
Formal Power Series and Algebraic Combinatorics

Séries Formelles et Combinatoire Algébrique
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Abstract. Let Q be a Dynkin quiver, that is, a directed graph whose underlying undirected graph has
connected components given by Dynkin diagrams of root systems of types A, D, or E. Assign a fixed vector
space to each vertex. Consider the set Rep of representations of the quiver Q with these fixed vector spaces.
A product G of general linear groups acts on Rep by change of basis at each vertex. A quiver locus Ω is
the closure of a G-orbit in Rep. The equivariant cohomology class (resp. K-class) of Ω is known as a quiver
polynomial (resp. K-quiver polynomial).

Reineke proved that Ω is the image of a Kempf collapsing, which is a G-equivariant map from a vector
bundle over a partial flag manifold. From this we deduce a formula for the quiver polynomial of Ω.

We extend Kempf’s construction. On the numerical side, we give a formula for the equivariant coho-
mology class of the image of a Kempf collapsing. On the geometric side, we give sufficient conditions under
which we can compute the equivariant K-class of the image. We observe that these conditions hold for
Reineke’s Kempf collapsings in types A and D, yielding a formula for the K-quiver polynomials for these
loci.

The formulae are BGG/Demazure divided difference operators applied to a product of linear forms.

Résumé. Soit Q un carquois de Dynkin, c’est-à-dire un graphe orienté dont le graphe non-orienté sous-
jacent est formé de composantes connexes de diagrammes de Dynkin de type A,D et E. Fixons un espace
vectoriel à chaque sommet du graphe. Considérons l’ensemble Rep des représentations du carquois Q avec
ces espaces vectoriels. Un produit G de groupes générals linéaires agit sur Rep en effectuant un changement
de base à chacun des sommets. Le locus du carquois Ω est la fermeture d’une G-orbite dans Rep. La classe
équivariante de la cohomologie (resp. K-classe) de Ω est un polynôme carquois (resp. K-polynôme carquois).
Reineke a prouvé que Ω est l’image d’une application de Kempf, qui est une application G-équivariante d’un
fibré vectoriel sur une variété de drapeau partielle. De ceci, nous pouvons en déduire une formule pour
le polynôme carquois de Ω. Nous étendons la construction de Kempf. Du côté numérique, nous donnons
une formule pour la classe équivariante de cohomologie de l’image d’une application de Kempf. Du côté
géométrique, nous donnons des conditions suffisantes avec lesquelles nous pouvons calculer la classe K-
invariante de l’image. Nous observons que ces conditions sont les mêmes pour l’application de Kempf pour
les types A et D, générant une formule pour le K-polynôme carquois pour ces loci. Les formules sont des
opérateurs BGG/Demazure de différence divisée appliqués à un produit de formes linéaires.

1. Introduction

Given a quiver representation one may define a torus-stable affine variety called a quiver locus. The
universal torus-equivariant cohomology class of a quiver locus is called a quiver polynomial. The poly-
nomials associated with the type A quiver admit many beautiful combinatorial formulae involving tableaux
[8], rc-graphs [3] [17], lacing diagrams [23], factor sequences [4], etc. These quiver polynomials have been
studied extensively due to their connection with Thom’s theory of degeneracy loci [29], intersection theory,
and Schubert calculus. We list some cases of quiver polynomials in order of increasing generality.

(1) Double Schur polynomials via the Giambelli-Thom-Porteous formula [26].
(2) Double Schubert polynomials [18].
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(3) Universal Schubert polynomials [19]. These specialize to quantum Schubert polynomials [16]
among others.

(4) Quiver polynomials for the equioriented type A quiver [4] [5] [23].
(5) Quiver polynomials for the type A quiver with arbitrary orientation [10].

We present a divided difference formula for the quiver polynomial of any quiver locus belonging to a
Dynkin quiver. We also give a divided difference formula for the more refined information given by the
K-quiver polynomial, which is a Laurent polynomial associated with a quiver locus. The literature on the
K-theoretic classes of degeneracy loci include [11] for Grassmannians, [22] for matrix Schubert varieties,
[9] for the K-analogue of universal Schubert polynomials, [7] [12] [13] [23] [24] for the equioriented type A
quiver, and [10] for a conjecture for type A with arbitrary orientation.

Our divided difference formulae are obtained through Kempf collapsings. A Kempf collapsing is a
suitable map from a fiber bundle over a partial flag variety, to a vector space. This extends a construction of
Kempf [21], who used it to derive geometric properties of the image of the collapsing map. The instance of
this construction as applied to quiver loci has already been given by Reineke [28]; we found it independently.

We expect that our method applies to a suitable nontrivial family of quiver loci for quivers that are not
necessarily of type ADE.

Since quiver loci are equivariant classes of subvarieties it follows that their multidegrees (the quiver
polynomials) satisfy a certain kind of positivity: it is always possible to equivariantly and flatly degenerate
a quiver locus Ω to a union Ω(0) of coordinate subspaces with multiplicities. This leaves the multidegree
invariant. The multidegree is additive on maximum degree components, so the quiver polynomial is the
positive sum of products of linear forms. Moreover the forms correspond to vectors that lie in an open half
space (assuming the torus action was positive, as it is for quiver loci of Dynkin quivers), so positivity is
well-defined. A similar formulation of positivity holds for the K-quiver polynomials.

Our divided difference formulae for the quiver and K-quiver polynomials are not obviously positive in
the above sense. It would be desirable to obtain manifestly positive combinatorial formulae.

We give some recent examples of positive formulae for quiver polynomials. In the paper [23] (which
circulated as a preprint in 2003) four positive formulae (pipe, tableau/Schur, component/Schubert, and
ratio) were given for the quiver polynomials for the equioriented type A quiver. The pipe formula is positive
in the above sense. The Schur formula was previously conjectured to be positive in [4]. The component
formula was proved independently in [5] after its authors were shown the formula in the form of a conjecture.
In [10] the component formula was generalized to the type A quiver with arbitrary orientation; this formula
can also be obtained via Gröbner degeneration as in [23]. Previously in [8] a Schur-type formula was proved
for Fulton’s universal Schubert polynomials. In [13] [24] positive formulae were given for the K-quiver
polynomials for the type A equioriented quiver.

2. Vague statement of “numerical” results

Theorem 2.1. (1) Let Q be a quiver whose underlying undirected graph is a Dynkin diagram of
type ADE, d any dimension vector and Ω ⊂ Rep = Rep(Q, d) a quiver locus. Then the quiver
polynomial HRep(Ω) is obtained by applying a divided difference operator to an explicit product of
linear forms.

(2) For quivers of types A and D, the K-quiver polynomial KRep(Ω) is obtained by applying a divided
difference operator to an explicit product of linear forms.

Conjecturally the formula for KRep(Ω) also holds for quivers of type E. This kind of formula for quiver
polynomials, is reminiscent of those for double Schubert and Grothendieck polynomials. However it is
different in that for each quiver locus, one starts with a different product of linear forms, whereas all the
Schubert and Grothendieck polynomials indexed by a permutation in a given symmetric group, are obtained
by applying divided difference operators to a single product of linear forms. These formulae are new even
in the equioriented type A case, where the quiver and K-quiver polynomials are known to be certain double
Schubert and Grothendieck polynomials respectively, with the y variables set equal to the reverse of the x
variables [23]. The most important ingredient is the product of linear forms, which depends in a subtle way
on cohomological data that is calculated from the quiver locus.

Example 2.2. Let Q consist of two vertices connected by a single arrow, d = (3, 4) and Ω ⊂ Rep = M3×4

the determinantal variety of 3×4 matrices of rank at most two. It is well-known that (in suitable coordinates)



KEMPF COLLAPSING AND QUIVER LOCI

HRep(Ω) is the double Schubert polynomial S1,2,5,3,4(x; y), which coincides with the double Schur polynomial
s2[x− y] where x = (x1, x2, x3) and y = (y1, y2, y3, y4). Let ∂x

i f = (f − sif)/(xi − xi+1) where si exchanges
xi and xi+1, and define ∂y

i for the similar operator in the y variables. Then our formula reads

HRep(Ω) = ∂y
2∂y

1∂y
3∂y

2∂x
1 ∂x

2 ∂x
1 ◦

(x1 − y1)(x1 − y2)(x1 − y3)(x1 − y4)(x2 − y2)(x2 − y3)(x2 − y4)(x3 − y3)(x3 − y4)

3. Hilbert numerators and multidegrees

Quiver polynomials and K-quiver polynomials are instances of the constructions of the multidegree and
Hilbert numerator. We recall these notions, following [25].

Let T = (C∗)r be an algebraic torus and X(T ) ∼= Zr be the group of algebraic group homomorphisms
T → C∗. We write the group operation on X(T ) additively. Let x1, . . . , xr be the standard basis of X(T ).

Let M be a T -module, that is, a vector space over C endowed with a rational T -action. For λ ∈ X(T )
a vector of weight λ is a nonzero vector v ∈ M such that t · v = λ(t)v for all t ∈ T . Let Mλ ⊂ M be the
subspace of vectors of weight λ. Then M

⊕

λ∈X(T ) Mλ. If dimMλ < ∞ for all λ then one may define

chT M =
∑

λ∈X(T )

dimMλ eλ,

which is a formal Laurent series in the variables exi .
Let Y be a finite-dimensional T -module. Suppose Y is positive, that is, all the weights of Y (λ ∈ X(T )

such that Yλ 6= 0) lie on one side of a hyperplane in Rr through the origin. Consider the coordinate ring
C[Y ] of Y ; it is a polynomial ring in a set B of coordinate functions on Y , which can be taken to be weight
vectors. A basis of weight vectors in C[Y ] is given by the set of monomials with variables in B. Therefore
the weight spaces of C[Y ] are finite-dimensional, and using geometric series one obtains

(3.1) chT C[Y ] =
∏

v∈B

(1 − ewt(v))−1

where wt(v) ∈ X(T ) is the weight of v.
Let Z ⊂ Y be a T -stable closed subscheme, with defining ideal I(Z) ⊂ C[Y ]. Its coordinate ring is

C[Z] ∼= C[Y ]/I(Z). Since C[Z] is a quotient of C[Y ] by a T -stable ideal, it has a basis of weight vectors given
by a subset of that of C[Y ]. Thus C[Z] has finite-dimensional weight spaces and chT C[Z] is a well-defined
formal Laurent series. The T -equivariant Hilbert numerator of Z in the positive T -module Y is the
formal Laurent series in the variables exi defined by

(3.2) KY (Z) =
chT C[Z]

chT C[Y ]
.

Using a T -equivariant version of the Hilbert Syzygy Theorem it follows that KY (Z) is in fact a Laurent
polynomial: the formal series chT C[Z] can always be expressed as a Laurent polynomial (namely, KY (Z))
divided by the denominator of chT C[Y ].

There are natural isomorphisms K∗
T (Y ) ∼= K∗

T (pt) ∼= R(T ) = Z[X(T )] = Z[e±x1 , . . . , e±xr ] where R(T )
is the ring of rational representations of T . The Hilbert numerator KY (Z) may be regarded as an element
in the T -equivariant K-theory K∗

T (Y ) of Y ; it is the equivariant K-class of the structure sheaf OZ of Z.
There is a surjective ring homomorphism Z[e±x1 , . . . , e±xr ] → Z[x1, . . . , xr] that sends a Laurent polyno-

mial to its lowest degree nonvanishing homogeneous term, where eλ is formally expressed as eλ =
∑

i≥0 λi/i!.

The multidegree of Z is the polynomial HY (Z) given by the image of the Hilbert numerator KY (Z) under
this map. It can be shown that HY (Z) is a polynomial with integer coefficients: HY (Z) ∈ Z[x1, . . . , xr].
More canonically, there are isomorphisms H∗

T (Y ) ∼= H∗
T (pt) ∼= SymZ(X(T )) ∼= Z[x1, . . . , xr] where SymZ is

the symmetric algebra with integer coefficients. Then HY (Z) is identified with the element of the equivariant
cohomology ring H∗

T (Y ) given by the T -equivariant fundamental class of the T -stable subvariety Z of Y ,
and the above ring homomorphism is the T -equivariant Chern map K∗

T (Y ) → H∗
T (Y ).

Suppose Z is a coordinate subspace, that is, it is defined by the vanishing of some subset B′ ⊂ B of the
set of coordinates B of Y . Then directly from the definitions one may easily compute the Hilbert numerator
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and multidegree:

KY (Z) =
∏

v∈B′

(1 − ewt(v)) HY (Z) =
∏

v∈B′

(−wt(v)).(3.3)

The Hilbert numerator KY (Z) is a more subtle geometric invariant than the multidegree HY (Z) since
the latter is only the leading term of the former.

4. Quiver polynomials

To each quiver representation we define its quiver polynomial and K-quiver polynomial as the multidegree
and Hilbert numerator of its associated quiver locus.

A quiver is a finite directed graph Q = (Q0, Q1) where Q0 is the set of vertices and Q1 is the set of
directed edges. Each directed edge a ∈ Q1 has a head ha ∈ Q0 and a tail ta ∈ Q0. A dimension vector

is a function d : Q0 → Z≥0: it assigns to each vertex i ∈ Q0 a nonnegative integer d(i). A representation

V of the quiver Q of dimension d, is a collection of linear maps Va, one for each arrow a ∈ Q1, with
Va : Cd(ta) → Cd(ha). Equivalently, V is a list of matrices where Va ∈ Md(ta)×d(ha); here matrices act on row
vectors. Let Rep = Rep(Q, d) =

∏

a∈Q1
Md(ta)×d(ha) be the set of representations of Q of dimension d. Say

that V, W ∈ Rep are equivalent if V is taken to W by a change of basis in the vector spaces at the vertices,
that is, there is an element g = (gi)i∈Q0

∈ G = G(Q, d) =
∏

i∈Q0
GL(d(i)) such that Wa = gtaVag−1

ha for all

a ∈ Q1. Thus an equivalence class of quiver representations of Q of dimension d is a G-orbit in Rep(Q, d).
A quiver locus in Rep is a subvariety of the form Ω = G · V for some V ∈ Rep. Let T ⊂ G be the

maximal torus consisting of tuples of diagonal matrices. Since Ω is G-stable and closed it is also T -stable
and therefore defines T -equivariant classes KRep(Ω) ∈ K∗

T (Rep) and HRep(Ω) ∈ H∗
T (Rep). These are by

definition the K-quiver polynomial and quiver polynomial of the quiver locus Ω.
More specifically, let T i ⊂ GL(d(i)) be the subgroup of diagonal matrices in the i-th component of

G for i ∈ Q0 and let T =
∏

i∈Q0
T i ⊂ G. Let X i = {xi

1, x
i
2, . . . , x

i
d(i)} be a basis of X(T i). Then

KT (Rep) ∼= Z[e±xi
j ]. Since Ω is G-stable it defines a G-equivariant class in K∗

G(Rep). But there are

natural isomorphisms K∗
G(Rep) ∼= K∗

T (Rep)W ∼= Z[e±xi
j ]W where W =

∏

i∈Q0
Sd(i) is the Weyl group of

G, the product of symmetric groups where Sd(i) permutes the i-th set of variables X i. So KRep(Ω) is a

W -symmetric Laurent polynomial. Similarly H∗
G(Rep) ∼= H∗

T (Rep)W ∼= Z[xi
j ]

W , and the quiver polynomial

HRep(Ω) is W -symmetric.

Remark 4.1. The above action of T on Rep(Q, d) is not positive if and only if there is some directed
cycle C in Q such that for every vertex i on C, d(i) > 0. In this situation the Hilbert numerator of some
quiver loci in Rep(Q, d) are not well-defined. However we may consider the action of a bigger group G × T ′

on Rep where T ′ = (C∗)|Q1| is a torus with a copy of C∗ for each arrow a ∈ Q1, where the a-th copy of
C∗ acts on the a-th component of Rep(Q, d) by scaling. The torus T + = T × T ′ in G+ acts positively on
Rep. In particular if Ω ⊂ Rep is a quiver locus that is also stable under G+ then its quiver and K-quiver
polynomial with respect to the T +-module Rep, are well-defined. If Q has no directed cycles then the T +

polynomials specialize to the usual quiver polynomials by setting to zero the basis elements of X(T ′).
More generally one may consider the Hilbert numerators and multidegrees of G+-orbit closures or other

G+-stable subvarieties of Rep with respect to the T +-module Rep.

Example 4.2. Let Q consist of a single vertex and a single loop and fix the dimension n. Then Rep = Mn

is the n × n matrices and G = GL(n) acts by conjugation. The indecomposables of CQ are Jordan blocks.
With the notation of the previous Remark, the G+ = G×C∗-stable quiver loci are the closures of conjugacy
classes of nilpotent matrices.

More generally if Q is a directed cycle then the quiver loci given by G-orbits of nilpotent elements of
Rep, are also G+-stable.

5. Representations of Q

We recall some of the representation theory of Dynkin quivers. This provides an indexing set for the
quiver loci and other key ingredients for our divided difference formula for the quiver polynomials. See [14]
[15] for excellent survey information.
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5.1. Path Algebra. The path algebra CQ is the associative algebra over C with generating set
Q0 ∪ Q1 and relations (for all i, j ∈ Q0 and a ∈ Q1)

i · j = δi,ji

i · a = δi,taa

a · j = δha,ja.

(5.1)

Using these relations it follows that for a, b ∈ Q1, the product ab is zero unless ha = tb. Hence CQ has a basis
given by paths, where a path of length zero is an element of Q0, and a path of length m > 0 is a sequence
a1a2 · · · am with ai ∈ Q1 where hak = tak+1 for 1 ≤ k ≤ m − 1. Since a path has a unique starting vertex
and unique ending vertex, it follows that the elements i ∈ Q0 are a complete set of orthogonal idempotents
in CQ. Let CQ-Mod be the category of finite-dimensional right CQ-modules. Let V ∈ CQ-Mod. We have
V =

⊕

i∈Q0
Vi where Vi = V · i. One easily checks that the linear map Va given by the action of a on V , is

zero on Vj for j 6= ta and its image lies in Vha. So without loss we may consider Va as a linear map from
Vta → Vha. Thus we see that a CQ-module is just a quiver representation and vice versa. Let g : V → W
be a CQ-module isomorphism. Firstly g is a linear isomorphism. Since g intertwines the action of i ∈ Q0, g
restricts to an isomorphism gi : Vi → Wi for all i. In particular V and W have the same dimension vector
d. So we may regard V and W as being elements of Rep(Q, d). Since g intertwines the action of a ∈ Q1, it
must satisfy gtaVa = Wagha or equivalently gtaVag−1

ha = Wa. Therefore V and W are isomorphic if and only
if the corresponding elements of Rep are in the same G-orbit.

So the problem of classifying G-orbits on Rep is the same as that of classifying finite-dimensional CQ-
modules up to isomorphism.

5.2. An index set for quiver loci. An indecomposable module is one that is not the direct sum of
two nonzero submodules. By definition every module is the direct sum of indecomposables. So the isomor-
phism class of a CQ-module is determined by the multiplicities of its indecomposable summands. Let IndQ

be the set of isomorphism classes of indecomposable CQ-modules. One special kind of indecomposable mod-
ule is a simple module, one that has no proper submodule. For each vertex i ∈ Q0 there is a corresponding
simple CQ-module Si: it has C1 at vertex i and zero vector spaces at the other vertices, and all maps are
zero.

Gabriel’s Theorem characterizes the quivers Q with finitely many indecomposables.

Theorem 5.1. [20] The following are equivalent for a quiver Q.

(1) G(Q, d) has finitely many orbits on Rep(Q, d) for all d.
(2) IndQ is finite.
(3) The undirected graph X underlying Q is the Dynkin diagram of a simply-laced root system Φ (that

is, its connected components are Dynkin diagrams of type ADE).

Suppose this holds. Then there is a bijection IndQ → Φ+ of the indecomposables with the positive roots Φ+

of Φ. This bijection sends the simple CQ-module Si to the simple root αi and in general sends I ∈ IndQ to
its dimension vector, where a function d : Q0 → Z is identified with the element

∑

i∈Q0
d(i)αi of the root

lattice of Φ.

For β ∈ Φ+ let Iβ be the indecomposable with dimension vector β. The modules in IndQ may be
constructed explicitly using reflection functors [6] but we don’t require this construction.

Example 5.2. The equioriented type A quiver (An+1) is depicted below; we use the vertex set Q0 =
{0, 1, 2, . . . , n} and directed edges going from a − 1 to a for 1 ≤ a ≤ n.

����

0 1 2 n
· · ·

For 0 ≤ i ≤ j ≤ n, let Iij be the indecomposable corresponding to the root αij = αi + αi+1 + · · · + αj . It
can be realized by placing C1 at vertices i through j with identity maps connecting them and zero maps
elsewhere.

Remark 5.3. Let β ∈ Q+. Say that a map m : Φ+ → Z≥0 is a Kostant partition of β if
β =

∑

α∈Φ+ m(α)α. By Gabriel’s Theorem, the isomorphism classes of CQ-modules of dimension d,
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are parametrized by the Kostant partitions of d. Write Ωm = G · φ for any φ ∈ Rep such that φ ∼=
⊕

α∈Φ+ I
⊕m(α)
α .

5.3. Hom, Ext, and the Euler form. For M, N ∈ CQ-Mod let HomQ(M, N) be the vector space of

CQ-module homomorphisms from M to N . Let Exti
Q(−, N) be the i-th cohomology group of the functor

HomQ(−, N) applied to a projective resolution of M . The homological form on CQ-Mod is defined by

〈M , N〉 =
∑

i≥0

(−1)i dim ExtiQ(M, N).

It is not symmetric. The category CQ-Mod is hereditary. In particular Exti
Q(M, N) = 0 for all i ≥ 2, so

that

(5.2) 〈M , N〉 = dimHomQ(M, N) − dimExt1Q(M, N).

Ringel [27] observed that the homological form 〈M , N〉 depends only on the dimension vectors dM and dN

of M and N . Define the Euler form on functions Q0 → Z by

〈d , e〉 =
∑

i∈Q0

d(i)e(i) −
∑

a∈Q1

d(ta)e(ha).

Then the homological form on M and N is the Euler form on their dimension vectors:

〈M , N〉 = 〈dM , dN 〉.

Remark 5.4. Dynkin quivers are precisely those with positive definite Euler form. For Q a Dynkin
quiver, a vector d : Q0 → Z≥0 is a positive root if and only if 〈d , d〉 = 1.

5.4. Auslander-Reiten quiver. This material comes from [1]. Say that a CQ-module homomorphism
f is irreducible if it is nonzero, and for every factorization f = h ◦ g as a composition of CQ-module
homomorphisms, either g is split injective or h is split surjective. The Auslander-Reiten quiver ΓQ of
Q is the directed graph with vertex set given by IndQ and with a directed edge from M to N if there is an
irreducible map M → N .

Proposition 5.1. Let Q be a Dynkin quiver. Then for β, γ ∈ Φ+, then there is an arrow from Iβ to Iγ

in ΓQ if and only if β 6= γ and 〈β , γ〉 > 0.

Remark 5.5. For Dynkin quivers Q the Auslander-Reiten quiver Q has no cycles. Therefore there is a
partial order 4Q on IndQ or Φ+ given by β 4Q γ if there is a directed path from Iβ to Iγ in ΓQ.

Proposition 5.2. For Q Dynkin and α, β ∈ Φ+:

(1) HomQ(Iα, Iβ) = 0 if α > β.

(2) Ext1Q(Iα, Iβ) = 0 if α ≤ β.
(3) 〈α , β〉 = dimHomQ(α, β) for α ≤ β.

(4) 〈α , β〉 = − dimExt1Q(α, β) for α > β.

Proposition 5.2 says that the matrix 〈α , β〉 for α, β ∈ Φ+, written with respect to any linear extension of
4Q, agrees with dimHomQ(Iα, Iβ) on or above the diagonal and with − dimExt1Q(Iα, Iβ) below the diagonal.
Thus one can read off all the important homological information about CQ-Mod just from the Euler form
under an appropriate ordering of positive roots.

5.5. Reduced expressions. We recall from [2] [31] a combinatorial way to construct the Auslander-
Reiten quiver ΓQ when Q is Dynkin. Suppose X is an undirected graph that is the Dynkin diagram of a
simply-laced root system Φ, with Weyl group W and distinguished set {si ∈ W | i ∈ Q0} of simple reflections.
An orientation of X is a directed graph Q that yields X if the directions on edges are forgotten. The Weyl
group acts on the set Or(X) of orientations of X : for Q ∈ Or(X) and i ∈ Q0, siQ ∈ Or(X) is obtained from
Q by reversing all the directed edges that touch the vertex i.

Let w0 ∈ W be the longest element. Let Red be the set of reduced words for w0, that is, the set of
sequences i• = (iN , . . . , i2, i1) such that w0 = siN

· · · si2si1 with N minimal. Say that i• ∈ Red is adapted to
Q ∈ Or(X) and write i• ∈ RedQ, if for every j the vertex ij is a sink in the directed graph sij−1

· · · si2si1Q.
For every orientation Q of X , RedQ 6= ∅. Moreover RedQ is a commutation class (two reduced words



KEMPF COLLAPSING AND QUIVER LOCI

are in the same commutation class, if they are reachable from each other by commuting Coxeter relations
sisj = sjsi where i and j are nonadjacent vertices in X). However

⋃

Q∈Or(X) RedQ ( Red.

Fix i• ∈ RedQ. It defines a total ordering ≤i• on the set of positive roots Φ+ by the sequence γ1 < γ2 <
. . . where γj = sij

· · · si2αi1 . Then it is a theorem of [2] that the total orders ≤i• for i• ∈ RedQ, are the set
of linear extensions of the partial order 4Q.

The Auslander-Reiten quiver ΓQ of Q ∈ Or(X) is traditionally drawn with arrows going from right to
left and smaller elements pointing towards bigger ones. It turns out that there is a nice planar embedding
of ΓQ such that the poset element γj is placed in the ij-th row for all j. Even better, this graph is the
1-skeleton of a topological complex [31].

Example 5.6. Let Q be the A3 quiver with both arrows pointing to the middle:

0 1 2

We use i• = (2, 0, 1, 2, 0, 1) ∈ RedQ. The induced total ordering ≤i• on IndQ is given below, with labeling of
Φ+ as in Example 5.2.

(5.3) α11 < α01 < α12 < α02 < α22 < α00.

The Auslander-Reiten quiver ΓQ is depicted below.

I11

I01

I12

I02

I22

I002

1

0

The matrix for the Euler form on pairs of elements of Φ+ with respect to the total order (5.3) is given by

(〈α , β〉)α,β∈Φ+ =

















1 1 1 1 0 0
0 1 0 1 0 1
0 0 1 1 1 0
−1 0 0 1 1 1
−1 −1 0 0 1 0
−1 0 −1 0 0 1

















.

Example 5.7. Let Q be the D4 quiver with the following orientation:

1

2 34

We use w0 = s1s2s4s3s1s2s4s3s1s2s4s3. We label the indecomposables by their dimension vectors. For
example, 1211 means (1, 2, 1, 1) or α1 + 2α2 + α3 + α4. The total ordering for the above reduced word is
given by the list

(5.4) 0010, 0001, 0111, 1111, 0101, 0110, 1211, 0100, 1110, 1101, 1100, 1000

and the AR quiver is given by

0001

0010

0111

1111

0101

0110

1211

1101

1110

0100

1100

1000

4

3

2

1



Allen Knutson and Mark Shimozono

5.6. Orbit representatives. Let Q be a Dynkin quiver, d : Q0 → Z≥0 a dimension vector and m a
Kostant partition of d. For our divided difference formula for quiver polynomials we define a representative

element φm ∈ Rep(Q, d) in the G = G(Q, d)-orbit indexed by m, that is, φm
∼=

⊕

α∈Φ+ I
⊕m(α)
α .

Pick any particular matrix representation for each indecomposable Iα and by abuse of notation denote
it by Iα. Consider an ordered direct sum I• = I1 ⊕ I2⊕· · ·⊕ IM that has m(α) summands Iα for all α ∈ Φ+,
with the property that

(5.5) Ext1Q(Ij , Ii) = 0 if i < j.

This condition holds if we list the indecomposables in the reverse of the total order on IndQ given by ≤i•

for any i• ∈ RedQ.
We view I• as a point in Rep(Q, d). As such I• is “block diagonal”: for each a ∈ Q1 the a-th component

of I• is “block diagonal” with “diagonal” blocks given by the a-th components of I1, I2, . . . , IM in that order.

Example 5.8. Take Q to be the equioriented A2 quiver, d(0) = e and d(1) = f . Take the quiver locus
Xr given by the determinantal variety of e × f matrices of rank at most r. Then the G = GL(e) × GL(f)-
orbit associated to Xr has Kostant partition m with m(α0) = e − r, m(α0 + α1) = r, and m(α1) = f − r.
So if e = 3, f = 4, and r = 2 then an appropriate ordering of the indecomposables in I• is given by
I• = Iα0

⊕ Iα0+α1
⊕ Iα0+α1

⊕ Iα1
⊕ Iα1

. The element I• ∈ M3×4 is the matrix

I• =





0 0 0 0
1 0 0 0
0 1 0 0





where each Iα0
is a 1 × 0 matrix, each Iα0+α1

is a 1 × 1 identity matrix, and each Iα1
is a 0 × 1 matrix.

Fix I• as above. Define the Levi subgroup L(I•) ⊂ G(Q, d) by

L(I•) =

M
∏

k=1

G(Q, d(Ik)).

We regard L(I•) as a block diagonal subgroup of G = G(Q, d): for each i ∈ Q0, the i-th component of
L(I•) are the block diagonal matrices in the i-th component of G(Q, d) with block sizes coming from the
i-th components of G(Q, d(Ik)). It acts on the direct product

(5.6) Rep(I•) =

M
∏

k=1

Rep(Q, d(Ik)).

We regard Rep(I•) ⊂ Rep similarly as the “block diagonal” elements of Rep.
If I is an indecomposable CQ-module with dimension vector dI , then it is easy to show for our situation

that G(Q, dI) · I = Rep(Q, dI). It follows that

(5.7) Rep(I•) = L(I•) · I•.

Let P (I•) ⊂ G be the parabolic subgroup given by the lower block triangular subgroup of G with Levi factor
L(I•). For i ∈ Q0 its i-th component is lower block triangular with diagonal blocks given by those of the
i-th component of L(I•).

Finally, let Z(I•) ⊂ Rep be the “lower block triangular” coordinate subspace of Rep, such that for
a ∈ Q1 the a-th component of Z(I•) consists of the matrices with zeroes in the entries strictly above the
“block diagonal” given by the a-th component of Rep(I•) and arbitrary entries allowed elsewhere.

Lemma 5.9.

(5.8) Z(I•) = P (I•) · I•.

The proof of this fact, which is equivalent to the condition (5.5), follows easily from the definition of
Ext. This is precisely the point where the careful ordering of the indecomposables in I• is used.

Example 5.10. For I• as in Example 5.8,

L(I•) = T3 × T4 ⊂ GL(3) × GL(4)

P (I•) = B− × B− ⊂ GL(3) × GL(4).
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So L(I•) is the maximal torus and P (I•) is the product of lower triangular Borels. (This always holds in
type A: each positive root αij contains at most one copy of each simple root). Rep(I•) and Z(I•) are the
coordinate subspaces of Rep given by

(5.9) Rep(I•) =





0 0 0 0
∗ 0 0 0
0 ∗ 0 0



 Z(I•) =





0 0 0 0
∗ 0 0 0
∗ ∗ 0 0



 .

6. Kempf collapsings

The geometric construction of a Kempf collapsing κ leads to divided difference formulae for the equivari-
ant cohomology class and K-theory class of the image of κ. We recall Reineke’s construction, which realizes
a Dynkin quiver locus as the image of a Kempf collapsing. This yields divided difference formula for quiver
and K-quiver polynomials.

Let G be a reductive algebraic group over C and P a parabolic subgroup. Let Y be a finite-dimensional
G-module and Z ⊂ Y a P -stable closed subscheme. In our application G is the product of general linear
groups of the form G(Q, d) and Z is a linear subspace of Rep(Q, d). Consider the G-equivariant fiber bundle
G ×P Z over the partial flag variety G/P with fiber Z over the identity:

G ×P Z = (G × Z)/P.

Here P acts diagonally on the right by (g, z)p = (gp, p−1 · z). Consider the map

κ : G ×P Z → Y

(g, z)P 7→ gz.

We call κ a Kempf collapsing. The map κ is proper so its image is closed.

Theorem 6.1. [21] Suppose that

• Z has rational singularities.
• OY → κ∗OG×P Z is surjective.
• Rjκ∗OG×P Z = 0 for j > 0.

Then Im κ is normal and Cohen-Macaulay. If in addition κ is birational to its image, then Im κ has rational
singularities.

Kempf suggests a condition to guarantee these criteria: that Z is a linear subspace and a completely
reducible P -module. In our application the latter condition doesn’t hold so we don’t assume it. Here is our
extension of Kempf’s result.

Theorem 6.2. Suppose Z has rational singularities and Rjκ∗OG×P Z = 0 for j > 0. Let Ĩm κ be the
normalization of the image of κ.

• If the general fiber of κ is connected, then Ĩm κ has rational singularities.
• If the general fiber of κ is connected and Im κ is normal (hence has rational singularities), then

κ∗OG×P Z = OIm κ.
• Conversely, if κ∗OG×P Z = OIm κ, then all fibers of κ are connected, and Im κ is normal (hence

has rational singularities).

Even without the last two conditions, the Kempf collapsing still determines the multidegree of Im κ.

Theorem 6.3. Suppose Z has rational singularities. Let m0 = HZ(Y ). Construct a sequence of poly-
nomials m1, m2, . . . where each polynomial is obtained from the previous one by a divided difference operator
∂α = 1

α
(1−sα), where α varies over the set of simple roots of G (taken in the Borel opposite to one contained

in P ), and the action of sα on SymZ(X(T )) is induced from the reflection action on X(T ). Don’t apply a
divided difference operator if the result is 0, and only stop when all ∂α give the result 0. This process always
terminates after the same number of steps, and the last polynomial in this sequence is c times HY (Im κ),
where c is the number of components in a general fiber of κ.

When we have both connected fibers and the vanishing of higher direct images of κ, then we can compute

the Hilbert numerator KY (Ĩm κ).
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Theorem 6.4. Suppose Z has at worst rational singularities, the general fiber of κ is connected, and
Rjκ∗OG×P Z = 0 for j > 0.

Let m0 = KY (Z), and construct a sequence of Laurent polynomials m1, m2, . . . by applying Demazure
operators πα := (1 − exp(−α))−1(1 − exp(α)sα) to m0, where α varies over the set of simple roots of G.
Stop when the application of any πα leaves the result unchanged. This process terminates after finitely many
steps. The last Laurent polynomial in this sequence is KY (X) where X is the pushforward of O

Ĩm κ
under

the normalization map Ĩm κ → Im κ → Y .
Explicitly,

KY (X) =
∑

w∈W

w ·
KY (Z)

∏

β∈Φ+(1 − exp(−β))

where Φ+ is the set of positive roots relative to the opposite of some Borel subgroup between T and P .

Remark 6.5. In Theorems 6.3 and 6.4, let w0 be the longest element in the Weyl group W . One may
take a reduced word for w0 and apply the sequence of divided differences indicated by the reduced word. In
cohomology one should skip an operator if its result is zero.

The general machine of Kempf collapsings and divided differences may be applied to quiver loci via
Reineke’s construction [28].

Theorem 6.6. Suppose Q is a Dynkin quiver and d is any dimension vector. Then each orbit closure
Ω ⊆ Rep(Q, d) is the image of a linear Kempf collapsing, i.e. there exists a parabolic subgroup P ⊂ G and a
P -invariant linear subspace Z ⊂ Rep such that Ω = G · Z.

By Lemma 5.9 a suitable choice for P and Z is given by P (I•) and Z(I•) where I• is chosen as in section
5.6. Then one may use the product formulae (3.3) for the starting element of the divided difference formulae
and apply divided differences to get the desired quiver or K-quiver polynomial.

Example 6.7. Continuing Examples 5.8 and 5.10, let x1, x2, x3, y1, y2, y3, y4 be the standard basis of
X(T ) where T ⊂ GL(3) × GL(4) is the maximal torus. [Z(I•)]T is the product of linear forms (xi − yj)
where (i, j) runs over the positions in M3×4 where Z(I•) contains a zero entry. We recover Example 2.2:

[Z(I•)]T = (x1 − y1)(x1 − y2)(x1 − y3)(x1 − y4)(x2 − y2)(x2 − y3)(x2 − y4)

× (x3 − y3)(x3 − y4)

[X2]G = ∂y
2∂y

1∂y
3∂y

2∂x
1 ∂x

2 ∂x
1 [Z(I•)]T

= s2[x − y]

where x = (x1, x2, x3) and y = (y1, y2, y3, y4). Note that two divided difference operators must be omitted
from a reduced decomposition of the longest element of W (G(Q, d)) = S3 × S4.

Example 6.8. Let Q be the type D4 quiver in Example 5.7, d = (2, 3, 2, 2), T the maximal torus in
G(Q, d), and let X(T ) have basis a1, a2, b1, b2, b3, c1, c2, d1, d2. Consider

I• = I(1,1,0,1)

⊕

I(1,1,1,0)

⊕

I(0,1,1,1),

ordering terms as in the reverse of the total order (5.4) on IndQ. Then P (I•) = B consists of the product
∏

i∈Q0
Bi of lower triangular subgroups Bi ⊂ GL(d(i)). Let z1 ∈ M2×3, z2 ∈ M3×2, and z3 ∈ M3×2 be the

matrices corresponding to the arrows (1, 2), (2, 3), and (2, 4) in Q1 respectively. Then the point I• and the
subspace Z = Z(I•) are given by

I1
• =

(

1 0 0
0 1 0

)

I2
• =





0 0
1 0
0 1



 I3
• =





1 0
0 0
0 1





z1 =

(

∗ 0 0
∗ ∗ 0

)

z2 =





0 0
∗ 0
∗ ∗



 z3 =





∗ 0
∗ 0
∗ ∗





Z(I•) has the equations z1
12 = z1

13 = z1
23 = 0, z2

11 = z2
12 = z2

22 = 0, and z3
12 = z3

22 = 0. To compute
the multidegree of the corresponding quiver locus Ω, we start with the multidegree HRep(Z) = (a1 −
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b2)(a1 − b3)(a2 − b3)(b1 − c1)(b1 − c2)(b2 − c2)(b1 − d2)(b2 − d2). Applying ∂a
1 , ∂c

1, and ∂d
1 we obtain

(a1 − b3)(a2 − b3)(b1 − c1)(b1 − c2)(b1 + b2 − d1 − d2). Applying ∂b
1∂

b
2∂

b
1 we obtain the answer

HRep(Ω) = s11[a − b] + s1[a − b]s1[b − c] + s1[a − b]s1[b − d] + s1[b − c]s1[b − d]

where sλ[X − Y ] is the double Schur polynomial. Note how the answer can be expressed as a positive sum
of products of double Schur polynomials in differences of sets of variables, where the differences correspond
to arrows in Q1. This seems to be an instance of a Schur or component formula (a la [23]) in type D.

7. Future directions

We believe that the method of Kempf collapsing yields divided difference formulae for a nontrivial family
of quiver loci for any quiver Q. In Remark 4.1 it was explained how one may define multidegrees and Hilbert
numerators for an arbitrary Q but with a condition on the quiver locus. Under those conditions, consider
Example 4.2 consisting of Mn×n under the adjoint action of G = GL(n) and in particular the closure X of
a nilpotent conjugacy class. Then X has a Kempf collapsing [30], but the best choice of the space Z is not
the direct sum of the indecomposables as in the Dynkin case. One may choose Z to be the set of matrices
that are strictly lower block triangular with diagonal block of sizes given by the transpose of the partition
coming from the nilpotent Jordan blocks, and P to be the lower block triangular parabolic for the same set
of diagonal blocks.

As indicated in the introduction, it would also be nice to obtain “positive” formulae for the (K-)quiver
polynomials.
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