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Abstract. In this paper we study the class of m-row matrix compositions (briefly, m-compositions), i.e.
matrices with nonnegative integer entries, having m rows, and whose columns are different from the zero
vector. We provide enumeration results, combinatorial identities, and various combinatorial interpreta-
tions. In particular we extend to the m-dimensional case most of the combinatorial properties of ordinary
compositions.

Résumé. Dans cet article nous étudions la classe des compositions de matrices de m-lignes (appelées sim-
plement m-compositions), dont les éléments sont des entiers positifs ou nuls, et sans vecteur colonne nul.
Nous présentons, outre des interprétations combinatoires, leur énumération ainsi que des identités combi-
natoires. En particulier nous étendons au cas m-dimensionnel la plupart des propriétés combinatoires des
compositions usuelles d’entiers.

1. Introduction

A composition (sometimes called ordered partition) of a natural number n is any k-tuple γ =
(x1, . . . , xk) of positive integers such that x1 + · · · + xk = n . The elements xi , k and n are the
parts, the length and the order of γ , respectively. It is well known that there are

(
n−1
k−1

)
compositions

of length k of n and 2n−1 compositions of n , when n ≥ 1 . Compositions are very well known
combinatorial objects [1, 9, 13] and several of their properties have been studied in some recent papers, as
in [7, 10, 14, 15, 17, 18, 23].

In [12] the authors extended the definition of ordinary compositions introducing 2-compositions in order
to have a bijection between this class and the class of L-convex polyominoes. Such an extension to the
bidimensional case can be immediately generalized to the m-dimensional case. Indeed, for any positive
integer m , an m-row matrix composition, or m-composition for short, is an m×k matrix with nonnegative
integer entries

M =




x11 . . . x1k

...
...

xm1 . . . xmk




whose columns are different from the zero vector. We say that the number k of columns is the length of
the composition. Moreover we say that M is an m-composition of a nonnegative integer n if the sum of
all its elements is exactly n . We will write σ(M) for the sum of all the elements of the matrix M . For
instance, there are seven 2-compositions of 2 :

[
0
2

]
,

[
1
1

]
,

[
2
0

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
0 0

]
,

[
0 0
1 1

]
.

The aim of this paper is to study the class of m-compositions by several points of view, and to extend
to the m-dimensional case most of the combinatorial properties of ordinary compositions.
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We also remark that our matrix compositions are very similar to the vector compositions [1, p.57]
defined by P. A. MacMahon [20, 21, 22] and studied for instance in [2, 3, 4]. Another extension of ordinary
compositions is described in [19].

2. Combinatorial identities

As a first step we present several identities about m-compositions, obtained using elementary combina-
torial arguments. Since some of the proofs in this section are rather simple, sometimes they will only be
sketched.

Let us start by recalling some basic definitions and properties of multisets. A multiset on a set X is a
function µ : X → N . The multiplicity of an element x ∈ X is µ(x) . The order of µ is the sum ord(µ)
of the multiplicities of the elements of X , i.e. ord(µ) =

∑
x∈X µ(x) . The number of all multisets of order

k on a set of size n is the multiset coefficient

((n

k

))
=

nk

k!
=

n(n + 1) . . . (n + k − 1)

k!
.

Let C(m)
n,k be the set of all m-compositions of n of length k and let c

(m)
n,k = |C(m)

n,k | . Similarly let C(m)
n

be the set of all m-compositions of n and let c
(m)
n = |C(m)

n | . Let us observe that any M ∈ C(m)
n+m,k+1 can

be decomposed into two parts: the first column, equivalent to a multiset of [m] = {1, . . . , m} of nonzero
order i and the rest of the matrix, that is any m-composition of n + m − i of length k . Hence it follows
the recurrence:

(2.1) c
(m)
n+m,k+1 =

n+m−k∑

i=1

((m

i

))
c
(m)
n+m−i,k .

The same argument yields the identity

(2.2) c
(m)
n+m =

n+m∑

i=1

((m

i

))
c
(m)
n+m−i .

Now we will use some arguments based on the Principle of Inclusion-Exclusion. Let Ai be the set
of all m-compositions M of n + m with a positive entry in position i1 . Then, since the first column

of M is different from the zero vector, it follows that C(m)
n+m = A1 ∪ . . . ∪ Am and from the Principle of

Inclusion-Exclusion

c
(m)
n+m = |A1 ∪ . . . ∪ Am| =

∑

S⊆[m]
S 6=∅

(−1)|S|−1

∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ .

The set
⋂

i∈S Ai is formed of all the m-compositions M = [xi,j ] of n + m having positive entries in the
first column in the positions indexed by S . If we replace each element xi,1 , i ∈ S , with xi,1 − 1 , we
have two cases: the first column of M is the zero vector or it is not. In the first case removing the first
column we have an m-compositions of n+m− |S| , while in the second case we just have an m-composition
of n + m − |S| . Hence ∣∣∣∣∣

⋂

i∈S

Ai

∣∣∣∣∣ = 2c
(m)
n+m−|S| .

Since this result depends only on the size of S it follows that

(2.3) c
(m)
n+m = 2

m∑

i=1

(
m

i

)
(−1)i−1c

(m)
n+m−i .

For instance for m = 2, 3, 4 we have the recurrences

c
(2)
n+2 = 4c

(2)
n+1 − 2c(2)

n , c
(3)
n+3 = 6c

(3)
n+2 − 6c

(3)
n+1 + 2c(3)

n , c
(4)
n+4 = 8c

(4)
n+3 − 12c

(4)
n+2 + 8c

(4)
n+1 − 2c(4)

n .

We remark that the recurrence c
(2)
n+2 was first obtained in [12]. Exactly with the same argument we can

obtain the following recurrence

(2.4) c
(m)
n+m,k+1 =

m∑

i=1

(
m

i

)
(−1)i−1c

(m)
n+m−i,k +

m∑

i=1

(
m

i

)
(−1)i−1c

(m)
n+m−i,k+1 .
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m/n 0 1 2 3 4 5 6 7 8 9 10 11

0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 2 4 8 16 32 64 128 256 512 1024
2 1 2 7 24 82 280 956 3264 11144 38048 129904 443520
3 1 3 15 73 354 1716 8318 40320 195444 947380 4592256 22260144
4 1 4 26 164 1031 6480 40728 255984 1608914 10112368 63558392 399478064
5 1 5 40 310 2395 18501 142920 1104060 8528890 65885880 508970002 3931805460
6 1 6 57 524 4803 44022 403495 3698352 33898338 310705224 2847860436 26102905368

Figure 1. Table of the numbers c
(m)
n , with m = 0, . . . , 6.

Let Ai be the set of all matrices M ∈ Mm,k(N) with the i-th column is equal to the zero vector such

that σ(M) = n . Then C(m)
n,k = A′

1 ∩ . . . ∩ A′
k and from the Principle of Inclusion-Exclusion

c
(m)
n,k = |A′

1 ∩ . . . ∩ A′
k| =

∑

S⊆[k]

(−1)|S|
∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ .

The set
⋂

i∈S Ai is formed of all matrices M ∈ Mm,k(N) with the zero vector in each column indexed by
the elements of S . It corresponds to the set of all multisets of order n on a set of size mk −m|S| and so

∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ =

((
m(k − |S|)

n

))
.

Since this result depends only on the size of S it follows that

(2.5) c
(m)
n,k =

k∑

i=0

(
k

i

)((
m(k − i)

n

))
(−1)i .

Moreover

(2.6) c(m)
n =

n∑

k=0

c
(m)
n,k =

n∑

k=0

k∑

i=0

(
k

i

)((
m(k − i)

n

))
(−1)i .

This argument can be easily generalized as follows. Consider the set C(m)
k (r1, . . . , rm) of all m-

compositions of length k where the i-th row has sum equal to ri , for each i = 1, . . . , m , and let

c
(m)
k (r1, . . . , rm) be its cardinality. Now let Ai denote the set of all matrices M ∈ Mm,k(N) having the

i-th column equal to the zero vector, and row-sums r1 , . . . , rm . Then C(m)
k (r1, . . . , rm) = A′

1 ∩ . . . ∩ A′
k ,

and from the Principle of Inclusion-Exclusion

c
(m)
k (r1, . . . , rm) = |A′

1 ∩ . . . ∩ A′
k| =

∑

S⊆[k]

(−1)|S|
∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ .

The set
⋂

i∈S Ai is formed of all matrices M ∈ Mm,k(N) with the zero vector in each column indexed by
the elements of S . The i-th row of such a matrix M corresponds to a multiset of order ri on a set of size
k − |S| . Hence it follows that

∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ =
((

k − |S|
r1

))
· · ·
((

k − |S|
rm

))
.

Since the result depends again only on the size of S it follows that

(2.7) c
(m)
k (r1, . . . , rm) =

k∑

i=0

(
k

i

)((
k − i

r1

))
· · ·
((

k − i

rm

))
(−1)i .

The Table in Fig. 1 reports the first terms of the sequences c
(m)
n , with m = 0, 1, . . . , 6. We remark that

for m ≥ 3 the sequence c
(m)
n is not present in [27].
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3. Enumeration of m-compositions trough formal languages

A large amount of combinatorial properties of m-compositions can simply be derived by encoding them
as words on an infinite alphabet. In fact, an m-composition can be viewed as the concatenation of its
columns. This implies that the set C(m) of all m-composition is equivalent to the free language A∗ on the

infinite alphabet A(m) = {aµ : µ ∈ M(m)
6=0 } , where M(m)

6=0 is the set of all multisets µ : [m] → N with

positive order and the letter aµ corresponds to the column
[
µ(1) . . . µ(m)

]T
. Substituting each letter

aµ with an indeterminate xµ , it follows immediately that the generating series of C(m) is

(3.1) c(X) =
1

1 −
∑

µ∈M(m)
6=0

xµ

where X = {xµ : µ ∈ M(m)
6=0 } . In particular, for xµ = xord(µ) we get the generating series

c(m)(x) =
∑

n≥0

c(m)
n xn =

1

1 − h(x)
where h(x) =

∑

k≥1

((m

k

))
xk =

1

(1 − x)m
− 1 .

Hence

(3.2) c(m)(x) =
(1 − x)m

2(1 − x)m − 1
,

from which we can derive the recurrence (2.3) already obtained in the previous section. Similarly, for
xµ = xord(µ)y we get the generating series

(3.3) c(x, y)(m) =
∑

n,k≥0

c
(m)
n,k xnyk =

1

1 − h(x)y
.

By the series (3.2), and making some easy computations, we obtain the following results:

(1) a recurrence relation for the numbers c
(m)
n+1,

c
(m)
n+1 = −δn,0 + 2c(m)

n +

n∑

k=0

(
m + k − 1

k + 1

)
c
(m)
n−k

which generalizes the following identity satisfied by the number c
(2)
n of 2-compositions [12]:

c
(2)
n+2 = 3c

(2)
n+1 + c

(2)
n + . . . + c

(2)
0 .

(2) the following Binet-like formula:

c(m)
n =

1

2

[
δn,0 +

1

m
m
√

2

m−1∑

k=0

ωk
m

(xk)n+1

]

where xk = 1 − 1
m
√

2
ωk

m , k = 0, 1, . . . , m − 1 , and ωm = e2πi/m is a primitive root of the unity.

From this expression we obtain an asymptotic expansion for the coefficients c
(m)
n ,

c(m)
n ∼ − A0

2xn+1
0

=
1

2m( m
√

2 − 1)

(
m
√

2
m
√

2 − 1

)n

as n → ∞ .

In particular we have

c
(m)
n+1 ∼

m
√

2
m
√

2 − 1
c(m)
n as n → ∞ .

A regular language for m-compositions. Extending the encoding used in [7] for the ordinary com-
positions, we are able to prove that m-compositions can be encoded as words on the alphabet Am =
{a1, · · · , am, b1, . . . , bm} . Let us define a map ` : C(m) → A∗

m setting

(3.4)

1
0
...
0

`7−→ a1 , . . .

0
...
0
1

`7−→ am , +

1
0
...
0

`7−→ b1 , . . . +

0
...
0
1

`7−→ bm
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and proceeding as follows. First of all write an m-composition M as the formal sum (i.e. juxtaposition) of its
columns (as in the previous case). Then write each column as juxtaposition of simple columns where a simple
column is a column in which all the entries except one are zero. We stipulate to order the simple columns
according to the position of the nonzero entry. At this point write each simple column as juxtaposition of
elementary columns, where an elementary column is a column in which all the entries are zero except one
equal to 1 . Hence, if the nonzero entry of a simple column is k then it will be written as the juxtaposition of
k elementary columns. Finally substitute each elementary column with the corresponding letter according
to the encoding in (3.4). An example will explain better the correspondence. Consider the 3-composition

M =



2 0 1 2
0 1 0 1
1 0 1 2


 .

Following the described procedure we have

M =
2
0
1

+
0
1
0

+
1
0
1

+
2
1
2

=
1 1 0
0 0 0
0 0 1

+
0
1
0

+
1 0
0 0
0 1

+
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

and hence `(M) = a1a1a3b2b1a3b1a1a2a3a3 .
Let Lm = `(C(m)) be the language on the alphabet Am corresponding to the m-compositions. The

words of Lm are characterized by the following conditions: i) each word begins with one letter a1 , . . . , am ;
ii) each letter ai or bi can be followed by any bj , while it can be followed by a letter aj only when
i ≤ j . This implies that these words have a unique factorization of the form xy where:

(1) x is a non-empty word of the form ai1
1 . . . aim

m , with i1, . . . , im ≥ 0 ;
(2) y is a (possibly empty) word y = y1 . . . yk , with yr = bj a

qj

j . . . aqm
m , with qj , . . . , qm ≥ 0 .

According to such a characterization Lm is a regular language defined by the unambiguous regular expres-
sion:

ε +
(
a+
1 a∗

2 . . . a∗
m + a+

2 a∗
3 . . . a∗

m + . . . + a+
m

)
( b1a

∗
1a

∗
2 . . . a∗

m + b2a
∗
2 . . . a∗

m + . . . + bma∗
m )∗

where, as usual, ε denotes the empty word.

4. Combinatorial interpretations

In this section we present three combinatorial interpretations for m-compositions. Here, for brevity’s
sake, we will give only the basic definitions, even though the relations between the structural properties of
the different classes deserve a further investigation.

4.1. Colored linear partitions. m-compositions can be interpreted in terms of linear species [5, 16]
as follows. Let C = {c1, . . . , cm} be a set of colors totally ordered in the natural way c1 < · · · < cm . We
say that the linearly ordered set [n] = {1, 2, . . . , n} is m-colored when each element is colored with one color
in C respecting the following condition: if ci and cj are the respective colors of two elements x and y ,
with x ≤ y , then i ≤ j . In other words, an m-coloring of [n] is an order preserving map γ : [n] → C .
We define an m-colored linear partition of [n] as a linear partition in which each block is m-colored.

The m-compositions of length k of n are equivalent to the m-colored linear partitions of [n] with

k blocks. Indeed any M ∈ C(m)
n,k corresponds to the m-colored linear partition π of [n] obtained

transforming the i-th column (h1, . . . , hm) of M into the i-th block of π of size h1 + · · · + hm with the
first h1 elements colored with c1 , . . . , the last hm elements colored with cm , for every 1 ≤ i ≤ k . For
instance, the 3-composition

M =




2 0 1 2
0 1 0 1
1 0 1 2




corresponds to the following 3-colored partition of the set {1, . . . , 11} :

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
s s s s s s s s s s s

c1 c1 c3 c2 c1 c3 c1 c1 c2 c3 c3
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Let Compm be linear species of the m-compositions, i.e. the linear species of m-colored linear
partitions. To give a structure of this species on a linearly ordered set L is equivalent to assign a linear
partition π on L and then an m-coloring, that is an order preserving map in C , on each block of π . Then,

if G denotes the uniform linear species and Map
(m)
6=∅ denotes the linear species of the order preserving

maps from a nonempty linear order to the set of colors C , we have that

Compm = G ◦ Map
(m)
6=∅ .

An order preserving map f : [k] → [m] is equivalent to a multiset of order k on the set [m] . Hence it
follows that

Card(Map
(m)
6=∅ ; x) =

∑

k≥1

((m

k

))
xk =

1

(1 − x)m
− 1

and consequently Card(Compm; x) = Card(G; x) ◦ Card(Map
(m)
6=∅ ; x) = c(m)(x) .

Using this interpretation we can obtain some useful identities. Let π ∈ Compm[L] , where L =
{x1, . . . , xi+1, . . . , xi+j+1} has size i + j + 1 . The element xi+1 belongs to a block of the form
{xi−h+1, . . . , xi, xi+1, xi+2, . . . , xi+k+2} where h, k ∈ N . Removing such a block, π splits into two
m-colored linear partitions of a linear order of size i−h and a linear order of size j−k , respectively. Then
it follows that

(4.1) c
(m)
i+j+1 =

∑

h,k≥0

((
m

h + k + 1

))
c
(m)
i−hc

(m)
j−k .

Recall that
((

m
i+j+1

))
gives the number of all the order maps f : [i + j + 1] → [m] . Suppose that

f(i + 1) = k , with k ∈ [m] . Since f is order preserving, it follows that f(x) ∈ [k] for every x ∈ [i] and
f(x) ∈ {k, . . . , m} for every x ∈ {i + 2, . . . , i + j + 1} . Then

(4.2)

((
m

i + j + 1

))
=

m∑

k=1

((
k

i

))((
m − k + 1

j

))
=

m−1∑

k=0

(
i + k

i

)((
m − k

j

))
.

4.2. Surjective families. Let P1 , . . . , Pm and Q be linearly ordered sets. Consider a family
{fi : Pi → Q}m

i=1 of order preserving maps with the following property: for every element q ∈ Q there
exists at least one index i and one element p ∈ Pi such that q = fi(p) . The single maps are not
necessarily surjective but every element of the codomain admits at least one preimage along one of the maps
of the family. Hence we call surjective family any family with such a property.

Now we can ask how many surjective families are there, when |P1| = r1 , . . . , |Pm| = rm and |Q| = k .

The answer is: c
(m)
k (r1, . . . , rm) . Indeed given a surjective family {fi : Pi → Q}m

i=1 we can build up an
m-composition M of length k as follows. The i-row of M is generated by the map fi : Pi → Q

taking as entries the numbers of the preimages of the elements of Q along fi , that is defining it as
[ |f•

i (1)| . . . |f•
i (k)| ] , where f•

i (y) denotes the set of all preimages of y along fi . Clearly the sum of
this row is |Pi| = ri . Moreover any column of M is different from the zero vector for the characterizing
property of the surjective families. So, finally, we have that M is an m-composition of length k with
row-sum vector (r1, . . . , rk) .

4.3. Labelled bargraphs. A bargraph is a column-convex polyomino, such that the lower edge lies on
the horizontal axis. It is uniquely defined by the heights of its columns, see Figure 2 (a). The enumeration
of bargraphs according to perimeter, area, and site-perimeter has been treated in [25, 26], related to the
study of percolation models, and more recently, by an analytical point of view, in [8]. For basic definitions
on polyominoes we refer to [6].

Here we deal with labelled bargraphs, i.e. bargraphs whose cells are all labelled with positive integer
numbers, and such that, for each column, the label of a cell is less then or equal to the label of the cell
immediately above (if any), see Figure 2 (b). The degree is the maximal label of the bargraph. For any
given m ≥ 1 , every m-composition of an integer n can be represented as a labelled bargraph of degree
j ≤ m having n cells, as follows. Let M be an m-composition of n ≥ 0 , having length k, and let
cT

i = (a1j , . . . , amj) be the j-th column of M . We build a bargraph made of k columns, of degree m at
most, where the j-th column has exactly a1j + . . . + amj cells, and aij is the number of cells with label
i in the j-th column, which are placed, according to the definition of labelled bargraph, just above the cells
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1
1

(b)

2
2
3
4

4
4
3

21 1

3 2

1
3

4
4
2 4

1
32 2

4
3

3

2

2
4

4
1

3

(a)

Figure 2. (a) a bargraph; (b) a labelled bargraph of degree 4.

with label i − 1 (if any). For instance, the bargraph in Fig. 2 (b) is associated with the 4-composition of
33 : 



2 0 1 0 0 1 0 1 0 0 2 0
0 1 0 3 1 0 0 3 1 0 0 0
0 0 0 1 1 0 4 0 0 0 0 2
0 0 0 1 2 1 0 0 2 2 0 1


 .

Of course, ordinary compositions (i.e. 1-compositions) are represented as bargraphs of degree 1 , i.e. the
usual bargraphs, as already pointed out in [23].

Some subclasses of m-compositions. The simple correspondence between m-compositions and la-
belled bargraphs can be applied to determine bijections between particular subclasses. So, for instance we
can consider:

(1) the set of bargraphs having all the m labels in each column (Fig. 3 (a)); it corresponds to the set

of m-compositions containing no 0s. The generating function of such objects is 1 +
xm

(1−x)m

1− xm

(1−x)m
=

1

1−( x
1−x )m .

(a) (b) (c)

1
2
3

1
2
3 3
3
3

2
2
3

2
11

3
21
1
1

1
1
2
3

1
2

2
2
2

1
1
1

1
2
2
2
2
3

2

3

1
2
2

3
3

3
3 2 3 1

3
3

3 1
2

2
13

1
3

1

Figure 3. Labelled bargraphs of degree 3: (a) having all the labels in each of its columns;
(b) a 3-partition; (c) a labelled stack of degree 3.

(2) the set of labelled Ferrers diagrams, i.e. those labelled bargraphs for which each column has height
greater than or equal to the height of the column on its right, see Fig. 3 (b). A labelled Ferrers
diagram of degree m corresponds to an m-composition such that the sum of the entries of each
column is greater than or equal to the sum of the entries of column on its right. We call these objects
m-partitions. This definition is motivated by the fact that the ordinary partitions correspond to
Ferrers diagrams, i.e. labelled Ferrers diagrams of degree 1. For instance, the bargraph in Fig. 3
(b) corresponds to the 3-partition of 20 :




1 3 0 1 0 0
4 0 1 2 0 1
1 2 2 0 2 0



 .

(3) the set of labelled stacks, i.e. of those labelled bargraphs for which each row is connected; these
objects have indeed the shape of stack polyominoes, see Fig. 3 (c). A labelled stack of degree m

corresponds to an m-composition such that the sequence c1 , . . . , ck is unimodal, being ci the
sum of the entries of the i-th column.

The problem of enumerating labelled Ferrers diagrams and labelled stacks has been solved in [24] in a more
general context.
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5. Combinatorial properties of m-compositions

5.1. Cassini-like identities. In [12] it has been proved that the numbers c
(2)
n of all 2-compositions

of n satisfy the Cassini-like identity: c
(2)
n c

(2)
n+2 − (c

(2)
n+1)

2 = −2n−1 , for every n ≥ 1 . Here we prove that

such an identity can be generalized to the numbers c
(m)
n . Specifically we prove that

(5.1)

∣∣∣∣∣∣∣∣∣∣

c
(m)
n c

(m)
n+1 . . . c

(m)
n+m−1

c
(m)
n+1 c

(m)
n+2 . . . c

(m)
n+m

...
...

...

c
(m)
n+m−1 c

(m)
n+m . . . c

(m)
n+2m−2

∣∣∣∣∣∣∣∣∣∣

= (−1)bm/2c 2n−1

for every m, n ≥ 1 . Let C
(m)
n = [ c

(m)
n+i+j ]m−1

i,j=0 . Its i-th row is ri = [ c
(m)
n+i+j ]m−1

j=0 . In particular, by

recurrence (2.3), the last row is

rm = 2

m∑

k=1

(
m

k

)
(−1)k−1rm−k = 2

m−1∑

k=1

(
m

k

)
(−1)k−1rm−k + (−1)m−12 r0

where r0 = [ c
(m)
n−1+j ]m−1

j=0 . Then subtracting to the last row the following linear combination of the previous
rows

2

m−1∑

k=1

(
m

k

)
(−1)k−1rm−k

the last row of detC
(m)
n becomes (−1)m−12 r0 . Extracting (−1)m−12 from the last line and then shifting

cyclically all rows downward we obtain that

detC(m)
n = 2 detC

(m)
n−1 .

Then, for every n ≥ 1 , it follows that: detC
(m)
n = 2n−1 detC

(m)
1 . So we have to compute only the

determinant of the matrix C
(m)
1 = [ c

(m)
i+j+1 ]m−1

i,j=0 . By identity (4.1) we have the decomposition C
(m)
1 =

LmMmLT
m where Lm = [ c

(m)
i−j ]m−1

i,j=0 , Mm =
[ ((

m
i+j+1

)) ]m−1

i,j=0
and LT

m is the transpose of Lm .

Since Lm is a triangular matrix with unitary diagonal elements, it follows that detC
(m)
1 = detMm . Now

identity (4.2) implies that Mm = BmB̃m where Bm =
[ (

i+j
i

) ]m−1

i,j=0
and B̃m =

[ ((
m−i

j

)) ]m−1

i,j=0
. Being

B̃m = JmBm where Jm = [δi+j,m−1]
m−1
i,j=0 , it is Mm = BmJmBm and detMm = detJm(det Bm)2 . Since,

as very well known, detJm = (−1)bm/2c and detBm = 1 , it follows that detMm = (−1)bm/2c and

consequently detC
(m)
1 = (−1)bm/2c . Finally we have: detC

(m)
n = (−1)bm/2c2n−1 , for every n ≥ 1 .

5.2. m-compositions without zero rows. In this section we will study the m-compositions in which

every row is different from the zero vector. We begin by determining an expression for the number f
(m)
n of

all such m-compositions of n . Let Ai be the set of all m-compositions M ∈ C(m)
n where the i-th row is

zero. Then

f (m)
n = |A′

1 ∩ · · · ∩ A′
m| =

∑

S⊆[m]

(−1)|S|
∣∣∣∣∣
⋂

i∈S

Ai

∣∣∣∣∣ .

Since
⋂

i∈S Ai is clearly in a bijective correspondence with the set of all (m − |S|)-compositions of n , it
follows that

(5.2) f (m)
n =

m∑

k=0

(
m

k

)
(−1)kc(m−k)

n =

m∑

k=0

(
m

k

)
(−1)n−kc(k)

n .

On the other hand, the set C(m)
n can be partitioned according to the number of zero rows and this yields

the following identity:

(5.3) c(m)
n =

m∑

k=0

(
m

k

)
f (k)

n .
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Clearly this formula can be also obtained formally by inverting (5.2). From (5.2) also follows that the

generating series for the numbers f
(m)
n is

f (m)(x) =

m∑

k=0

(
m

k

)
(−1)m−kc(k)(x) =

m∑

k=0

(
m

k

)
(−1)m−k (1 − x)k

2(1 − x)k − 1
.

Then this series has the form

(5.4) f (m)(x) =
xmpm(x)

(1 − 2x)(1 − 4x + 2x2) · · · (2(1 − x)m − 1)

where pm(x) is a polynomial with degree (less than or) equal to
(
m
2

)
. This implies that, for n ≥ 1 , the

numbers f
(m)
n satisfy a homogeneous linear recurrence with constant coefficients of order

(
m+1

2

)
, which

can be deduced from the denominator of the series (5.4).

Now we will establish an explicit formula for the numbers f
(m)
n . Since f

(m)
n counts all m-compositions

in which every row-sum is nonzero, it immediately follows that

f (m)
n =

∑

k≥0

∑

(r1,...,rm)∈Z+
m

r1+···+rm=n

c
(m)
k (r1, . . . , rm) =

∑

k≥0

∑

ρ∈Z+
m

|ρ|=n

c
(m)
k (ρ)

where ρ = (r1, . . . , rm) and |ρ| = r1 + · · · + rm . Then, using (2.7), we have the formula

(5.5) f (m)
n =

∑

ρ∈Z+
m

|ρ|=n

∑

k≥0

k∑

i=0

(
k

i

)((
k − i

r1

))
· · ·
((

k − i

rm

))
(−1)i .

Clearly f
(m)
n = 0 whenever n < m . Consider now the case m = n . In this case we have only the vector

ρ = (1, . . . , 1) and the identity (5.5) becomes

f (n)
n =

∑

k≥0

[
k∑

i=0

(
k

i

)
(k − i)n(−1)i

]
.

The sum in the brackets is very well known and gives the number of surjective functions from a set of size
n to a set of size k . Moreover it can be expressed it terms of the Stirling numbers of the second kind, and
precisely it is equal to

{
n
k

}
k! . Then

f (n)
n =

n∑

k=0

{
n

k

}
k! .

But also this sum is very well known, and gives the number tn of all preferential arrangements on a set of

size n (sequence A000670 in [27]). So, in conclusion, we have that f
(n)
n = tn .

This result can be generalized. Indeed in the formula for f
(n)
n+1 we have only the n vectors ρ =

(1, . . . , 1, 2, 1, . . . , 1) . Hence (5.5) becomes

f
(n)
n+1 =

n

2

∑

k≥0

k∑

i=0

(
k

i

)
(k − i)n(k − i + 1)(−1)i =

n

2



∑

k≥0

{
n + 1

k

}
k! −

∑

k≥0

{
n

k

}
k!




that is
f

(n)
n+1 =

n

2
(tn+1 + tn) .

Similarly, when we consider f
(n)
n+2 , we have only the n vectors ρ = (1, . . . , 1, 3, 1, . . . , 1) and the

(
n
2

)

vectors ρ = (1, . . . , 1, 2, 1, . . . , 1, 2, 1, . . . , 1) . Hence (5.5), after simplification, becomes

f
(n)
n+2 =

n

24
[(3n + 1)tn+2 + 6(n + 1)tn+1 + (3n + 5)tn] .

All these results suggest that there exist polynomials p
(k)
i (x) such that

f
(n)
n+k =

k∑

i=0

p
(k)
i (n) tn+i .

The nature of such polynomials needs some further investigations.
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m/n 0 1 2 3 4 5 6 7 8 9 10 11

0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 2 2 4 4 8 8 16 16 32 32
2 1 2 5 8 18 28 62 96 212 328 724 1120
3 1 3 9 19 48 96 236 468 1146 2270 5556 11004
4 1 4 14 36 101 240 648 1520 4082 9560 25660 60088
5 1 5 20 60 185 501 1470 3910 11390 30230 88002 233530
6 1 6 27 92 309 930 2939 8640 27048 79280 247968 726672

Figure 4. Table of the numbers p
(m)
n .

5.3. m-compositions with palindromic rows. An ordinary composition is palindromic when its
elements are the same in the given or in the reverse order. In the literature palindromic compositions have
been studied by various authors [10, 11, 23]. Here we generalize this definition to the m-compositions
saying that an m-composition is palindromic when all its rows are palindromic. For instance the following
is a palindromic 4-composition of length 5 of 24 :




1 2 1 2 1
2 0 3 0 2
0 0 1 0 0
3 1 1 1 3


 .

Clearly every m-compositions with palindromic rows has the form [M |Ms] when its length is even and
the form [M |v|Ms] when its length is odd, where M is an arbitrary m-composition, Ms is the specular
m-composition obtained from M by reversing every row and v is an arbitrary column vector. Hence the
generating series for the m-compositions with palindromic rows is given by

p(m)(x) =
∑

n≥0

p(m)
n xn = c(m)(x2) +

(
1

(1 − x)m
− 1

)
c(m)(x2) =

1

(1 − x)m
c(m)(x2) =

(1 + x)m

2(1 − x2)m − 1
.

From this identity it immediately follows that

p(m)
n =

bn/2c∑

k=0

((
m

n − 2k

))
c
(m)
k .

The first terms of p
(m)
n are reported in Fig. 4. Let now q

(m)
n be the number of all m-compositions of n

with palindromic non zero rows. With arguments completely similar to the ones used in the case of ordinary
m-compositions we have that

p(m)
n =

m∑

k=0

(
m

k

)
q(k)
n , q(m)

n =

m∑

k=0

(
m

k

)
(−1)m−kp(k)

n .

Notice that when n = m there is just one n-composition with palindromic rows, given by the column vector

with all entries equal to 1 . Hence q
(n)
n = 1 .

5.4. m-compositions of Carlitz type. We say that an m-composition is of Carlitz type when no two
adjacent columns are equal. When m = 1 we obtain the ordinary Carlitz compositions [9]. As in Section 2,
also m-compositions of Carlitz type can be viewed as words on the infinite alphabet A(m) = {aµ : µ ∈
M(m)

6=0 } . Let Z be the set of all words corresponding to the m-composition of Carlitz type and let Zµ be

the subset of Z formed exactly by the words ending with aµ , for every µ ∈ M(m)
6=0 . It immediately follows

that

Z = 1 +
∑

µ∈M(m)
6=0

Zµ and Zµ = (Z − Zµ)aµ ∀ µ ∈ M(m)
6=0 .
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m/n 0 1 2 3 4 5 6 7 8 9 10 11

0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 3 4 7 14 23 39 71 124 214
2 1 2 5 18 53 162 505 1548 4756 14650 45065 138622
3 1 3 12 58 255 1137 5095 22749 101625 454116 2028939 9065145
4 1 4 22 136 793 4660 27434 161308 948641 5579224 32811986 192971168
5 1 5 35 265 1925 14056 102720 750255 5480235 40031030 292408771 2135917405
6 1 6 51 458 3984 34788 303902 2654064 23179743 202445610 1768099107 15442052496

Figure 5. Table of the numbers z
(m)
n .

In order to obtain the generating series associated with the languages Z and Zµ it is sufficient to replace
the letter aµ with the indeterminate xµ , thus obtaining the linear system

z(X) = 1 +
∑

µ∈M(m)
6=0

zµ(X) and zµ(X) = (z(X) − zµ(X))xµ ∀ µ ∈ M(m)
6=0

from which

zµ(X) =
xµ

1 + xµ
z(X) and then z(X) =

1

1 −
∑

µ∈M(m)
6=0

xµ

1 + xµ

.

Setting xµ = xord(µ) , we obtain the generating series for the coefficients z
(m)
n giving the number of all

m-compositions of Carlitz type of n . Specifically we have

(5.6) z(m)(x) =
∑

n≥0

z(m)
n xn =

1

1 −
∑

k≥1

((m

k

)) xk

1 + xk

.

For m = 1 we reobtain the generating series for the ordinary Carlitz compositions. The sequence z
(1)
n

appears in [27] as the sequence #A003242, while for m ≥ 2 the corresponding sequences are absent. The

first terms of z
(m)
n are reported in Fig. 5.

From series (5.6) it is possible to obtain the following explicit formula for the numbers z
(m)
n . Indeed

z(m)(x) =
∑

k≥0




∑

n≥1

((m

n

)) xn

1 + xn




k

=
∑

k≥0

∑

a1≥1

((
m

a1

))
xa1

1 + xa1
· · ·
∑

ak≥1

((
m

ak

))
xak

1 + xak

=
∑

k≥0

∑

a1,...,ak≥1

((
m

a1

))
. . .

((
m

ak

))
xa1

1 + xa1
· · · xak

1 + xak

=
∑

k≥0

∑

a1,...,ak≥1

b1,...,bk≥1

((
m

a1

))
. . .

((
m

ak

))
(−1)b1+···+bk−kxa1b1+···+akbk .

Then

z(m)(x) =
∑

n≥0



∑

k≥0

∑

α,β∈Nk
0

α·β=n

((m

α

))
(−1)|β|−k


xn

where if α = (a1, . . . , ak) and β = (b1, . . . , bk) then α · β = a1b1 + · · · + akbk , |β| = b1 + · · · + bk and((
m
α

))
=
((

m
a1

))
. . .
((

m
ak

))
. Finally, we have the following expression

z(m)
n =

∑

k≥0

∑

α,β∈Nk
0

α·β=n

((m

α

))
(−1)|β|−k .
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With the same argument used in [9] by Carlitz it is possible to obtain the following expression for the
series z(m)(x) :

(5.7) z(m)(x) =
1

1 +
∑

k≥1

(−1)k 1 − (1 − xk)m

(1 − xk)m

.

Let now g
(m)
n be the number of all m-compositions of Carlitz type of n without zero rows. With

arguments completely similar to the ones used in the case of ordinary m-compositions we have that

z(m)
n =

m∑

k=0

(
m

k

)
g(k)

n , g(m)
n =

m∑

k=0

(
m

k

)
(−1)m−kz(k)

n .

References

[1] G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathemetics and its Applications, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1976.

[2] G. E. Andrews, The Theory of Compositions, II: Simon Newcom’s problem, Utilitas Math. 7 (1975), 33–54.
[3] G. E. Andrews, The Theory of Compositions, I: The ordered factorizations of n and a conjecture of C. Long, Canadian

Math. Bull. 18 (1976), 479–484.
[4] G. E. Andrews, The Theory of Compositions, III: The MacMahon formula and the Stanton-Cowan numbers, Utilitas

Math. 9 (1976), 283–290.
[5] F. Bergeron, G. Labelle, P. Leroux, Combinatorial Species and Tree-like Structures, Encyclopedia of Mathematics and Its

Applications 67, G.-C. Rota editor, Cambridge University Press, Cambridge, 1998.

[6] M. Bousquet-Mélou, A method for the enumeration of various classes of column-convex polygons, Discrete Math. 154

(1996), 1–25.
[7] A. Björner, R. Stanley, An analogue of Young’s lattice for compositions, preprint 2005.
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