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Abstract. The main combinatorial result in this article is a classification of bar partitions of n which
are of maximal p-bar weight for all odd primes p ≤ n. As a consequence, we show that apart from very
few exceptions any irreducible spin character of the double covers of the symmetric and alternating groups
vanishes on some element of odd prime order.

Résumé. Notre résultat principal est une classification des partages barrés de n qui ont un poids p-barré
maximal pour tous les nombres prémiers p impairs inférieur à n. Comme conséquence, on a que, à quelques
exceptions près, tout caractère spin irréductible d’une couverture double des groupes symètriques et groupes
alternants s’annule sur un élément d’ordre premier.

1. Introduction

A well known result by Burnside states that any non-linear irreducible character of a finite group vanishes
on some element of the group. This was refined in [9], where it was shown that such a character always has
a zero at an element of prime power order; it had also been noticed in [9] that any non-linear irreducible
character of a finite simple group except possibly the alternating groups even vanishes on some element of
prime order. This was complemented in [5] where it was shown that this character property also holds for the
symmetric and the alternating groups. Indeed, this vanishing property was a consequence of a combinatorial
result on the weights of partitions.

Here, we deal with the corresponding result on bar weights of partitions into distinct parts (which we
call bar partitions). This then yields a vanishing property for irreducible spin characters of the double covers
of the symmetric and alternating groups on elements of odd prime order.

In the next section we collect together some combinatorial preliminaries; we then briefly recall the
results from [5] in the case of partitions and ordinary characters of the symmetric and alternating groups.
In Section 4 we discuss the case of bar partitions and spin characters of the double cover groups; in the main
result, Theorem 4.1, the bar partitions of n are classified which are of maximal p-bar weight for all primes
p ≤ n. These then give rise to the desired spin character zeros; see Theorem 4.2.

A detailed paper with full proofs will appear elsewhere.

2. Preliminaries

We refer to [8], [12], [7] for details about partitions, Young diagrams, hooks and bar partitions, shifted
diagrams and bars, respectively.

Consider a partition λ = (λ1, λ2, . . . , λl) of the integer n. Thus λ1 ≥ λ2 ≥ . . . ≥ λl > 0 and
λ1 + λ2 + . . . + λl = n, with integer parts λi; l = l(λ) is the length of λ. The Young diagram of λ consists
of n boxes with λi boxes in the ith row. We refer to the boxes in matrix notation, i.e. the (i, j)-box is the

2000 Mathematics Subject Classification. Primary 05A17; Secondary 20C30.
Key words and phrases. partitions, bar partitions, symmetric groups and their double covers, spin characters, vanishing

property .
The author thanks the Isaac Newton Institute for Mathematical Sciences for its hospitality during a stay there in the frame

of the programme Symmetric functions and Macdonald polynomials, where an early part of the work for this article was done.
Thanks go also to Peking University for its hospitality in the final phase of the work.



Christine Bessenrodt

jth box in the ith row. The (i, j)-hook consists of the boxes in the Young diagram to the right of and be-
low the (i, j)-box, and including this box. The number of boxes in this hook is its hook length, denoted by hij .

For n ∈ N, we denote by D(n) the set of partitions of n into distinct parts, and we set D =
⋃

n D(n).
We call the partitions in D also bar partitions. A partition λ ∈ D(n) is in D+(n) (or D−(n), respectively)
if n − l(λ) is even (or odd, respectively).

We denote by O(n) the set of partitions of n into odd parts; elements of the double cover groups S̃n which
correspond to elements of Sn of cycle type α ∈ O are said to be of type O.
For λ ∈ D, we consider the corresponding shifted diagram, where in the ith row we start on the diagonal
at (i, i) rather than at the box (i, 1). By flipping over the diagonal we obtain the shift symmetric diagram
S(λ). The bar lengths in λ correspond to the hook lengths in the λ-boxes of S(λ); the bar length at position
(i, j) is then denoted bij ; we abbreviate the bar lengths in the first row by b1i = bi.

Example. Take λ = (4, 3, 1). In the shift symmetric diagram below the bar lengths are filled into the
corresponding boxes of λ.

. 7 5 4 2

. . 4 3 1

. . . 1

. .

The removal of a p-bar from λ ∈ D(n) corresponds to taking a part p or two parts summing to p out
of λ, or subtracting p from a part of λ if possible (i.e., if the resulting partition is in D(n − p)). Doing this
as long as possible gives the p̄-core λ(p̄) of λ; the number of p-bars removed is then the p-bar weight w̄p(λ)
of λ (see [7] or [12] for details). These operations may also be performed on a suitable p̄-abacus.

Example. Take p = 3, λ = (7, 3, 2, 1). Removing a bar of length 3 from λ can be achieved by removing
the parts 2 and 1 from λ, or by removing the part 3, or by replacing 7 by 4. When we do this in succession,
we have reached the bar partition (4), from which we can remove a further 3-bar and thus obtain (1) = λ(3̄);

the 3̄-weight of λ is thus 4.

We will often make use of the following property of the p-bar weight of a partition (see [11], [12]); the
Lemma may easily be proved by considering the p̄-abacus (see [12]).

Lemma 2.1. Let p be an odd prime. If λ is a bar partition of p̄-weight w̄p(λ) = w, then λ has exactly w

bars of length divisible by p. In particular, if λ has a bar of length divisible by p, then it has a bar of length p.

This is used to prove some easy but crucial results about bar lengths (compare this with [4] where a
similar Lemma for hook lengths is used).

For p = 2, a suitable parameter to consider is the 4̄-core of λ which is computed using the 4̄-abacus with
one runner for the even parts, and two conjugate runners for the parts ≡ 1, 3 mod 4; in contrast to the
p̄-abacus for odd p, here we are allowed to subtract 2 from the even parts (so these will be removed when
computing the 4̄-core).

3. Partitions and ordinary characters of Sn and An

Before stating the new results on bar partitions and spin characters in the next section, we recall here
the recent results from [5]. Towards the refinement of Burnside’s Theorem for Sn and An the following main
combinatorial result was proved there:

Theorem 3.1. [5] Let λ be a partition of n ∈ N. Then the following holds:

(i) λ is of maximal p-weight for all primes p ≤ n, if and only if one of the following occurs:

λ = (n) , (1n) or (22) .
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(ii) λ is of maximal p-weight for all odd primes p ≤ n, if and only if λ is one of the partitions in (i), one of

(n − 1, 1), (2, 1n−2), where n = 2a + 1 for some a ∈ N, or one of the following occurs:

n = 6 : λ = (3, 2, 1)
n = 8 : λ = (5, 2, 1) or (3, 2, 13)
n = 9 : λ = (6, 3) or (23, 13)
n = 10 : λ = (4, 3, 2, 1)

This has the desired consequence:

Theorem 3.2. [5] Let n ∈ N. Let χ be any non-linear irreducible character of the symmetric group Sn

or the alternating group An. Then χ vanishes on some element of prime order. If χ(1) is not a 2-power,

then χ is zero on some element of odd prime order.

Theorem 3.1 also has a consequence for the distribution into p-blocks; this was recently taken up in more
detail in [2].

We refer to [8, section 2.5] for the labelling of the irreducible characters of An. A simple relation between
the p-weight of a partition λ and the defect of the p-block containing the irreducible character labelled by λ

is given in [8, 6.2.45]. The principal p-block of a finite group is the block containing the trivial character.

Theorem 3.3. [5] (i) The characters [n], [1n] and [22] are the only irreducible characters of Sn which

are in p-blocks of maximal defect for all primes p.

Apart from [12], [13], [14], [16], [22], the trivial character of Sn is the only irreducible character which is in the

principal p-block for all primes p ≤ n.

(ii) The characters {n}, {2, 1}± and {22}± are the only irreducible characters of An which are in p-blocks

of maximal defect for all primes p.

They belong to the principal p-block for all primes p ≤ n, except for the characters {2, 1}± at p = 2.

We will see that our main result on bar partitions is of a similar type as Theorem 3.1 above, and it has
similar consequences for character zeros of spin characters and for the distribution of spin characters into
spin p-blocks, for odd primes p.

4. Bar partitions and spin characters

In our main result we present a classification of the bar partitions of n which have maximal p̄-weight
⌊

n
p

⌋

for all odd primes p ≤ n; equivalently, the p̄-core of these bar partitions is small in the sense that it is

of size smaller than p. (Here b·c denotes the floor function. Thus bxc is the integral part of x ∈ R.) For
p = 2, we consider the case where the 4̄-core is small, i.e., of size smaller than 4.

The elements of odd prime order p which we are then going to use for the vanishing property for spin
characters of the double cover S̃n of the symmetric group Sn are those where the corresponding cycle type

is of maximal p-bar weight, i.e., the cycle type has
⌊

n
p

⌋

parts of size p. Indeed, the connection to the

vanishing of spin character values is easily explained. The irreducible spin characters of S̃n are labelled by
the bar partitions λ of n (and signs). The recursion formula given by Morris [10] for spin character values on

elements of type O in S̃n shows that the irreducible spin character(s) labelled by λ vanishes on a p-element
of maximal weight (where p is odd), if the p̄-weight of λ is not maximal.

Our main result on bar partitions is the following:

Theorem 4.1. Let λ be a bar partition of n ∈ N. Then λ is of maximal p̄-weight for all odd primes

p ≤ n, if and only if λ = (n) or λ = (n − 1, 1), where n = 2a + 2 for some a ∈ N, or one of the following

occurs:
n = 5 : λ = (3, 2)
n = 6 : λ = (3, 2, 1)
n = 8 : λ = (5, 2, 1)
n = 9 : λ = (4, 3, 2)
n = 10 : λ = (4, 3, 2, 1) or (7, 3)

.

If, in addition, also λ(4̄) is small, then λ = (n) or λ is one of (3, 1), (3, 2, 1), (4, 3, 2, 1).
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The combinatorial classification result immediately has the desired consequence for the spin character
zeros, as explained above; first we have to introduce some more notation (see [7], [10], [12]).

We denote by 〈µ〉 the irreducible spin character of S̃n corresponding to µ ∈ D+(n), and by 〈µ〉+,

〈µ〉
−

= sgn · 〈µ〉+, the irreducible spin characters of S̃n associated to µ ∈ D−(n).

Furthermore, we let 〈〈µ〉〉 denote the irreducible spin character of Ãn corresponding to µ ∈ D−(n) (which

is the reduction of 〈µ〉
±

), and 〈〈µ〉〉
±

the irreducible spin characters of Ãn associated to µ ∈ D+(n) (which

are conjugate and sum to the reduction of 〈µ〉, and which differ only on classes of cycle type λ ∈ D+).

We refer to [7] for further details on the irreducible spin characters of Ãn.

Let n ∈ N, n ≥ 4. First we observe that any irreducible spin character of a double cover S̃n of the
symmetric group or a double cover Ãn of the alternating group has a zero of order 2. For this, note that the
cycle types (2a1b), with a > 0, are neither of type O nor of type D and hence these classes do not split in
the double cover groups. Thus all spin characters are zero on these classes. Hence in the following Theorem
we are only interested in classes of odd prime order.

Theorem 4.2. Let n ∈ N, n ≥ 4. Let χ be any irreducible spin character of a double cover of the

symmetric group S̃n or the alternating group Ãn. Then χ vanishes on some element of odd prime order,

except if χ is a basic spin character, i.e., labelled by (n), or in the cases where χ is labelled by (n− 1, 1) with

n = 2a + 2 for some a ∈ N, or by one of the partitions (3, 2), (3, 2, 1) or (5, 2, 1).

Remark 4.3. If an irreducible character χ of a finite group G has a zero at an element of prime order p,
then p divides χ(1). Note that the irreducible spin characters of S̃n and Ãn of prime power degree have
been classified in [1]; from Theorem 4.2 we can immediately recover the classification of irreducible spin
characters of 2-power degree for these groups. In fact, here they are exactly those that do not have a zero
at an element of odd prime order.
The converse of the statement above does not hold, even for G = S̃n. The spin character 〈8, 4〉 is of degree
5280 = 24 · 3 · 5 · 11, but the character does not vanish on any element of order 3.

Note that for p > 2 there is a simple relation between the p̄-weight of a bar partition λ and the defect
of the p-spin block containing the irreducible spin character(s) of Sn or An labelled by λ (see [12]). For

2 < p ≤ n, the basic spin character(s) of S̃n or Ãn are contained in one spin p-block which we call the basic

spin p-block of S̃n or Ãn, respectively. The following is then another direct consequence of Theorem 4.1
(note that for a > 2 the spin character to (2a + 1, 1) is not in the basic spin p-block for any odd prime p not
dividing n and n − 1).

Theorem 4.4. Let n ∈ N, n ≥ 4.
(i) The basic spin characters 〈n〉(±), the spin characters 〈n − 1, 1〉(±) where n = 2a + 2 for some a ∈ N, and

the spin characters 〈3, 2〉
±

, 〈3, 2, 1〉
±

, 〈5, 2, 1〉
±

, 〈4, 3, 2〉, 〈4, 3, 2, 1〉, 〈7, 3〉 are the only irreducible spin charac-

ters of S̃n which are in spin p-blocks of maximal defect for all odd primes p.

The spin characters 〈3, 1〉, 〈5, 1〉, 〈3, 2〉
±
, 〈3, 2, 1〉

±
, 〈4, 3, 2〉, 〈7, 3〉 are the only non-basic spin characters

contained in the basic spin p-block for all odd primes p ≤ n.

(ii) The basic spin characters 〈〈n〉〉(±), the spin characters 〈〈n − 1, 1〉〉(±) where n = 2a + 2 for some a ∈ N,

and the spin characters 〈〈3, 2〉〉, 〈〈3, 2, 1〉〉, 〈〈5, 2, 1〉〉, 〈〈4, 3, 2〉〉
±
, 〈〈4, 3, 2, 1〉〉

±
, 〈〈7, 3〉〉

±
are the only irre-

ducible spin characters of Ãn which are in spin p-blocks of maximal defect for all odd primes p.

The spin characters 〈〈3, 1〉〉
±

, 〈〈5, 1〉〉
±

, 〈〈3, 2〉〉, 〈〈3, 2, 1〉〉, 〈〈4, 3, 2〉〉
±

, 〈〈7, 3〉〉
±

are the only non-basic spin

characters contained in the basic spin p-block of Ãn for all odd primes p ≤ n.

For p = 2, the blocks contain both ordinary and spin characters; in fact, the 2-block distribution of spin
characters is more intricate and has been determined in [3]. Here the 4̄-combinatorics mentioned before fits

with the distribution of spin characters into the 2-blocks of S̃n (see [3]). We note that when n ≡ 3 mod 4,
the basic spin character is not contained in the principal 2-block. Using also the 2-blocks, the non-basic spin
characters may be even more finely separated from the basic spin characters; one easily checks that only the
spin characters 〈3, 1〉 and 〈3, 2, 1〉

±
are in the same p-block as the basic spin characters for all primes p ≤ n

(analogously for Ãn).
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Now we want to indicate the strategy of the proof of the main classification result. We start by studying
the bar lengths in bar partitions. We write h̄µ for the product of all the bar lengths of a bar partition µ.

From now on, λ = (λ1, . . . , λl) is always a bar partition of n, of length l. The following easy result is
very useful:

Proposition 4.5. Assume that w̄p(λ) =
⌊

n
p

⌋

for the odd prime p ≤ n.

(i) Let µ be obtained from λ by removing the first row. If p does not divide h̄µ, then p, 2p, . . . ,
⌊

n
p

⌋

p

are first row bar lengths of λ.

(ii) If n − λ1 < p, then p, 2p, . . . ,
⌊

n
p

⌋

p are first row bar lengths of λ.

Note that the first row bar lengths of λ, denoted b1, . . . , bλ1
, can explicitly be given; the set of these

numbers is

{λ1 + λ2, . . . , λ1 + λl} ∪ {1, . . . , λ1} \ {λ1 − λ2, . . . λ1 − λl} .

In particular, the largest bar length in λ is λ1 + λ2.
As for the study of hook lengths of partitions, some number theoretic results about the distribution of

primes are needed. In particular, a result due to Hanson is very useful; the exceptions occurring here are
also a reason for exceptions occurring for small n in the classification theorem.

Theorem 4.6. [6] The product of k consecutive numbers all greater than k contains a prime divisor

greater than 3
2k, with the only exceptions 3 · 4, 8 · 9 and 6 · 7 · 8 · 9 · 10.

In the case of partitions, we first dealt with the case of hooks in [5]. Here, one treats the “bar case”
first, i.e., partitions of length at most 2.

Proposition 4.7. Let λ = (n − k, k) for some k ∈ N0, k < n − k. Then w̄p(λ) =
⌊

n
p

⌋

for all odd

primes p ≤ n if and only if one of the following holds:

(i) k = 0, i.e., λ = (n).
(ii) k = 1 and n = 2a + 2 for some a ∈ N0, i.e., λ = (2a + 1, 1).
(iii) λ is one of (3, 2), (7, 3).

If, in addition, also the 4̄-core is small, then λ = (n) or λ is one of (2, 1), (3, 1).

The following observation is crucial for getting a reduction procedure started in the general case.

Lemma 4.8. Let λ ∈ D(n). Let s be a bar length of λ with n
2 ≤ s. Then s is a first row bar length of λ

or s = b23 = λ2 + λ3. In the second case, b1, b2 are then the only first row bar lengths ≥ n
2 .

Corollary 4.9. Let n = 13, 14 or n ≥ 17. Let λ ∈ D(n) be of maximal p̄-weight for all odd primes p

with n
2 ≤ p ≤ n. Then all bar lengths ≥ n

2 are first row bar lengths of λ.

Based on the following result we can then use the same algorithm as in [4]:

Proposition 4.10. Let λ ∈ D(n), n ≥ 17, which is of maximal p̄-weight for all odd primes p ≤ n. Let

s1 < s2 < · · · < sr ≤ n and t1 < t2 < · · · < tr ≤ n be sequences of integers satisfying

(i) si < ti for all i;

(ii) s1, t1 are primes > n
2 ;

(iii) for 1 ≤ i ≤ r − 1, si+1, ti+1 have prime divisors exceeding 2n − si − ti.

Then s1, . . . , sr, t1, . . . , tr are first row bar lengths of λ.

It was already checked for the proof of the classification result in [1] that a suitable algorithm producing
sequences as occurring in the proposition above ends close to n; also, the Theorem is easily checked for
small n. We then obtain the following consequence:

Corollary 4.11. Let n ∈ N. Let λ be a bar partition of n of maximal p̄-weight for all odd primes p ≤ n,

b1 = λ1 + λ2 its largest bar length.

(i) For n ≤ 9.25 · 108, n − b1 ≤ 4.
(ii) For n > 9.25 · 108, n − b1 ≤ 225.
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After this, we still have the tasks to reduce 225 to some manageable number, and to deal with the cases
where n − b1 is small. For this, we use a tailor-made number-theoretic Lemma for reducing d = n − b1 and
k = λ2 − λ3 − 1; it refines Hanson’s Theorem in special situations.

Lemma 4.12. Let 5 ≤ m ≤ 1000. Then any product of m consecutive integers larger than 5.5 · 108 has a

prime divisor q > 2.15 · m, when m ≤ 10, q > 2.58 · m, when 11 ≤ m ≤ 21, and q > 3 · m, when m ≥ 22.

This Lemma also helps to deal with the cases of medium-sized d and k. The cases of small d and k are
dealt with in a tedious case-by-case analysis; here the further exceptions for small n stated in the Theorem
arise. This then finishes the proof.
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