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Abstract. The Schur functions, sλ(x), form a basis for the vector space of symmetric functions. Recently
Haglund, Haiman and Loehr derived a combinatorial formula for nonsymmetric Macdonald polynomials,
which gives a new decomposition of the Macdonald polynomial into nonsymmetric components. Letting
q = t = 0 in this identity implies sλ(x) =

P

µ NSµ(x), where the sum is over all rearrangements µ of the

partition λ. We exhibit a bijection involving an analogue of Robinson-Schensted-Knuth Insertion between
semi-standard Young tableaux and semi-standard skyline fillings to give a combinatorial proof of the for-
mula. The insertion procedure led us to determine an analogue of the RSK Algorithm for semi-standard
skyline fillings. This analogue is used to prove that the non-symmetric Schur functions equal the standard
bases of Lascoux and Schützenberger.
Résumé. La fontion Schur forme une base pour l’espace de vecteur des fonctions symétriques. Récemment

Haglund, Haiman et Loehr ont dérivé une formule combinatoire pour des polynômes nonsymmetric de
Macdonald, qui donne une nouvelle décomposition du polynôme de Macdonald dans les composants non-
symmetric. Laisser q = t = 0 dans cette identité implique la fonction de Schur sλ est la somme des fonctions
nonsymmetric de Schur au-dessus de toutes les remises en ordre de la cloison λ. Nous exhibons un bijection
impliquant un analogue d’insertion de Robinson-Schensted-Knuth entre de Young tableaux de semi-standard
et remplissages d’horizon de semi-standard pour fournir des preuves combinatoires de la formule. Le procédé
d’insertion nous a menés à déterminer un analogue de l’algorithme de RSK pour des remplissages d’horizon
de semi-finale-standard. Cet analogue est employé pour montrer que les fonctions dissymétriques de Schur
égalent les bases standard de Lascoux et de Schützenberger.

1. Introduction

A symmetric function of degree n over a commutative ring R (with identity) is a formal power series
f(x) =

∑

α cαxα, where α ranges over all weak compositions of n (of infinite length), cα ∈ R, xα stands for
the the monomial xα1

1 xα2

2 ..., and f(xω(1), xω(2), ...) = f(x1, x2, ...) for every permutation ω of the positive
integers, P. Many different bases for the vector space of symmetric functions are known. One important
basis is the Schur functions.

The Schur function sλ = sλ(x) of shape λ in variables x = (x1, x2, ...) is the formal power series
sλ =

∑

T xT , summed over all semi-standard Young tableaux of shape λ. A semi-standard Young tableau is

formed by first placing the parts of λ into rows of squares, where the ith row has λi squares, called cells. This
diagram, called the Young (or Ferrers) diagram, is drawn in the first quadrant, French style, as in [3]. Then
each of these cells is assigned a positive integer in such a way that the row entries are weakly increasing and
the column entries are strictly increasing. Thus, the values assigned to the cells of λ collectively form the
multiset {1a1, 2a2 , ..., nan}, for some n, where ai is the number of times i appears in T. Here, xT =

∏n
i=1 xai

i .
See [10] for a more detailed discussion of symmetric functions and the Schur functions in particular.

The Macdonald polynomials H̃µ(x; q, t) are a special class of symmetric functions which contain a vast
array of information. Macdonald [8] introduced them and conjectured that their expansion in terms of Schur
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polynomials should have positive coefficients. A combinatorial formula for the Macdonald polynomials was
recently proved by Haglund, Haiman, and Loehr [5].

Building on this work, Haglund, Haiman, and Loehr [4] derive a combinatorial formula for nonsymmetric
Macdonald polynomials, which gives a new decomposition of the Macdonald polynomial into nonsymmetric
components. The statistics involved in this formula can be used to define nonsymmetric Schur polynomials,
NSλ. Letting q = t = 0 in the identity implies sµ(x) =

∑

λ NSλ(x), where the sum is over all rearrangements
λ of the partition µ. (A composition µ of n is called a rearrangement of a partition λ if it consists of n
parts such that when the parts are arranged in descending order, the ith part equals λi, for all i.) We give
a bijective proof of this decomposition.

Theorem 1.1.
∑

λ′ NSλ′(x1, ..., xn) = sλ(x1, ..., xn), where the sum is over all rearrangements λ′ of λ.

We exhibit a weight-preserving bijection between semi-standard Young tableaux and semi-standard
skyline fillings to prove Theorem 1.1. The bijection involves an insertion procedure similar to Schensted
insertion. This procedure is the fundamental operation in an analogue of the Robinson-Schensted-Knuth
algorithm.

Theorem 1.2. There exists a bijection between N − matrices with finite support and pairs (F, G) of
semi-standard skyline fillings of compositions which rearrange the same partition.

The Schur functions are alternatively defined as the irreducible characters of the linear group on C. De-
mazure’s “Formule des caractère” [1] [2] provides an interpolation between a dominant weight corresponding
to a partition I and the Schur function of index I. For each permutation µ, he obtains a“partial” character
whose interpretation involves the Schubert variety of index µ, best understood through the study of the
“standard bases” of these spaces. Considering Young tableaux as words in the free algebra, Lascoux and
Schützenberger [6] describe the standard bases U(µ, I) using symmetrizing operators on the free algebra
which lift the operators used by Demazure. This description provides a recursive algorithm to determine the
basis U(µ, I) given the basis U(λ, I), where µ = σiλ for some i. The nonsymmetric Schur functions provide
a non-recursive combinatorial description of U(µ, I) for arbitrary µ, I.

Theorem 1.3. U(µ, I) = NSµ(I), where µ(I) denotes the action of µ on the parts of I.

This theorem provides a mapping between the combinatorics of symmetrizing (or string) operators and
nonsymmetric Schur functions.

2. Combinatorial description of the nonsymmetric Schur functions

2.1. Semi-standard skyline fillings. Let γ = (γ1, γ2, ..., γn) be a composition of n into n parts,
allowing zero as a part. (We will consider compositions of n into arbitrarily many parts in section 2.3.) The
composition Ferrers diagram of γ is a figure consisting of n cells arranged in n columns. The ith column
contains γi cells, and the number of cells in a column is called the height of that column. This is an analogue
of the Ferrers diagram of a partition λ, which consists of rows of cells such that the ith row contains λi cells.

Example 2.1. The composition Ferrers diagram for λ = (0, 2, 0, 3, 1, 2, 0, 0, 1)

1 2 3 4 5 6 7 8 9

A filling, σ, of a composition Ferrers diagram, λ, is a function σ : λ → Z+, which we picture as an
assignment of positive integer entries to the cells of λ. We consider the 0th row to consist of cells numbered
from 1 to n in strictly increasing order. Let σ(i) denote the entry in the ith square of the composition Young
diagram encountered if we read across rows from left to right, beginning at the highest row and working
downwards.

To define the nonsymmetric Schur functions, we need the statistics Des(σ) and Inv(σ). As in [3], a
descent of σ is a pair of entries σ(a) > σ(b), where the cell a is directly above b. In other words, b = (i, j)
and a = (i + 1, j), where the ith coordinate denotes the height of cell b and the jth coordinate denotes the
column containing j. Define Des(σ) = {a ∈ λ : σ(a) > σ(b) is a descent}.
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Three cells a, b, c ∈ λ form a triple of type A if they are situated as follows,

b

a c.. .

where a and c are in the same row, possibly the first row, possibly with cells between them, and the column
containing a and b has height greater than or equal to the height of the column containing c.

Define for x, y ∈ Z+

I(x, y) =

{

1 if x > y
0 if x ≤ y

Let σ be a composition filling and let α, β, δ be the entries of σ in the cells of a type A triple (a, b, c):

β

α δ.. .

Then the triple (a, b, c) is called an inversion triple of type A if and only if I(α, δ) + I(δ, β)− I(α, δ) =1.
The reading order of a filling is an ordering of its cells beginning with the top row and listing the cells

from left to right, travelling down, row by row, to the bottom row. Define a filling σ to be standard if it
is a bijection σ : µ ∼={1,...,n}. The standardization of a composition filling is the unique standard filling ξ
such that σ ◦ ξ−1 is weakly increasing, and for each α in the image of σ, the restriction of ξ to σ−1({α}) is
increasing with respect to the reading order. Therefore the triple (a, b, c) is an inversion triple of type A if
and only if after standardization, the ordering from smallest to largest of the entries in cells a, b, c induces a
counter-clockwise orientation.

Similarly, three cells a, b, c ∈ λ form a triple of type B if they are situated as shown below,

a

b

c.. .

Here a and c are in the same row (possibly row 0) and the column containing b and c has greater height
than the column containing a.

Let σ be a composition filling and let α, β, δ be the entries of σ in the cells of a type B triple (a, b, c).

α

β

δ.. .

Then the triple (a, b, c) is called an inversion triple of type B if and only if I(β, α) + I(α, δ) − I(β, δ) = 1.
In other words, the triple (a, b, c) is an inversion triple of type B if and only if after standardization, the
ordering from smallest to largest of the entries in cells a, b, c induces a clockwise orientation.

Denote by semi-standard skyline filling any composition filling F such that Des(F ) = ∅ and every triple
is an inversion triple. These conditions arise by setting q = t = 0 in the combinatorial formula for the
nonsymmetric Macdonald polynomials [4].

Definition 2.2. Let λ be a composition of n into n parts, where some of the parts could be equal to
zero. The nonsymmetric Schur function NSλ = NSλ(x) in the variables x = (x1, x2, ..., xn) is the formal
power series NSλ(x) =

∑

F xF summed over all semi-standard skyline fillings F of composition λ. Here,
xF =

∏n
i=1 xσi

i is the weight of σ. (See Figure 2.1.)

The combinatorial formula for nonsymmetric Macdonald polynomials [4] contains an additional “non-
attacking” condition. This condition states that for each pair of cells a and b with a to the left of b in the
row directly below b, σ(a) 6= σ(b). (If σ(a) = σ(b), a and b are called attacking cells.)

Lemma 2.3. The descent and inversion conditions used to describe the semi-standard skyline fillings
guarantee that no two cells of a semi-standard skyline filling are attacking.

Proof. Assume there exist two attacking cells a and b with σ(a) = σ(b) = α to get a contradiction. If
the column containing a is taller than or equal to the column containing b, then a lies directly below a cell c
which must have σ(c) ≤ α. When the values in these three cells are standardized, c, b, a form a non-inversion
triple of type A. If the column containing b is taller than the column containing a, b is directly on top of a
cell c which must have σ(c) ≥ α. The cells a, b, c form a type B non-inversion triple. �
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Figure 2.1. NS(1,0,2,0,2) = x1x2x
2
3x5 + x1x

2
3x4x5 + x1x

2
3x

2
5 + x1x2x3x4x5 + x1x2x3x

2
5.

Lemma 2.4. If a, b, c is a type B triple with a and c on the same row and b directly above c, then
σ(a) < σ(c).

Proof. Let a, b, c be a type B triple situated as pictured below.

a

b

c. ..

To get a contradiction, first assume σ(a) > σ(c). In the basement row, the column containing a has a value
less than the value of the column containing c. So at some intermediate row we have

e

f

g

d

. ..

with σ(d) > σ(f) and σ(e) ≤ σ(g). We must have σ(d) ≤ σ(e). Therefore, σ(f) < σ(d) ≤ σ(e) ≤ σ(g). But
then σ(f) < σ(e) ≤ σ(g) and this type B triple f, e, g is not an inversion triple.

Next assume σ(a) = σ(c). If so, by standardization we may assume that σ(a) < σ(c). To have an
inversion triple, σ(b) must be between σ(a) and σ(c). But then σ(b) must equal σ(a) and σ(c), which implies
that a and b are attacking. So σ(a) cannot equal σ(c).

�

Lemmas 2.3 and 2.4 provide us with several conditions on the cells in our diagram. They will be useful
in proving facts about the insertion process.

2.2. A basis for homogeneous polynomials of degree n in n variables. Several other bases for
symmetric functions have nonsymmetric analogues. For instance, the nonsmmyetric monomial corresponding
to a given composition γ of n into n parts is given by NMγ = xγ1

1 xγ2

2 ...xγn

n . It is clear that the sum
over all rearrangements of a given partition µ of the nonsymmetric monomials is equal to the monomial
symmetric function mµ. Every polynomial of degree n in n variables can be written as a sum of nonsymmetric
monomials, so the nonsymmetric monomials form a basis for the algebra of homogeneous polynomials of
degree n in n variables.

Definition 2.5. The reverse dominance order on compositions is defined as follows:
µ ≤ γ ⇐⇒

∑n
i=k µi ≤

∑n
i=k γi for 1 ≤ i ≤ n.

A semi-standard skyline filling is said to have type µ if it contains µi copies of the number i for each i.
If γ and µ are compositions of n into n parts, let NKγ,µ denote the number of semi-standard skyline fillings
of shape γ and type µ. NKγ,µ is called a nonsymmetric Kostka number. The ordinary Kostka numbers
are obtained as a sum of nonsymmetric Kostka numbers: Kλ,µ =

∑

NKγ,µ, where the sum is over all
rearrangements γ of λ.

Theorem 2.6. Suppose that γ and µ are both compositions of n into n parts and NKγ,µ 6= 0. Then
γ ≥ µ in the dominance order. Moreover, NKγ,γ = 1.
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Proof. Assume that NKγ,µ 6= 0. By definition, there exists a semi-standard skyline filling of shape
γ and type µ. Assume that an entry k appears in one of the first k − 1 columns. Then this column
would contain a descent, since there is an entry less than k in the column at a lower position than k,
namely the basement entry. Therefore, the parts k, k + 1, ..., n all appear in the last n− k + 1 columns. So
µk + µk+1 + ... + µn ≤ γk + γk+1 + ... + γn for each k, as desired. Moreover, if µ = γ, then the ith column
must contain only entries with value i, so NKγ,γ = 1. �

Corollary 2.7. The nonsymmetric Schur functions form a basis for the algebra of homogeneous poly-
nomials of degree n in n variables.

Proof. Theorem 2 is equivalent to the assertion that the transition matrix from the nonsymmetric
Schur functions to the nonsymmetric monomials (with respect to the reverse dominance order) is upper
triangular with 1’s on the main diagonal. Since this matrix is invertible, the nonsymmetric Schur functions
of degree n are a basis for homogeneous polynomials of degree n in n variables. �

2.3. Nonsymmetric Schur functions in infinitely many variables. We may relax the restriction
on the number of parts to obtain nonsymmetric Schur functions in infinitely many variables.

Definition 2.8. A weak composition of n is an infinite sequence of non-negative integers which sum
to n.

Let γ be a weak composition of n. Its composition Ferrers diagram consists of infinitely many columns
such that the ith column contains γi cells. As above, fill this diagram with positive integers in such a way
that there are no descents and every triple is an inversion triple to get a semi-standard skyline filling. Then
NSγ(x) =

∑

F xF , where F ranges over all semi-standard skyline fillings of the composition Ferrers diagram
of γ.

We may also define the nonsymmetric monomials in infinitely many variables. The nonsmmyetric mono-
mial corresponding to a weak composition γ of n is given by NMγ =

∏

i xγi

i . It is clear that the sum over all
rearrangements of a given partition µ of the nonsymmetric monomials is equal to the monomial symmetric
function mµ. Every polynomial can be written as a sum of nonsymmetric monomials, so the nonsymmetric
monomials form a basis for all polynomials.

Definition 2.9. Let µ and γ be weak compositions of n. The reverse dominance order on weak
compositions is defined as follows.

µ ≤ γ ⇐⇒
∞
∑

i=k

µi ≤
∞
∑

i=k

γi ∀k, k ≥ 1

.

If γ and µ are weak compositions of n, NKγ,µ denote the number of semi-standard skyline fillings of
shape γ and type µ as above. Again, the ordinary Kostka numbers are obtained as a sum of nonsymmetric
Kostka numbers. Kλ,µ =

∑

NKγ,µ, where the sum is over all rearrangements γ of λ.

Theorem 2.10. Suppose that γ and µ are both weak compositions of n and NKγ,µ 6= 0. Then µ ≤ γ in
the dominance order. Moreover, NKγ,γ = 1.

Proof. Assume that NKγ,µ 6= 0. By definition, there exists a semi-standard skyline filling of shape γ
and type µ. Assume that an entry k appears in one of the first k − 1 columns. Then this column would
contain a descent, since there is an entry less than k in the column at a lower position than k, namely the
basement entry. Therefore, the entries greater than or equal to k all appear after the (k − 1)th column. So
∑

∞

i=k µi ≤
∑

∞

i=k γi for each k, as desired. Moreover, if µ = γ, then the ith column must contain only entries
with value i, so NKγ,γ = 1. �

Corollary 2.11. The nonsymmetric Schur functions form a basis for all polynomials.

Proof. Theorem 2.10 is equivalent to the assertion that the transition matrix from the nonsymmetric
Schur functions to the nonsymmetric monomials (with respect to the reverse dominance order) is upper
triangular with 1’s on the main diagonal. Since this matrix is invertible, the nonsymmetric Schur functions
are a basis for all polynomials. �



S. Mason

3. Proof of Theorem 1.1

We will in fact prove a slightly more general statement

(3.1)
∑

λ′

NSλ′ = sλ,

where the sum is over all weak compositions λ′ which rearrange λ.

3.1. An analogue of Schensted insertion. Let F be a semi-standard skyline filling of a weak com-
position γ of n. Then F = (Fj), where Fj is the jth cell when the cells are in reading order, including the
cells in the basement. We define the operation F ← k.

Let r be the smallest integer such that σ(Fr) ≥ k and there is no cell c with σ(c) = k in the row directly
above the row containing Fr. If there is no cell directly on top of Fr, then place k on top of Fr are the
resulting figure is F ← k. Otherwise let a be the cell directly on top of Fr. If σ(a) < k then k “bumps”
σ(a). In other words, k replaces σ(a) and we now find the least r′ such that r′ > r and σ(Fr′ ) ≥ a and
repeat. If σ(a) > k then continue to the next r′ such that r′ > r and σ(Fr′) ≥ k and repeat. This procedure
terminates, since there are infinitely many basement entries greater than k.

Lemma 3.1. When restricted to n-compositions, this procedure terminates.

Proof. Assume that the procedure does not terminate to get a contradiction. This could only occur if
some letter α reaches the last cell in the basement without finding an r such that σ(Fr) ≥ α and such that
the cell b on top of Fr has σ(b) ≤ α. The value α is an entry in the basement, say σ(Fj). The letter α which
is unplaced could not have been bumped from a cell to the right of Fj in the row above Fj , for otherwise
the cell containing α and Fj would be attacking. Since α was not inserted on top of Fj , the entry b on top
of Fj must have σ(b) ≥ α. But since F has no descents, σ(b) = α. So the leftover α must have come from
a higher row. Continuing this line of reasoning, we see a column containing the value α at each row until a
certain height h at which this column contains an entry strictly smaller than α. If α was bumped from row
h, α must have been bumped from a cell to the right of the αth column. However, then α and the α in row
h− 1 of column α would be entries in attacking cells in F . By Lemma 2.3, there are no attacking cells in F .
Therefore we have a contradiction. �

The resulting diagram is F ← k.

Proposition 3.1. If F is a semi-standard skyline filling, then F ← k is a semi-standard skyline filling.

Proof. It is clear by construction that F ← k has no descents. We must prove that every triple is
an inversion triple. We argue by contradiction. To get a contradiction, assume F ← k contains a type A
non-inversion triple, a, b, c situated as shown.

c

a b

Then we must have σ(a) ≤ σ(b) ≤ σ(c). In F , we must have had different (possibly empty) entries in these
cells. Because the insertion path moves along the reading word and its entries are decreasing, at most one of
σ(a), σ(b), and σ(c) is different from its value in F . Examine each cell individually to get a contradiction.
For example, assume the cell a in F ← k contained a different value, β 6= σ(a), in F . Since β, σ(b), σ(c) was
an inversion triple in F , σ(b) < β ≤ σ(c). But since σ(b) bumped β, σ(a) > β, so σ(a) > σ(b) contradicts
σ(a) ≤ σ(b).

Next assume that F ← k contains a type B non-inversion triple, a, b, c situated as depicted.

a c

b
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We must have σ(b) < σ(a) ≤ σ(c). Again, only one of the entries is different from its value in F . Examine
each cell individually to derive a contradiction.

�

3.2. The bijection Ψ between SSYT and SSSF. Let T be a semi-standard young tableau. We
may associate to T the word col(T ) which consists of the entries of each column of T , read top to bottom
from columns left to right.

Example 3.2. For T as below, col (T ) = 10 9 8 4 2 1 · 11 10 7 5 2 · 10 8 5 3 · 5 · 10.

1

2

4

8

9

10

2

5

7

10

11

3

5

8

10

5 10

Begin with an arbitrary SSYT T and the empty SSSF φ with the basement row containing all letters of
Z+. Let k be the rightmost letter in col(T ). Insert k into φ to get the SSSF F = φ← k. Then let k′ be the
next letter in col(T ) reading right to left. Obtain the SSSF F ← k′. Continue in this manner until you have
inserted all the letters of col(T ). The resulting diagram is the SSSF Ψ(T ).

Lemma 3.3. Let Ci be a column of col(T ). The placement of each letter of Ci terminates at a different
column, with the smallest letter of Ci terminating at the top of the highest column, the second smallest letter
terminating at the top of the second highest column, and so forth. (If there are two columns of the same
height, the one farther left is the termination point of the smaller letter.)

Proof. The first letter of Ci is smaller than or equal to all letters which came before it, so it is placed
onto the top of the tallest column. To argue inductively, assume that Lemma 3.3 is true after the first j
letters of Ci have been placed. The next letter α is greater than each of the other letters, therefore its
inertion path lies below that of the other letters, so the first place it can terminate is on top of the tallest
column which has not yet been a termination point for a letter of Ci. The highest entry in this column is
greater than or equal to the letter β which has been most recently bumped, so β is placed on top of this
column and the proof is complete. �

Proposition 3.2. The shape of Ψ(T ) is a rearrangement of the shape of T .

Proof. Argue by induction on the number of columns of T . First assume that T contains only one
column. The shape of T is 1n. Then col(T ) is a strictly decreasing word. Therefore each letter maps to the
bottom row of the semi-standard skyline filling. The resulting shape is an arrangement of zeros and ones, a
rearrangement of 1n.

Next, assume that if T contains j columns then the shape of Ψ(T ) is a rearrangement of the shape of
T . Let T be an SSYT of shape λ which contains j + 1 columns. After mapping the first j columns of T ,
the shape of the resulting figure is a rearrangement of (λ1 − 1, λ2− 1, ...). By Lemma 3.3, mapping the next
column into the shape adds one cell to each existing column, plus possibly several new cells if the (j + 1)th

column is taller than the jth column. Therefore the resulting shape is a rearrangement of (λ1, λ2, ...) = λ. �

Proposition 3.3. The map Ψ is invertible.

Proof. Consider the set S of cells which are in the top row of some column. Of these, begin with the
cell c which is farthest right in the reading order. This was the last cell to be bumped into place. Scan
backwards through the reading order to find the next cell, d, such that σ(d) > σ(c) and d lies directly below
an entry less than or equal to c. This entry σ(d) bumped σ(c). Repeat with σ(d). Continue this scanning
procedure until there are no cells farther back in the reading order which could have bumped the selected
entry, e. This entry is the first letter in col(T ).

Choose the next element of S to appear in the backwards reading order. (If there are no other cells in
S, create a new set S′ consisting of all the cells which are in the top row of some column.) Move backwards
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from this element through the reading word to determine the initial element whose placement terminated
with this particular element. Continue this procedure until the entire word col(T ) has been determined.
This procedure inverts the map Ψ. �

The map Ψ : SSYT→ SSSF is a weight-preserving invertible map between semi-standard Young tableaux
and semi-standard skyline fillings. In particular, this means that the number of SSYT of shape λ with weight
∏

xai

i is equal to the number of SSSF with weight
∏

xai

i whose shape rearranges λ. Thus the coefficient of
∏

xai

i in
∑

λ′ NSλ′ is equal to the coefficient of
∏

xai

i in sλ. This completes the proof of Equation 3.1.

4. An analogue of the Robinson-Schensted-Knuth Algorithm

The insertion process utilized in the above bijection is reminiscent of Schensted insertion, the fundamental
operation of the Robinson-Schensted-Knuth Algorithm.

Theorem 4.1. (Robinson-Schensted-Knuth [9]) There exists a bijection between N-matrices of finite
support and pairs of semi-standard Young tableaux of the same shape.

We apply the same procedure to arrive at an analogue of the RSK Algorithm for semi-standard skyline
fillings. Recall that Theorem 1.2 states that there exists a bijection between N-matrices of finite support
and pairs of semi-standard skyline fillings whose shapes are rearrangements of the same partition.

4.1. ρ : N-matrices −→ SSSF × SSSF. Let A = (ai,j) be an N-matrix with finite support. There
exists a unique two-line array corresponding to A which is defined by the non-zero entries in A. Beginning
at the upper lefthand corner and reading left to right, top to bottom, find the first non-zero entry ai,j . Place
an i in the top line and a j in the bottom line ai,j times. When this has been done for each non-zero entry,
we have the resulting array

wA =

(

i1 i2 ...
j1 j2 ...

)

Begin with an empty semi-standard skyline filling F . Read the bottom row from right to left, inserting
the entries into F according to the map Ψ described above as they are read. Each time an entry from the
bottom line is placed, send the entry directly above it into an SSSF G which records the place where a cell
is added. If the cell jk is added to the bottom row of F , the corresponding entry ik is placed on the bottom
row in the ithk column of G. If there is ambiguity about which column of G an entry is placed on, it is always
placed on the leftmost possible column of the same height as the column in F on which its counterpart
was placed. In this way the shape of G becomes a rearrangement of the shape of F . When the process is
complete, the result is a pair (F, G) of SSSF whose shapes are rearrangements of the same partition.

4.2. The inverse of the map ρ. Given (F, G), a pair of semi-standard skyline fillings whose shapes
are rearrangements of the same partition µ, let Grs be the highest occurrence of the smallest entry of G.
Here Grs is the element of G in row r and column s. Since equal elements of G are inserted bottom to top,
it follows that Grs = i1 and Frs′ was the last element of F to be bumped into place after inserting j1. (If s
is the ith column of height r in G, then s′ is the ith column of height r in F .)

Delete Frs′ from F and Grs from G. Scan right to left, bottom to top (backwards through the reading
word) starting with the cell directly to the left of Frs′ to determine which (if any) cell bumped Frs′ . If
there exists a cell k before Frs′ in the reading word such that σ(k) > σ(Frs′ ) and the cell directly on top
of k has value less than or equal to σ(Frs′ ), this k bumped Frs′ . Replace σ(k) by σ(Frs′ ) and repeat the
procedure with σ(k). Continue working backward through the reading word until there are no more letters.
The remaining entry is the letter i1.

Next find the highest occurrence of the smallest entry j2 of G. Repeat the procedure to find i2. Continue
until there are no more entries in F and G. Then all of the i and j values of the array wA have been
determined, and the process is inverted.

5. The standard bases of Lascoux and Schützenberger

The Schubert polynomials were introduced by Lascoux and Schützenberger [7] as a combinatorial tool
for attacking problems in algebraic geometry. The Schubert polynomials can be described as a sum of
standard bases, U(µ, I), where µ is a permutation and I is a partition. Lascoux and Schützenberger [6]
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define an action of the symmetric group on the free algebra and this action is used to build the standard
bases inductively.

5.1. Constructing the standard bases. Each permutation in the symmetric group can be decom-
posed into a series of elementary transpositions, so it is enough to define the action for a simple transposition,
σi, which permutes i and i + 1. The operator πi = πσi

is

f −→ (fσi − f)/(1− xi/xi+1) = fπi,

where fσi denotes the transposition action of σi on the indices of the variables in f .
The operators πi satisfy the Coxeter relations πiπi+1πi = πi+1πiπi+1 and πiπj = πjπi for ‖j − i‖ > 1.

We can lift the operator πi into an operator θi on the free algebra by the following process. Given i and a
word w in the alphabet X , let m be the number of times the letter xi+1 occurs in w and let m + k be the
number of times the letter xi occurs in w. Then if k ≥ 0, w and wσi differ by the exchange of a subword xk

i

into xk
i+1. If k < 0, then w and wσi differ by the exchange of x−k

i+1 into x−k
i .

When k ≥ 0, define wθi to be the sum of all words in which the subword xk
i has been changed respectively

into xk−1
i xi+1, x

k−2
i x2

i+1, ..., x
k
i+1. When k < 0, define wθi to be −(wσi )θi. (This second case will not be

needed in this paper.)
Every partition I = (I1, I2, ...) has a corresponding dominant monomial xI = (xI1 ...x2x1)(xI2 ...x2x1)...,

which equals the weight of the super tableau, which is the SSYT with is in the ith row. We take the following
theorem to be the definition of the standard basis U(µ, I) associated to the pair µ, I (where µ is a permutation
and I is a partition).

Theorem 5.1. (Lascoux-Schützenberger [6]) Let xI be a dominant monomial and σiσj ...σk be any
reduced decomposition of a permutation µ. Then U(µ, I) = xIθiθj ...θk.

Theorem 5.1 provides an inductive method for constructing the standard basis U(µ, I). Begin with
U(id, I) and apply θi to determine U(σi, I). Then apply θj to U(σi, I) to get U(σiσj , I). Continue this process
until the desired standard basis is obtained. Figure 5.1 depicts all the standard bases for the partition (2, 1).

5.2. A non-inductive construction of the standard bases. The standard bases with partition λ
can be considered as a decomposition of the Schur function sλ. For any partition λ of n, we have

∑

σ∈Sn

U(σ, λ) = sλ.

Since the nonsymmetric Schur functions are also a decomposition of the Schur functions, it is natural to
determine their relationship to the standard bases. Theorem 1.3 states that U(µ, I) = NSµ(I), where µ(I)
denotes the action of µ on the parts of I. To prove Theorem 1.3, we need a few lemmas.

Lemma 5.2. Let col(T ) be the column reading word of T . Label the occurrences of the entry α in col(T )
in increasing order starting from the right. Then i < j ⇒ the ith occurrence of α (denoted αi) in Ψ(T ) is in
a lower row than the jth occurrence of α, denoted αj.

Proof. Consider the step during which αj is being placed. At this step, the αi is already placed in
some row of the partial semi-standard skyline filling. If αj reaches a cell a with σ(a) = α without being
placed, the cell b on top of α must have σ(b) < α. Therefore, αj will bump σ(b) and be placed on top of a.
Therefore, αj will always remain in a higher row than αi. �

Lemma 5.3. Given an arbitrary semi-standard skyline filling F with row entries R1, R2, ...Rk, where
k = max i{γi}, F is the only SSSF with these row entries.

Proof. Given the row entries R1, R2, ..., Rk, map them into a semi-standard skyline filling as follows.
Let α1 be the largest entry in R1. Place α1 as far left as possible in the first row of an empty SSSF. Next
place the second largest entry of R1 as far left as possible in the first row of the SSSF. Continue placing
the elements of R1 in this manner. Next, choose the largest entry of R2. Place it as far left as possible in
the second row of the partially constructed SSSF. Continue this procedure until the smallest entry of R2

has been placed. Do this for each of the k rows. Once Rk has been placed, the resulting figure is indeed a
semi-standard skyline filling, and the only SSSF with row entries R1, R2, ..., Rk. �
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Figure 5.1. The standard bases for the partition (2, 1) and all permutations in S3.

Let θ̃i be the action of θi on an individual semi-standard Young tableau. This action is described by a
matching procedure. Let col(T ) be the column word of T and let (i + 1)1 be the leftmost occurrence of i + 1
in col(T ). Match (i + 1)1 with the leftmost occurrence of i which lies to the right of (i + 1)1 in col(T ). If
there is no such i, the matching procedure is complete. Otherwise, continue with the next i + 1 until there
are no more occurrences of i + 1.

When the matching procedure is complete, send the rightmost occurrence of i to i + 1. The resulting
word is θ̃i(T ) = T ′. If T ∈ U(µ, I) then either θ̃i(T ) ∈ U(µ, I) or θ̃i(T ) ∈ U(σiµ, I).

Lemma 5.4. There exists a map Θi :SSSF−→SSSF such that for F ∈ NSµ, either Θi(F ) ∈ NSµ or
Θi(F ) ∈ NSσiµ and the following diagram commutes.

F
?

T

-

-

F ′

T ′

?
ΨΨ

θ̃i

Θi

Proof. Let F be an arbitrary semi-standard skyline filling and let leftread(F ) be the reading word
obtained by reading F right to left, top to bottom, keeping track of the rows. Find the first entry a of this
word such that σ(a) = i+1. Match this entry i+1 to the first σ(b) which lies to the right of a in leftread(F )
such that σ(b) = i. If there is no such b, σ(a) is unmatched and the matching process is complete. Continue
this matching until an unmatched i + 1 is reached.

Pick the rightmost unmatched i. Change it to i + 1. (If there is none, then Θi(F ) = F .) The result is a
collection of rows which differ from leftread(F ) in precisely one entry. Lemma 5.3 provides a procedure for

mapping this collection of rows to a unique SSSF. This SSSF is Θi(F ) = F ′, and Θi(Ψ(T )) = Ψ(θ̃i(T )). So
the diagram commutes.
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Assume F ∈ NSµ. When Θi(F ) = F , Θi(F ) ∈ NSµ. We must show that in the case where an
unmatched i is mapped to i+1, the resulting semi-standard skyline filling is either in NSµ or in NSσiµ. But
the map Θi shifts the highest unmatched i in F . If there are no occurrences of the letter i in the row directly
below the shifted i, this i + 1 is mapped to the same position, as are all the cells above it. So the shape of
the diagram remains the same. Otherwise, there is a column consisting only of is and a column consisting
only of (i + 1)s below the first unmatched i. Sending this i to i + 1 moves it into the (i + 1)th column and
therefore permutes the ith and (i + 1)th column, resulting in the shape σiµ. So our proof is complete.

�

5.3. Proof of Theorem 1.3. We fix a partition I and argue by induction on the length of the per-
mutation µ in U(µ, I). Let µ be the identity. Then U(µ, I) is the dominant monomial. Consider I as a
composition of n into n parts by adding zeros to the right if necessary. Each entry a in I1 must have
σ(a) = 1, for otherwise there would be a descent. If the second column contained an entry b such that
σ(b) = 1, this cell and the cell in the row directly below of the first column would be attacking. Continuing
in this manner, we see that the ith column must have σ(c) = i for each cell c. Therefore, the NSI = U(µ, I).

Next assume that U(µ, I) = NSµ(I), where µ(I) is the permutation µ applied to the columns of I
when I is considered as a composition of n into n parts. The monomials in U(σiµ, I) are the monomials of

U(µ, I) whose image under (possibly multiple applications of) θ̃i is not a monomial of U(µ, I). Pick some

such monomial, represented by the SSYT T . By Lemma 5.4 Ψ(θ̃i(T )) = Θi(Ψ(T )). Since Ψ(T ) ∈ NSµ,

Θi(Ψ(T )) ∈ NSµ or Θi(Ψ(T )) ∈ NSσiµ. If Θi(Ψ(T )) ∈ NSµ, then θ̃i(T ) ∈ U(µ, I) by assumption. But this
is a contradiction, so Θi(Ψ(T )) ∈ NSσiµ. Therefore, U(σiµ, I) ⊆ NSσiµ. If F is a monomial in NSσiµ, one
can determine an element of NSµ which, after possibly multiple applications of Θi maps to F . Therefore
NSσiµ ⊆ U(µ, I). So NSσiµ = U(µ, I).

6. Applications of Theorems 1.2 and 1.3

The analogue of the Robinson-Schensted-Knuth algorithm (Theorem 1.2) can be used to extend results
about plane partitions and permutation enumeration. The non-inductive description of standard bases
provided in Theorem 1.3 facilitates our understanding of the representation theory of Schubert polynomials
and nonsymmetric Schur functions.
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