter, according to the total order of the alphabet A. We denote by Std(w) the standardized word of w ∈ A∗

defined as follows.

Definition 2.1. Let w = w1 · · ·wn ∈ A∗ and Std(w) = w′
1 · · ·w

′
n. Then, ∀i, j ∈ [1, n] with i 6= j:

• if wi > wj then w′
i > w′

j ,
• if wi = wj with i > j, then w′

i > w′
j ,

such that Std(w) is a permutation.

For example Std(abcadbcaa) = 157296834. For a word w ∈ A∗ and a subset B of A, w|B stands for the
subword of w obtained by erasing the letters which are not in B. The evaluation of a word w is the vector
ev(w) = (|w|a1

, |w|a2
, ...) .
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We will denote by BT the set of all plane binary trees and LBT stands for the set of labeled plane
binary trees. We denote by Shape the map that for a labeled binary tree forgets its labels and returns a
binary tree of the same shape.

Let w be an element of A∗ without repetition. Its decreasing tree T (w) is an element of LBT obtained
as follows: the root is labeled by the greatest letter, n of w, and if w = unv, where u and v are words without
repetition, the left subtree is T (u) and the right subtree is T (v). Moreover, we associate the empty tree to
the empty word.

Let w be an element of A∗, we will denote by B(w) its associated binary search tree. It is obtained by
reading w from right-to-left, each letter being inserted into a binary search tree in the following way: if the
tree is empty, one creates a node labeled by the letter; otherwise, this letter is recursively inserted into the
left (resp. right) subtree if it is smaller or equal than (resp. greater than) the root. Exemples will be given
further.

A biletter on A is a pair (a, b) ∈ A×A which we will write

[
a

b

]

for convenience. A biword

[
u

v

]

on A∗ is a

concatenation of biletters

[
u

v

]

=

[
u1

v1

][
u2

v2

]

...

[
un

vn

]

.We denote by

[
u′

v′

]

the nondecreasing rearrangement of
[
u

v

]

for the lexicographic order with priority on the top row, and by

[
u′′

v′′

]

the nondecreasing rearrangement

for the lexicographic order with priority on the bottom row. Let 〈〉 denote the linear map from K[[A,B]] to

K〈〈A〉〉 ⊗ K〈〈B〉〉, defined by 〈

(
u

v

)

〉 = u′′ ⊗ v′ , with u ∈ A and v ∈ B.

3. The free dendriform dialgebra embedded in words

Following a suggestion of [9], we define the following operations on words.

Definition 3.1. For all u, v ∈ A+,

(3.1) u ↼ v :=

{
uv if max(u) > max(v)
0 otherwise.

(3.2) u ⇁ v :=

{
uv if max(u) ≤ max(v)
0 otherwise.

Clearly, the usual operation of concatenation · on A∗ can be written this way:

(3.3) · = ↼ + ⇁ .

Proposition 3.1. (
⊕

n≥0 K[A],↼,⇁) is a dendriform dialgebra, in the sense of [7].

Proof – Since (3.3) holds by definition, we only have to check the following three relations:

(3.4)







(u ↼ v) ↼ w = u ↼ (v · w) , (i)
(u ⇁ v) ↼ w = u ⇁ (v ↼ w) , (ii)
(u · v) ⇁ w = u ⇁ (v ⇁ w) , (iii)

whith u, v, w ∈ A+. Notice first that for all these relations, there are only two possible values for each side,
which are 0 and uvw.

(i) We first prove that

(3.5) (u ↼ v) ↼ w = uvw ⇐⇒ u ↼ (v · w) = uvw .

By definition, we have (u ↼ v) ↼ w = uvw if and only if max(u) > max(v) and max(uv) > max(w). Since
if max(u) > max(v) then max(uv) = max(u), we have a necessary and sufficient condition

(3.6) max(u) > max(v) ∧ max(u) > max(w) .

On the right-hand side, we have u ↼ (v · w) = uvw if and only if

(3.7) max(u) > max(vw) .
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Since (3.6) and (3.7) are clearly equivalent, we have proved assertion (3.5).

(ii) We have (u ⇁ v) ↼ w = uvw if and only if

(3.8) max(u) ≤ max(v) ∧ max(w) < max(uv) .

But since max(u) ≤ max(v), assertion (3.8) is equivalent to

(3.9) max(u) ≤ max(v) ∧ max(w) < max(v) .

Moreover, u ⇁ (v ↼ w) = uvw if and only if

max(w) < max(v) ∧ max(u) ≤ max(vw) ,

which can be rewritten as

(3.10) max(w) < max(v) ∧ max(u) ≤ max(v) ,

due to max(w) < max(v). It results that (u ⇁ v) ↼ w = uvw if and only if u ⇁ (v ↼ w) = uvw , by
equivalence of assertions (3.9) and (3.10).

(iii) We have u ⇁ (v ⇁ w) = uvw if and only if

max(u) ≤ max(vw) ∧ max(v) ≤ max(w) ,

which can immediately be rewritten as

(3.11) max(u) ≤ max(w) ∧ max(v) ≤ max(w) ,

due to max(v) ≤ max(w). Moreover, we have (u · v) ⇁ w = uvw if and only if max(uv) ≤ max(w) , which
is equivalent to (3.11). Hence it results (u · v) ⇁ w = uvw if and only if u ⇁ (v ⇁ w) = uvw .

Consider now the sub-dialgebra D of (
⊕

n≥0 K[A],↼,⇁) generated by

P• :=
∑

a∈A

a .

There are two basis elements in the homogeneous component of degree 2 of D:

P• ↼ P• =
∑

a<b

ba ,

P• ⇁ P• =
∑

a≤b

ab .

There are only five independent basis elements in the homogeneous component of degree 3 of D:

(3.12) P• ↼ (P• ↼ P•) =
∑

a<b<c

cba ,

(3.13) P• ⇁ (P• ↼ P•) =
∑

a<b; a′≤b

a′ba ,

(3.14) P• ↼ (P• ⇁ P•) =
∑

a≤b<c

cab ,

(3.15) (P• ↼ P•) ⇁ P• =
∑

a<b≤c

bac ,

(3.16) (P• ⇁ P•) ⇁ P• =
∑

a≤b≤c

abc ,

since following equalities hold:

(P• ↼ P•) ↼ P• =
∑

a<b; a′<b

baa′ = (3.12) + (3.14) ,
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(P• ⇁ P•) ↼ P• =
∑

a≤b; a′<b

aba′ = (3.13) ,

P• ⇁ (P• ⇁ P•) =
∑

a≤b; a′≤b

a′ab = (3.15) + (3.16) ,

which are exactly relations (3.4). We can now state our main result.

Theorem 3.2. D is the free dendriform dialgebra on one generator.

The remainder of this article will provide appropriate tools to prove this statement and exhibit some inter-
esting remarks about them.

4. Algorithm Ψ

We first describe an algorithm Ψ that associates with a word a labelled plane binary tree. Then it will
be possible to associate a plane binary tree with a word by considering only the shape of the labelled tree
produced by algorithm Ψ. To this purpose we introduce a map

Γ : LBT ×A −→ LBT ,

which can be recursively defined as follows:

(4.1)

Γ(
y

α β
, x) =







x

y

α β
if x ≥ y

y

α Γ(β, x)

if x < y

,

Γ(◦, x) = x ,

where ◦ stands for the empty tree and α, β ∈ LBT .

Definition 4.1. Consider the following function Ψ:

(4.2)
Ψ : A∗ −→ LBT ,

w = w1w2...wn 7−→

{
Γ(Ψ(w1...wn−1), wn) if n ≥ 2 ,
Γ(◦, w1) if not .

For example, using the alphabet N>0 with the natural order on integers, we apply Ψ to the word 25313 as
follows:

1 2 3 4 5

2

5

2

5

2 3

5

2 3

1

5

2 3

3

1

= Γ(...(Γ
︸ ︷︷ ︸

5

(◦, 2), 5), 3), 1), 4) ,

starting with Γ(◦, 2) .

Proposition 4.1. Let w ∈ A∗. Then, Shape(Ψ(w)) = Shape(Ψ(Std(w))).
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Proof – We proceed by induction. The initial case, considering a word of size 1, is obvious since there is only
one tree of size 1. Assuming that this property is satisfied for words of length n− 1, we check that it is true
for words of length n due to Definition 2.1 and the inductive definition (4.1).

We recall that T stands for the decreasing tree algorithm which associates to a permutation its decreasing
tree.

Proposition 4.2. ∀σ ∈ S,Ψ(σ) = T (σ).

Proof – We proceed by induction. This property is obvious for the permutation of size 1. Assume that this
property is satisfied for permutations of all sizes smaller than n and σ = σ1 ·max(σ) · σ2 is a permutation of
size n. By the inductive Definition 4.1 it is clear that the root of Ψ(σ) is labeled by max(σ), and that the
left subtree of the root of Ψ(σ) will be T (σ1) by the inductive hypothesis, and similarly the right subtree of
the root of Ψ(σ) will be T (σ2).

Hence algorithm Ψ is clearly a generalization on words of the well-known decreasing tree algorithm for
permutations. From Propositions 4.2 and 4.1 the following result is immediate.

Proposition 4.3. The algorithm Ψ is injective.

Let w ∈ A∗, we now consider the labeled binary tree having the same shape as Ψ(w) and for which the
label of each node is the step of its insertion in the tree Ψ(w). We will denote it by ψ(w). From the previous
calculation of Ψ(25313) we get the following tree:

2

1 5

3

4

.

We notice that ψ(25313) is the binary search tree of Std(25313)−1 = 41352. We develop a new Schensted-like
correspondence and a new Schensted-Knuth-like correspondence from this consideration.

5. The Co-Sylvester Schensted Algorithm (CSSA)

The Sylvester Schensted Algorithm (SSA) has been introduced in [2]. From Algorithms Ψ and ψ we
give a dual correspondence of SSA.

Definition 5.1. We note CSSA the Co-Sylvester Schensted Algorithm which sends a word w ∈ A∗ to
the pair

(Ψ(w), ψ(w)) .

Algorithm CSSB sends this pair to the word obtained by reading the labels of Ψ(w) in the order of the
corresponding labels in ψ(w).

We know that

Lemma 5.2 ([2]). Let w be a word and σ = Std(w). Then

Shape(B(w)) = Shape(B(σ)) = Shape(T (σ−1)) .

We generalize this result in terms of biwords.

Lemma 5.3. For any biword

[
u

v

]

, Shape(Ψ(v′)) = Shape(B(u′′)).

Proof – Using notations of Section 2, the standardization being compatible under transposition of two letters
it follows that Std(v)′ = Std(v′) and Std(u)′′ = Std(u′′). It is well-known that the inverse of a permutation
[
Id

σ

]

is the biword

[
σ−1

σ↑ = Id

]

where w↑ denotes the nondecreasing rearrangement of a word w. Then, since

Std(v)′ = (Std(u)′′)−1, we have
Std(v′) = (Std(u′′))−1 .
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Hence, using Lemma 5.2 and Proposition 4.1 we obtain these equivalences:

Shape(Ψ(v′)) = Shape(T (Std(v′))) = Shape(B((Std(v′))−1)) = Shape(B(u′′)) .

This allows us to state an analogous of the Schützenberger Theorem on tableaux for binary trees.

Theorem 5.4. ∀σ ∈ S, ψ(σ) = B(σ−1).

Proof – By definition of ψ, ψ(σ) have the same shape as Ψ(σ) = T (σ). Moreover, by induction it is also clear
that ψ(σ) is a binary search tree. Indeed, assuming the inductive hypothesis for trees with k − 1 nodes, the
k-th node is, by definition of the algorithm ψ, labeled by k whereas the k − 1 remaining nodes are labeled
by elements of [1, (k − 1)]. Moreover, by recursive definition (4.1) two cases arise:

• The k-th node is inserted at the root and then it is still a binary search tree since the k−1 remaining
nodes are in its left subtree.

• The k-th node is inserted somewhere in the right subtree, and so it is still a binary search tree since
it is greater than the root, and by inductive hypothesis.

Nevertheless, in general there is not a single permutation σ′ such that B(σ′) = T , with T a given binary
search tree (see [2] for the exact description of such sets of permutations). But it is clear, by definition of ψ,
that at each step k of the insertion algorithm CSSA, Ψ(σ1σ2...σk) and ψ(σ1σ2...σk) have the same shape.
Moreover setting

[
u(k)′

v(k)′

]

=

[
1 2 · · · k

σ1 σ2 · · · σk

]

and

[
u(k)′′

v(k)′′

]

=

[
σ−1|[1,k]

1 2 · · · k

]

,

from Lemma 5.3 we have that at each step of the insertion algorithm, Ψ(σ1σ2 · · ·σk) and B(σ−1|[1,k]) have

the same shape. Hence, at the last step, ψ(σ) = B(σ−1).

Proposition 5.1. ∀w ∈ A∗, ψ(w) = ψ(Std(w)).

Proof – From Definition 2.1 and Proposition 4.1, it is immediate since at each step k, Ψ(w1 · · ·wk) and
Ψ(Std(w1 · · ·wk)) have the same shape.

Hence from Theorem 5.4 and Proposition 5.1 we immediately obtain the following result on words.

Corollary 5.5. ∀w ∈ A∗, ψ(w) = B(Std(w)−1).

From Theorem 5.4 and Proprosition 4.2 it is straightforward that CSSA is the dual Schensted-like
correspondence of SSA of [2] in the following sense.

Proposition 5.2. ∀σ ∈ S,

CSSA(σ) = (Ψ(σ),B(σ−1)) ⇐⇒ SSA(σ−1) = (B(σ−1),Ψ(σ)) .

It is interesting to notice that these two correspondences look quite similar to the two Robinson-Schensted
type correspondences on ribbons and quasi-ribbons, introduced in [5].

6. The Sylvester Schensted-Knuth correspondence

We first recall that there is an easy bijection between integer matrices and commutative biwords on A∗

which consists to repeat mij times the biletter

(
i
j

)

for a matrix M = (mij)(i,j)∈[1,n]×[1,m] of dimensions

n×m. For example commutative biwords

(
1111222333
1113123133

)

and

(
1112321233
1111123333

)

(which are equal) have the

same corresponding matrix which is :




3 0 1
1 1 1
1 0 2



 .
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Definition 6.1. Let

(
u

v

)

be a commutative biword and

[
u′

v′

]

,

[
u′′

v′′

]

be the two biwords associated

with

[
u

v

]

as explained in Section 2 . We note κS the Sylvester Schensted-Knuth correspondence defined as

follows:

κS

(
u

v

)

:= (Ψ(v′),B(u′′)) .

This definition holds since for any biletter permutation of

[
u

v

]

, v′ and u′′ remain the same. Moreover

by Lemma 5.3 the following Proposition is straightforward.

Proposition 6.1. For any commutative biword

(
u

v

)

, Shape(Ψ(v′)) = Shape(B(u′′)) .

We notice that CSSA is recovered by encoding a word w by

(
1 2 · · · m

w1 w2 · · · wm

)

.

In order to prove that κS is a bijection, we proceed as Lascoux, Leclerc and Thibon did in [6] for the
usual Knuth correspondence [4].

Theorem 6.2. The algorithm κS is a bijection.

Proof – Using again arguments of the proof of Lemma 5.3 we obtain B(Std(u′′)) = B(Std(v′)−1) . Then,
applying Theorem 5.4 we have that B(Std(v′)−1) = ψ(Std(v′)) and from Corollary 5.5 we get:

B(Std(u′′)) = ψ(v′) .

This means that B(u′′) is the unique binary search tree of evaluation ev(u′′) such that B(Std(u′′)) = ψ(v′).

An easy remark is the following:

κS

(
u

v

)

= (Ψ(v′),B(u′′)) ⇐⇒ κS

(
v

u

)

= (Ψ(u′′),B(v′)) ,

which generalizes results of Section 5. Nevertheless the symmetry of the usual Knuth correspondence is
broken for P and Q symbols. At last, we give a full example of our construction.

[
u

v

]

=

[
2 1 3 3 5 4 2 4
1 3 6 5 2 4 1 4

]

,

[
u′

v′

]

=

[
1 2 2 3 3 4 4 5
3 1 1 5 6 4 4 2

] [
u′′

v′′

]

=

[
2 2 5 1 4 4 3 3
1 1 2 3 4 4 5 6

]

,

(Ψ(v′),B(u′′)) =

(

6

5

3

1

1

4

4 2
,

3

3

1

2

2

4

4 5
)

(Ψ(u′′),B(v′)) =

(

5

2

2

4

4

1

3

3
,

2

1

1

4

4

3

6

5

)

Since Std(22514433) = 23816745, we can check that ψ(v′) = B(Std(u′′)):

ψ(31156442) = B(23816745) =

5

4

1

3

2

7

6 8 .
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This bijection leads to a Cauchy formula type for binary trees.

Proposition 6.2. Let A and B be two non-commutative alphabets, such that A and B are commuting
one with the other and words on alphabet B are quotiented by the sylvester congruence (see [2]). Then,

〈 ~∏

a∈A, b∈B

1

1 − ab

〉
=

∑

T∈BT

PT (A) ⊗QT (B) ,

where (PT )T∈BT comes from Definition 7.1 and (QT )T∈BT is its dual basis introduced in [2].

Proof – We recall that the sylvester monoid introduced in [2] is the monoid such that two words having the
same shape through algorithm B are equal. This proof needs the Free Cauchy identity mentionned in [3]
and to be fully introduced in [1]:

(6.1)
〈 ~∏

a∈A, b∈B

1

1 − ab

〉
=

∑

Std(v)=Std(u)−1

u⊗ v .

Since v is an element of the sylvester monoid and by definition of (QT )T∈BT (see [2]), by Theorem 6.2 and
by Proposition 6.1, right-hand side of Equation (6.1) can be rewritten as

∑

T∈BT

(
∑

Shape(Ψ(w))=T

w

)

⊗QT .

Using Definition 7.1 we obtain the desired equality.

7. Back to dendriform structure

Definition 7.1. Let T ∈ BT . We define

(7.1) PT :=
∑

w; Shape(Ψ(w))=T

w .

As a special case we recover:

(7.2) P• =
∑

a∈A

a .

We now provide an algorithm that associates a plane binary tree to an element of the dendriform algebra
D.

Definition 7.2. We consider

Φ : BT −→ (K[A],↼,⇁) ,

whose recursive definition is the following:

(7.3)







Φ(
•

α β
) = (Φ(α) ⇁ (P• ↼ Φ(β))) , (i)

Φ(
•

α
) = (Φ(α) ⇁ P•) , (ii)

Φ(
•

β
) = (P• ↼ Φ(β)) , (iii)

Φ(•) = P• , (iv)

where α, β ∈ BT .

For example:

Φ(
•

• •

•

•

) = (P• ⇁ (P• ↼ ((P• ↼ P•) ⇁ P•))) .
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Lemma 7.3. Let T ∈ BT . Then, PT = Φ(T ) .

Proof – We proceed by induction. The initial case is immediate by (iv) of Definition 7.2. Assume that this
property is satisfied for trees of size n− 1. We consider a tree T of size n, with n ≥ 2. Three kinds of trees
are possible, according to wether their roots have only a non-empty right subtree or only a non-empty left
subtree or finally have both left and right subtrees are non-empty. These cases correspond to (i), (ii) and
(iii) of (7.2).

(i) By Definition 7.1 this means that for all words appearing in the sum PT , the |α|+ 1 letter is greater
or equal than its |α| first letters and greater to its |β| last letters. This is the exact meaning of the right-
hand side of (i) using (3.1), (3.2), remembering relation (ii) (associativity) of (3.4) and assuming inductive
hypothesis.

(ii) By Definition 7.1 this means that for all words appearing in the sum PT , their last letter is greater
or equal than all others letters appearing in it. Then, by (3.2) and by induction hypothesis we have proved
this case.

(iii) By Definition 7.1 this means that for all words appearing in the sum PT , their first letter is greater
than all others letters appearing in it. Hence by (3.1) and by induction hypothesis we have proved this case.

We now are able to provide the proof of Theorem 3.2:

Proof of Theorem 3.2 − Since the Loday-Ronco algebra of plane binary trees is the free dendriform algebra
on one generator, we only have to check that the Hilbert serie of this subalgebra D generated by P• is
counted by Catalan numbers. To this purpose we consider the familly of (PT )T∈BT . By Lemma 7.3 they
are clearly elements of D. Moreover the intersection of any pairs of them is always empty, by construction.
Then (PT )T∈BT are linearly independent.
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