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Statistics on Signed Permutations Groups (Extended Abstract)

Michael Fire

Abstract. A classical result of MacMahon shows that the length function and the major index are equi-
distributed over the symmetric groups. Through the years this result was generalized in various ways to
signed permutation groups. In this paper we present several new generalizations, in particular, we study the
effect of different linear orders on the letters [−n, n] and generalize a classical result of Foata and Zeilberger.

Résumé. MacMahon a demontré que la fonction de longueur et l’indice majeur sont équi-distribué dans les
groupes symétriques. Depuis, ce résultat a été generalisé aux groupes de permutations signées de plusieurs
façons. Dans ce travail, nous présentons plusieurs généralisations, et en particulier, nous étudions l’effet
d’imposer un ordre linéaire sur [−n, n] et nous généralisons un résultat de Foata et Zeilberger.

1. Introduction

The signed permutation groups, also known as the Weyl groups of type B or as the hyperoctahedral
groups, are fundamental objects in today’s mathematics. A better understanding of these groups may help
to advance research in many fields. One method of studying these groups is by using numerical statistics
and finding their generating functions. This method was successfully applied in the case of the symmetric

groups. MacMahon [13] considered four different statistics for a permutation π in the symmetric group: the
number of descents (des(π)), the number of excedances (exc(π)), the length statistic (`(π)), and the major

index (maj(π)). MacMahon showed that the excedance number is equidistributed with the descent number,
and that the length is equidistributed with the major index over the symmetric groups.

We will discuss three types of statistics: Eulerian statistics, which are equidistributed with the descent

number ; Mahonian statistics, which are equidistributed with length; Euler-Mahonian pairs of statistics,
which are equidistributed with the pair consisting of the descent number and the major index. Through the
years many generalizations to MacMahon’s results were found. In particular, Foata and Zeilberger found
that the Denert statistic and the excedance number are Euler-Mahonian [10]. Recently, Adin and Roichman
[3] generalized MacMahon’s result on the major index to the signed permutations groups, by introducing a
new Mahonian statistic, the flag major index. See also [1]. The associated signed Mahonian statistic was
studied in [2]. In this extended abstract we will generalize the Foata-Zeilberger result to signed permutation
groups, and will investigate the effect of different linear orders on the letters [−n, n] \ {0} on the resulting
generating functions.

The full background, proofs and extensions for colored permutations groups to this work can be found in [8].

2000 Mathematics Subject Classification. Primary 05A15.
Key words and phrases. algebraic combinatorics, permutations groups, signed permutations groups, permutations statis-

tics, Mahonian statistics .
Partially supported by EC’s IHRP Programme, within the Research Training Network “Algebraic Combinatorics in Eu-

rope”, grant HPRN-CT-2001-00272.



Michael Fire

2. Background

2.1. Statistics on the Symmetric Group. In this subsection we present the main definitions, nota-
tion, and theorems on the symmetric groups (i.e., the Weyl groups of type A), denoted Sn.

Definition 2.1. Let N the set of all the natural numbers, a permutation of order n ∈ N is a bijection
π : {1, 2, 3, . . . , n} → {1, 2, 3, . . . , n}.

Remark 2.2. Permutations are traditionally written in a two-line notation as:

π =

(

1 2 3 . . . n

π(1) π(2) π(3) . . . π(n)

)

.

However for convenience we will use the shorter notation:

π = [π(1), π(2), π(3), . . . , π(n)].

For example: π =

(

1 2 3 4 5
2 4 3 1 5

)

will be written as π = [2, 4, 3, 1, 5].

Definition 2.3. The symmetric group of degree n ∈ N (denoted Sn) is the group consisting of all the
permutations of order n, with composition as the group operation.

Definition 2.4. The Coxeter generators of Sn are s1, s2, . . . , sn−1 where
si := [1, 2, . . . , i + 1, i, . . . , n].

It is a well-known fact that the symmetric group is a Coxeter group with respect to the above generating
set {si | 1 ≤ i ≤ n−1}. This fact gives rise to the following natural statistic of permutations in the symmetric
group:

Definition 2.5. The length of a permutation π ∈ Sn is defined to be:

`(π) := min{ r ≥ 0 | π = si1 . . . sir
for some i1, . . . , ir ∈ [1, n] }.

Here are other useful statistics on Sn that we are going to work with:

Definition 2.6. Let π ∈ Sn. Define the following:

(1) The inversion number of π:

inv(π) := |{(i, j) | 1 ≤ i < j ≤ n, π(i) > π(j)}|.

Note that inv(π) = `(π).
(2) The descent set of π: Des(π) := {1 ≤ i ≤ n − 1 | π(i) > π(i + 1)}.
(3) The decent number of π: des(π) = |Des(π)|.
(4) The major-index of π: maj(π) :=

∑

i∈Des(π)

i.

(5) The sign of π: sign(π) := (−1)`(π).
(6) The excedance number of π: exc(π) := |{1 ≤ i ≤ n | π(i) > i}|.

Example 2.7. Let π = [2, 3, 1, 5, 4] ∈ S5. We can compute the above statistics on π, namely:

inv(π) = `(π) = 3, Des(π) = {2, 4}, des(π) = 2, maj(π) = 6,

sign(π) = (−1)3 = −1, and exc(π) = 3.

Remark 2.8. Throughout the paper we use the following notations for a nonnegative integer n:

[n]q :=
1 − qn

1 − q
, [n]q! = [1]q[2]q . . . [n]q,

[n]±q! := [1]q[2]−q[3]q[4]−q . . . [n](−1)n−1q, and also

(a; q)n :=

{

1, if n = 0;
(1 − a)(1 − aq) . . . (1 − aqn−1), otherwise.

MacMahon [13] was the first to find a connection between these statistics. He discovered that the ex-

cedance number is equidistributed with the descent number, and that the inversion number is equidistributed
with the major index :
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Theorem 2.9. [13]
∑

π∈Sn

qinv(π) =
∑

π∈Sn

qmaj(π) = [1]q[2]q[3]q . . . [n]q = [n]q!.

Theorem 2.10. [13]
∑

π∈Sn

qexc(π) =
∑

π∈Sn

qdes(π).

Gessel and Simion gave a similar factorial type product formula for the signed Mahonian:

Theorem 2.11. [14, Cor. 2]
∑

π∈Sn

sign(π)qmaj(π) = [n]±q!.

A bivariate generalization of MacMahon’s Theorem 2.9 was achieved during the 1970’s by Foata and
Schützenberger :

Theorem 2.12. [9]
∑

π∈Sn

qmaj(π)tdes(π−1) =
∑

π∈Sn

qinv(π)tdes(π−1).

In the same article Foata and Schützenberger also proved another bivariate connection between the
different statistics:

Theorem 2.13. [9]
∑

π∈Sn

qmaj(π−1)tmaj(π) =
∑

π∈Sn

q`(π)tmaj(π).

In 1990 during her research of the genus zeta function, Denert found a new statistic which was also
Mahonian:

Definition 2.14. [6] Let be π ∈ Sn, define the Denert’s statistic to be:

den(π) := |{1 ≤ l < k ≤ n | π(k) < π(l) < k}|

+ |{1 ≤ l < k ≤ n | π(l) < k < π(k)}|

+ |{1 ≤ l < k ≤ n | k < π(k) < π(l)}|.

Later in the same year Foata and Zeilberger proved that the pair of statistics (exc, den) is equidistributed
with the pair (des, maj):

Theorem 2.15. [10]
∑

π∈Sn

qexc(π)tden(π) =
∑

π∈Sn

qdes(π)tmaj(π).

2.2. Signed Permutations Groups. In this subsection we present the main definitions, notation and
theorems for the classical Weyl groups of type B, also known as the hyperoctahedral groups or the signed

permutations groups, and denoted Bn.

Definition 2.16. The hyperoctahedral group of order n ∈ N (denoted Bn) is the group consisting of
all the bijections σ of the set [−n, n]\{0} onto itself such that σ(−a) = −σ(a) for all a ∈ [−n, n]\{0}, with
composition as the group operation.

Remark 2.17. There are different notations for a permutation σ ∈ Bn. We will use the notation
σ = [σ(1), ..., σ(n)].

We identify Sn as a subgroup of Bn, and Bn as a subgroup of S2n. As in Sn we also have many different
statistics; we will describe the main ones:

Theorem 2.18. Let σ ∈ Bn, define the following statistics on σ:

(1) The inversion number of σ: inv(σ) := |{(i, j) | 1 ≤ i < j ≤ n, σ(i) > σ(j)}|.
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(2) The descent set of σ:

Des(σ) := {1 ≤ i ≤ n − 1 | σ(i) > σ(i + 1)}.

(3) The type A descent number of σ: desA(σ) := |Des(σ)|.
(4) The type B descent number of σ:

desB(σ) := |{0 ≤ i ≤ n − 1 | σ(i) > σ(i + 1)}|, where here σ(0) := 0.

(5) The major index of σ: maj(σ) :=
∑

i∈Des(σ)

i.

(6) The negative set of σ: Neg(σ) := {i ∈ [1, . . . , n] | σ(i) < 0 }.
(7) The negative number of σ: neg(σ) := |Neg(σ)|.
(8) The negative number sum of σ: nsum(σ) := −

∑

i∈Neg(σ)

σ(i).

It is well known (see, e.g. [5, Proposition 8.1.3]) that Bn is a Coxeter group with respect to the generating
set {s0, s1, . . . , sn−1}, where si, 1 ≤ i ≤ n − 1, are defined as in Sn (see 2.4), and s0 is defined as:

s0 := [−1, 2, 3, . . . , n].

This gives rise to another natural statistic on Bn, the length statistic:

Definition 2.19. For all σ ∈ Bn the length of σ is:

`(σ) := min{r ≥ 0 | σ = si1si2 . . . sin
for some i1, . . . , ir ∈ [0, n − 1]}.

There is a well-known direct combinatorial way to compute this statistic:

Theorem 2.20. ([5, Propositions 8.1.1 and 8.1.2]) For all σ ∈ Bn the length of σ can be computed as:

`(σ) = inv(σ) −
∑

i∈Neg(σ)

σ(i).

Using the last definition we can define another natural statistic on Bn, the sign statistic:

Definition 2.21. For all σ ∈ Bn the sign of σ is:

sign(σ) := (−1)`(σ).

The generating function of length is also called the Poincaré polynomial and can be presented in the
following manner:

Theorem 2.22. [12, §3.15]

∑

σ∈Bn

q`(σ) = [2]q[4]q . . . [2n]q =

n
∏

i=1

[2i]q.

Recently, Adin and Roichman generalized MacMahon’s result Theorem 2.9 to Bn, by introducing a new
Mahonian statistic, the flag major index :

Definition 2.23. [3] The flag major index of σ ∈ Bn is defined as:

flag-major(σ) := 2maj(σ) + neg(σ),

where maj(σ) is calculated with respect to the linear order

−1 < −2 < . . . < −n < 1 < 2 < . . . < n.

Theorem 2.24. [3, §2]
∑

σ∈Bn

q`(σ) =
∑

σ∈Bn

qflag−major(σ) = [2]q[4]q . . . [2n]q.

Remark 2.25. The previous result still holds if maj(σ) is calculated with respect to the natural order

−n < −(n − 1) < ... < −2 < −1 < 1 < 2 < ... < n − 1 < n, see also [3].

Adin, Brenti and Roichman introduced another statistic which was also Mahonian, the nmaj statistic:
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Definition 2.26. [1, §3.2] Let σ ∈ Bn then the negative major index is defined as:

nmaj(σ) := maj(σ) −
∑

i∈Neg(σ)

σ(i) = maj(σ) + nsum(σ).

Theorem 2.27. [1]
∑

σ∈Bn

q`(σ) =
∑

σ∈Bn

qnmaj(σ).

In the same article [1] they also defined a new descent multiset and new descent statistics, and found a
new Euler-Mahonian bivariate distribution for these statistics:

Definition 2.28. [1, §3.1 and §4.2] Let σ ∈ Bn define:

(1) The negative descent multiset of σ:

NDes(σ) := Des(σ)
⋃

{−σ(i) | i ∈ Neg(σ)},

where
⋃

stands for multiset union.
(2) The negative descent statistic of σ: ndes(σ) := |NDes(σ)|.
(3) The flag-descent number of σ: fdes(σ) := desA(σ) + desB(σ) = 2desA(σ) + ε(σ), where

ε(σ) :=

{

1, if σ(1) < 0;
0, otherwise.

Theorem 2.29. [1, §4.3]
∑

σ∈Bn

tndes(σ)qnmaj(σ) =
∑

σ∈Bn

tfdes(σ)qflag−major(σ).

In their article from 2005 Adin, Gessel, and Roichman gave a type B analogue to the Gessel-Simion
Theorem(e.g. [14, Cor. 2]):

Theorem 2.30. [2, §5.1]
∑

σ∈Bn

sign(σ)qflag−major(σ) = [2]−q[4]q . . . [2n](−1)nq.

Where flag major index computed with respect to the linear order:

−1 < −2 < . . . < −n < 1 < 2 < . . . < n.

3. Main Results

3.1. Signed-Mahonian and Mahonian-Mahonian Statistics.

Definition 3.1. A linear order of length n, denoted Kn, is a bijection

Kn : [−n, n]\{0} → [1, 2n].

We can calculate permutation statistics according to a linear order Kn, we use the following notation:
majKn

(σ), desKn
(σ), f lag − majorKn

(σ), nmajKn
(σ) etc, to indicate that the corresponding statistic is

calculated with respect to the linear order Kn. We also use the notation: m >Kn
l, to indicate, that

according to the linear order Kn ’m’ is larger than ’l’, i.e. that s = Kn(m), r = Kn(l), and s > r.

Example 3.2. Let Kn be a linear order and let σ ∈ Bn. Then:

majKn
(σ) :=

∑

σ(i)>Kn
σ(i+1)

i.

Note 3.3. Notice that for any linear order Kn, and for any σ ∈ Bn, neg(σ) = negKn
(σ). This also

applies to the length statistic, because it is defined with respect to the Coxeter generators, which do not
depend on the choice of linear order.

The following proposition is a more general version of Remark 2.25:
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Proposition 3.4. Let Kn be a linear order then:
∑

σ∈Bn

qflag−major(σ) =
∑

σ∈Bn

qflag−majorKn
(σ).

In the following theorems we give simple factorial-type product formulas for the generating function for
the signed-Mahonian and Mahonian-Mahonian statistics over Bn.

Let be N the natural order, N : −n < −(n − 1) < . . . < −1 < 1 < . . . < n − 1 < n, then:

Theorem 3.5.
∑

σ∈Bn

sign(σ)qflag−majorN (σ) = (q;−1)n[n]±q2 !.

The next theorem presents signed-Mahonian calculation using the new Mahonian statistic nmaj:

Theorem 3.6.
∑

σ∈Bn

sign(σ)qnmajN (σ) = (q;−q)n[n]±q!.

Definition 3.7. Define the following set:

Un := {τ ∈ Bn | τ(1) < τ(2) < . . . < τ(n − 1) < τ(n)}.

There are several facts (see also [1],[2]) about the set Un that can be directly concluded from the
definition of Un, namely: each σ ∈ Bn has a unique representation as:

σ = τπ (τ ∈ Un , and π ∈ Sn).

Definition 3.8. Define the following subsets of Un:

(1) Un1 := {τ ∈ Un | τ(1) = −n}.
(2) Un2 := {τ ∈ Un | τ(n) = n}.

Note 3.9. Un = Un1 ] Un2, where ] stands for disjoint union.

We also define two bijections from Un−1 one onto Un1, and one onto Un2:

Definition 3.10. For i ∈ 1, 2, define ϕni : Un−1 → Uni by:

(1) ϕn1(τ)(i) =

{

−n, i=1;
τ(i − 1), 2 ≤ i ≤ n.

(2) ϕn2(τ)(i) =

{

τ(i), 1 ≤ i ≤ n − 1;
n, i = n.

Theorem 3.11.
∑

σ∈Bn

qflag−majorN (σ)tnmajN (σ) =

n
∏

i=1

(1 + qti)[n]q2t!.

Proof. (Sketch, more detailed proof can be found at [8]) We will prove this theorem by reducing the
problem to Un:

∑

σ∈Bn

qflag−majorN (σ)tnmajN (σ) =
∑

π∈Sn, τ∈Un

q2maj(π)+neg(τ)tmaj(π)+nsum(τ)

=
∑

τ∈Un

qneg(τ)tnsum(τ)
∑

π∈Sn

q2maj(π)tmaj(π)

=
∑

τ∈Un

qneg(τ)tnsum(τ)
∑

π∈Sn

(q2t)maj(π).

We know according to Theorem 2.9 that:
∑

π∈Sn

(q2t)maj(π) = [n]q2t!, and by calculation we get:
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an =
∑

τ∈Un

qneg(τ)tnsum(τ) =
∑

τ∈Un1

qneg(τ)tnsum(τ) +
∑

τ∈Un2

qneg(τ)tnsum(τ)

=
∑

τ ′∈Un−1

qneg(ϕn1(τ ′))tnsum(ϕn1(τ
′))

+
∑

τ ′∈Un−1

qneg(ϕn2(τ ′))tnsum(ϕn2(τ
′))

=
∑

τ ′∈Un−1

qneg(τ ′)+1tnsum(τ ′)+n +
∑

τ ′∈Un−1

qneg(τ ′)tnsum(τ ′)

= qtnan−1 + an−1 = (1 + qtn)an−1.

We got the recurrence equation: an = (1 + qtn)an−1, a1 = 1 + qt, and the solution to this equation is:

an =
n
∏

i=1

(1 + qti), and therefore; the general solution is:

∑

σ∈Bn

qflag−majorN (σ)tnmajN (σ) = [n]q2t!

n
∏

i=1

(1 + qti)

�

Note 3.12. Notice that substituting t = 1 in Theorem 3.11, we get Theorem 2.24 and the equation:

[n]q2 !(1 + q)n =
n
∏

i=1

[2i]q.

We can also calculate the generating function of length and flag major index by using a similar method:

Theorem 3.13.
∑

σ∈Bn

qflag−majorN (σ)t`(σ) = An(q2, t)

n
∏

i=1

(1 + qti),

where An(q, t) =
∑

π∈Sn

qmaj(π)t`(π) =
∑

π∈Sn

qmaj(π)tinv(π).

3.2. Flag-Excedance and Flag-Denerts Statistic. In this subsection we present the flag-Denert’s

statistic (denoted fden) and the flag-excedance (denoted fexc) statistic. We prove that the pair of statistics
(fden, fexc) are equidistributed with (flag − major, fdes) over Bn and, therefore, the flag-Denert and
flag-excedance statistics gives a type B generalization to the Foata-Zeilberger Theorem 2.15.

Definition 3.14. Define the type b excedance number of σ ∈ Bn to be:

excB(σ) := |{ 1 ≤ i ≤ n | i < |σ(i)| }|.

Definition 3.15. Define the flag-excedance of σ ∈ Bn to be:

fexc(σ) := 2excB(σ) + ε(σ).

Definition 3.16. Let n be a nonnegative integer. Define the following subset of Bn:

Colorn
2 := {σ ∈ Bn| σ(i) = ±i, ∀i ∈ [1, n]}.

Note 3.17. Notice that each σ ∈ Bn has a unique representation as:

σ = πτ, where π ∈ Sn, τ ∈ Colorn
2 .

Definition 3.18. We define the friends order to be:

F : −1 < 1 < −2 < 2 < ... < −n < n.

We prove that the flag-excedance statistics is Eulerian:

Theorem 3.19.
∑

σ∈Bn

qfexc(σ) =
∑

σ∈Bn

qfdesF (σ).
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We define the type B Denert’s statistic (denoted denB):

Definition 3.20. Let σ ∈ Bn. Define the type B Denert’s statistic to be:

denB(σ) = |{1 ≤ l < k ≤ n | |σ(k)| < |σ(l)| < k}|

+ |{1 ≤ l < k ≤ n | |σ(l)| < k < |σ(k)|}|

+ |{1 ≤ l < k ≤ n | k < |σ(k)| < |σ(l)|}|.

Remark 3.21. According to the definition of denB we can see that:

denB(σ) = denB(τπ) = denB(π), ∀σ ∈ Bn, τ ∈ Colorn
2 , π ∈ Sn.

We define the flag-Denert’s statistic (denoted fdenB), and prove that it is equidistributed with the flag

major index over the signed permutations groups :

Definition 3.22. Let σ ∈ Bn. Define the flag-Denert’s statistic to be:

fden(σ) := 2denB(σ) + neg(σ).

Theorem 3.23.
∑

σ∈Bn

qfden(σ) =
∑

σ∈Bn

qflag−majorF (σ).

We prove that the pair of statistics (fden,fexc) is equidistributed with (flag-major,fdes).

Theorem 3.24.
∑

σ∈Bn

qfden(σ)tfexc(σ) =
∑

σ∈Bn

qflag−majorF (σ)tfdesF (σ).

Proof. (Sketch, more detailed proof can be found at [8]) We use the Definitions 3.15, 3.22, [8, Lemma
6.4], and Theorem 2.15 and conclude the following equality:

∑

σ∈Bn

qfden(σ)tfexc(σ) =
∑

σ∈Bn

q2denB(σ)+neg(σ)t2excB(σ)+ε(σ)

=
∑

τ∈Colorn

2

qneg(τ)tε(τ)
∑

π∈Sn

q2den(π)t2exc(π)

=
∑

τ∈Colorn

2

qneg(τ)tε(τ)
∑

π∈Sn

q2maj(π)t2des(π)

=
∑

σ∈Bn

qflag−majorF (σ)tfdesF (σ)

�

Remark. Extensions to wreath products and more results may be found in [8].
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