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Abstract. For every proper coloring κ of a graph with vertex set {v1, v2, . . . , vn}, one obtains a monomial of
degree n defined by x

κ = xκ(v1)xκ(v2) . . . xκ(vn). Summing these monomial terms over all proper colorings of

a given graph G gives the chromatic symmetric function XG(x). Using Stanley’s expansion of the chromatic
symmetric function in the power sum basis {pλ(x)}λ`n of the space Λn of homogeneous symmetric functions
of degree n, we identify properties of our graph as various coefficients of the pλ(x) in this expansion for
XG(x).

We focus on caterpillars, that is, those trees which becomes a path when all of its vertices of degree
one, are deleted. This path is known as the spine of the caterpillar. A caterpillar C is said to be symmetric
if there is an isomorphism that exchanges the endpoints of the spine, and is called near-symmetric if the
caterpillar becomes symmetric upon shifting a single edge of C into the spine.

We use the coefficients of pλ(x) in the expansion of XC(x), for λ being a partition with two parts, to
show that the chromatic symmetric function distinguishes symmetric and near-symmetric caterpillars from
all other caterpillars. We also show that if two trees have a different number of leaves, then they also have
different chromatic symmetric functions.

Résumé. Nous sommes intéressés dans le problème de si la fonction symétrique chromatique XG(x) distingue
les arbres nonisomorphe. En utilisant l’expansion de Stanley de la fonction symétrique chromatique dans
la base {pλ(x)}λ`n de l’espace Λn des fonctions symétriques homogènes de degré n, nous identifions des
propriétés de notre graphique comme divers coefficients de pλ(x) dans cette expansion pour XG(x).

Nous concentrons sur chenilles, c’est-à-dire, ces arbres qui devient un chemin quand tous ses sommets
du degré un sont supprimés. Ce chemin est connu comme épine de la chenille. Une chenille C s’appelle
symétrique s’il y a un isomorphisme qui échange les sommets finaux de l’épine, et s’appelle proche-symétrique
si la chenille devient symétrique par l’insertion d’un arc de C en l’épine.

Nous employons les coefficients de pλ(x) dans l’expansion de XC(x), pour λ étant une cloison avec deux
parts, pour prouver que la fonction symétrique chromatique distingue les chenilles symétriques et chenilles
proche-symétriques de tous autres chenilles. Aussi, nous prouvons que la fonction symétrique chromatique
distingue les arbres qui ont un nombre différent de sommets du degré un.

1. Introduction

In this paper we shall only consider the case of simple graphs, that is, those with no loops or multiple
edges. Let x = x1, x2, . . . be a countable sequence of commutative inderterminates and G be a graph with
vertex set V and edge set E. Given a coloring κ of G, that is a map κ : V → N, we write xκ for the monomial
term of degree n = |V | defined by

xκ =
∏

v∈V

xκ(v).

The chromatic symmetric function XG(x) is then defined by taking

(1) XG(x) =
∑

κ

xκ,
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where the sum is over all proper colorings κ, i.e. those colorings for which κ(u) 6= κ(v) for every edge uv of
the graph G.

Any coloring of a graph partitions the vertex set into a finite number of color classes, and given a proper
coloring of G, permuting these color classes yields another proper coloring of G. Thus XG(x) is symmetric
in the inderterminates x1, x2, x3, . . .. For convenience, we shall drop reference to the variables and write XG

in place of XG(x).
The chromatic polynomial χ(G, k) of a graph G gives the number of proper colorings using only k colors.

We note that XG(1k) = χ(G, k), where 1k denotes setting x1 = x2 = . . . = xk = 1 and xk+1 = xk+2 =
. . . = 0, since then a monomial survives if, and only if, it comes from a proper coloring using the colors
{1, 2, . . . , k}, in which case the contribution to the sum is 1. It is easy to see that the chromatic polynomial
of any n-vertex tree T is given by χ(T, k) = k(k − 1)n−1.

We are interested in the following question of Stanley [Stanley, 1995].

Problem 1.1. Does the chromatic symmetric function distinguish every pair of nonisomorphic trees?

That is, given trees T1 and T2, do we have XT1
= XT2

if, and only if, T1
∼= T2?

The rest of the paper is structured as follows. In the next section we derive some straightforward results
for graphs. In Section 3 we look at a labelling procedure for caterpillars, and discuss its relation to symmetric
caterpillars. Section 4 uses this labelling procedure to solve Problem 1.1 in the case of symmetric and near-
symmetric caterpillars. In Section 5 we turn to counting the number of n-vertex symmetric caterpillars.
Finally, in Section 6, we conclude by collecting our results, showing the existence of certain families of
graphs.

1.1. Acknowledgements. The author is extremely grateful to Stephanie van Willigenburg for direct-
ing us to Problem 1.1, for always having fresh suggestions, and for doing a thorough job of editing. In
addition, many thanks must go to Richard Stanley who not only inspired this work, but also passed com-
ments on it back our way. Particularly, the proposition in Section 6 came about from his suggestion to
combine our various results. Further thanks go out to Jeremy Martin for taking an interest in this problem,
and for spending some time reading my work and offering further suggestions.

2. Definitions and General Results

If {pλ(x)}λ`n = {pλ}λ`n is the power sum basis of Λn, the space of homogeneous symmetric functions
of degree n, then we have the following.

Theorem 2.1. [Stanley, 1995, Theorem 2.5] For an n-vertex graph G

XG =
∑

F⊆E

(−1)|F |pλ(F ),

where λ(F ) is the partition of n whose parts correspond to the sizes of the connected components in the

spanning subgraph of G with edge set F .

From its definition, it is clear that XG is homogeneous of degree n. Hence graphs with a different number
of vertices have different chromatic symmetric functions.

We shall use the notation [pλ]XG to denote the coefficient of pλ in the expansion of XG in terms of the
basis {pλ}λ`n of Λn. From Theorem 2.1 we have

(2) [pλ]XG =
∑

F ⊆ E
λ(F )=λ

(−1)|F |.

The only way to obtain the partition λ(F ) = (1n) is for F to include no edges of G, so the only
contribution to the coefficient of p(1n) comes from F = ∅. Hence, for each graph G,

(3) [p(1n)]XG = 1.

The only way to obtain the partition λ(F ) = (2, 1n−2) is for F to include a single edge of G. Hence the
only contributions to the coefficient of p(2,1n−2) is from the sets F with |F | = 1. Thus Equation 2 gives

(4) [p(2,1n−2)]XG = −|E|,
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for every graph with edge set E. Similarly

(5) [p(2k,1n−2k)]XG = (−1)kµk(G),

where µk(G) is the number of ways of selecting k vertex-disjoint edges in G, that is, the number of matchings

in G of size k.

In the interest of Problem 1.1, we turn to the case where our graph G is a tree T . We restrict to the
case of n ≥ 3 vertices. Then the partition λ(F ) = (k, 1n−k) arises precisely when the edge set F determines
a k-vertex subtree of T , requiring exactly k − 1 edges. Thus Equation 2 gives

(6) [p(k,1n−k)]XG = (−1)k−1Tk,

where Tk is the number of k-vertex subtrees of T . More generally, if λ = (λ1, λ2, . . . , λj), we can show that

(7) [pλ]XT = (−1)n−jTλ,

where Tλ is the number of partitions of T into disjoint subtrees of size λ1, λ2, . . . , λj .

Within the context of trees, it is common to refer to a vertex of degree one as a leaf. Vertices of degree
larger than one are called internal vertices. We say that an edge of a graph is internal if both of its endpoints
are internal. Otherwise at least one endpoint of the edge is a leaf, and we call the edge external.

Every edge that is removed from a tree T increases the number of connected components by one, so
to obtain a partition λ(F ) with two parts requires F to be of the form E − {e}, where e is an edge of T .
In the next few sections we inspect the partitions obtained by removing internal edges, and show how the
coefficients of these partitions in XT help attack Problem 1.1 in the case of caterpillars. Before moving in
that direction, we inspect the simpler case of partitions obtained by removing an external edge from a tree.

Proposition 2.2. If T is an n-vertex tree with n ≥ 3, then

[p(n−1,1)]XT = (−1)nL(T ),

where L(T ) is the number of leaves of T .

Thus the chromatic symmetric function distinguishes trees with a different number of leaves.

Proof. Every leaf is the endpoint of some external edge of T , and since there are at least three vertices
in T , no edge of T has a leaf as both of its endpoints. Thus the number of leaves in T is the same as the
number of external edges in T .

To obtain the partition λ(F ) = (n − 1, 1) in Equation 2, the edge subset F must isolate a single vertex
of T . This can be accomplished when the set F ⊆ E excludes a single external edge of T , and this is the
only way this partition can arise. Since there are n − 1 edges in T , these F have |F | = n − 2, and hence

(8) [p(n−1,1)]XT = (−1)n−2L(T ),

where L(T ) is the number of leaves of T .
�

3. Caterpillars, Spine Sets, and Symmetry

A caterpillar C is a tree which contains a path consisting of internal vertices of C such that every
vertex of C that is not on the path is adjacent to a vertex on the path. This path is called the spine of
the caterpillar. With our definitions, the spine of a caterpillar is the unique subgraph induced by the set
of internal vertices of the caterpillar. If we do not make the requirement that the vertices of the spine be
internal vertices of C, which may prove convenient in some instances, then the spine is no longer unique.

If the spine of a caterpillar consists of the path of vertices x1, x2, . . . , xk, then we call δ = (deg(x1), deg(x2), . . . , deg(xk))
a degree sequence of the spine; the other degree sequence being (deg(xk), deg(xk−1), . . . , deg(x1)). We call
the caterpillar symmetric if the degree sequence δ is palindromic, that is, when the two possible degree
sequences of the spine are equal. Equivalently, a caterpillar C is symmetric if there is an automorphism of
C that switches endpoints of the spine. Visually, suitably drawn, one half of the caterpillar is the mirror
image of the other.
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Example:
Here we see two symmetric caterpillars.
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δ = (3, 2, 4, 5, 4, 2, 3)

δ = (4, 4, 3, 3, 4, 4)

Given an n-vertex caterpillar, we shall create a labelling of its edges with the numbers 1, 2, 3, . . . , n − 1
as follows.

First take an endpoint of the spine and mark it. Now starting at the marked vertex, we iterate:

(1) Let u be the vertex of the spine which has just been marked.
(2) Label the unlabelled external edges incident to u with the smallest unused labels among 1, 2, 3, . . . n−

1.
(3) If there is an unlabelled internal edge incident with u, say e = uv, then label e with the smallest

unused label among 1, 2, 3, . . . n−1, mark vertex v, and proceed back to 1. If there is no unlabelled
internal edge incident to u, then the labelling is complete.

Collecting the labels of the internal edges of a caterpillar C gives rise to a set SC ⊆ {2, 3, . . . , n − 2}
called a spine set of C. Note that two spine sets of a given caterpillar are possible, since either endpoint of
the spine could have been chosen to be initially marked in the labelling procedure. If a degree sequence of
the spine is δ = (δ1, δ2, . . . , δk) with δ1 corresponding to the degree of vertex v, then the spine set of C one
obtains by initially marking v is

SC = {δ1, δ1 + δ2 − 1, δ1 + δ2 + δ3 − 2, . . . , δ1 + δ2 + . . . + δk−1 − k + 2}.

Conversely, given any set S ⊆ {2, 3, . . . , n − 2}, say S = {x1, x2, . . . , xk} where x1 < x2 < . . . < xk, we
can associate to S the n-vertex caterpillar CS that has spine set S by using the caterpillar whose spine has
the degree sequence given by

δ = (x1, x2 − x1 + 1, x3 − x2 + 1, . . . , xk − xk−1 + 1, n − xk).

Then for each n-vertex caterpillar C with k internal edges, we have

(9) CSC

∼= C.
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Example:
Below we see a caterpillar that has had its edges labelled as described by the above procedure, where

the vertex labelled v is the one that was initially marked. The spine of the caterpillar has been highlighted.
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From this we obtain the spine set SC = {4, 6, 7, 10, 15}.
Conversely, given the set S = {4, 6, 7, 10, 15}, we can construct the 17 vertex caterpillar CS with |S| = 5

internal edges by taking a caterpillar with spine degree sequence given by

δ = (4, 6 − 4 + 1, 7 − 6 + 1, 10 − 7 + 1, 15 − 10 + 1, 17 − 15)

= (4, 3, 2, 4, 6, 2).

This is exactly the caterpillar we began with.

Given a set S ⊆ {2, 3, . . . , n − 2}, we call the set S′ = {n − i| i ∈ A} the reflection of S. If the set S

satisfies S = S′ we shall call S a symmetric subset. The following result shows that the two spine sets one
can obtain from a caterpillar are reflections of one another.

Lemma 3.1. For each S ⊆ {2, 3, . . . , n − 2} we have SCS
∈ {S, S′}.

Proof. If S ⊆ {2, 3, . . . , n − 2}, then there are n vertices in C = CS and n − 1 edges. Suppose an
endpoint of the spine of C is chosen to be initially marked, and the labelling procedure has been completed,
producing a spine set T .

When the internal edge e of C was labelled k there must have been n−1−k edges left to label. Further,
starting the labelling procedure from the opposite endpoint of the spine, when we reach the point of labelling
e, these n − k − 1 edges are exactly the edges that have been labelled. Thus e will be labelled n − k, as
required. �

Since this result shows S ′
C is also a spine set for the caterpillar C, Equation 9 yields

(10) CS ′

C

∼= C.

Corollary 3.2. If C1 and C2 are n-vertex caterpillars, then C1
∼= C2 if, and only if, either SC1

= SC2

or SC1
= S

′
C2

.

Proof. If C1
∼= C2, then there is an isomorphism between the two which takes the spine of one

caterpillar onto the spine of the other. If we perform the labelling procedure on each caterpillar by starting
at the ends of the spine which correspond through the isomorphism, we will produce the same spine set for
each caterpillar; that is, SC1

= SC2
. If we had started the labelling procedure from the opposite end of

one of the spines, then the proof of Lemma 3.1 shows that we obtain the reflected spine set. In which case
SC1

= S ′
C2

.
Conversely, if either SC1

= SC2
or SC1

= S ′
C2

, then by using either Equation 9 or Equation 10 we
obtain C1

∼= C2, as desired. �

Proposition 3.3. An n-vertex caterpillar C is symmetric if, and only if, its spine set SC is a symmetric

subset of {2, 3, . . . , n − 2}.

Proof. If a caterpillar is symmetric, that is, the degree sequence of the spine is palindromic, then the
labelling procedure would produce the same spine set SC from either end. Since we know from the proof
of Lemma 3.1 that labelling from the opposite end should give the reflected spine set, this shows that if the
caterpillar C is symmetric, then so is its spine set SC .
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Conversely, if the degree sequence of the spine is not palindromic, we can easily check that the corre-
sponding spine set is not symmetric. Suppose the degree sequence for C is δ = (δ1, δ2, . . . , δk) where

(11) δ1 = δk, δ2 = δk−1, . . . , and δt = δk−t+1,

but

(12) δt+1 6= δk−t.

Then, labelling the caterpillar from the one end of the spine gives the spine set

{δ1, δ1 + δ2 − 1, . . . , δ1 + δ2 + . . . + δk−1 − k + 2}

while labelling the caterpillar from the opposite end of the spine gives the spine set

{δk, δk + δk−1 − 1, . . . , δk + δk−1 + . . . + δ2 − k + 2}.

The two spine sets above are written with elements shown in increasing order of size. Thus to check if they are
the same sets, we need only check that, in the order shown, the j-th element of one matches the j-th element
of the other, for each j. The first t elements of these sets (in the order shown) are the same by Equation 11,
but by using both Equations 11 and 12, we find that the t + 1-th elements, δ1 + δ2 + . . . + δt+1 − k + 2 and
δk + δk−1 + . . . + δk−t − k + 2 respectively, differ. �

Corollary 3.4. If C1 and C2 are n-vertex caterpillars and at least one of them is symmetric, then

C1
∼= C2 if, and only if, SC1

= SC2
.

Proof. Without loss of generality, let C2 be symmetric. Proposition 3.3 gives SC2
= S

′
C2

. Now
Corollary 3.2 gives the desired result. �

4. Results on XC

4.1. A Bound on Coefficients. For each i ∈ SC , i corresponds to some internal edge ei of C, and the
graph obtained by removing the edge ei from C consists of two disjoint caterpillars with i − 1 and n− i− 1
edges respectively. Hence the set F = E − {ei} induces the partition

(13) λ(F ) = (i, n − i).

Whenever λ is a partition with two parts and C is a caterpillar there is a straightforward bound on the
coefficient of pλ, namely

Proposition 4.1. Let C be an n-vertex caterpillar and λ have two parts. Then either

(1) (−1)n[pλ]XC = L(C), if λ = (n − 1, 1), or

(2) 0 ≤ (−1)n[pλ]XC ≤ 2 otherwise.

Proof. From Proposition 2.2, we have [pλ]XT = (−1)nL(T ) in the case of λ = (n − 1, 1). Any other
partition λ with two parts can only arise as λ(E − {ei}) for some i ∈ SC . We show that any such λ can
arise at most twice.

We are looking for occurrences of λ = (j, n − j), and λ can only arise from the edges, if there are any,
which would correspond to the potential elements j and n− j of SC . Thus the magnitude of the coefficient
of pλ could be at most 2, if both j, n − j ∈ SC . �

From the proof of Proposition 4.1, we have the following fact.

Corollary 4.2. If λ = (j, n − j), 1 < j < n, is a partition of n into two parts and C is a n-vertex

caterpillar, then [pλ]XC = (−1)n|{j, n − j} ∩ SC |.
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4.2. Symmetric and Near-Symmetric Caterpillars.

Theorem 4.3. The chromatic symmetric function distinguishes the symmetric caterpillars from the

nonsymmetric caterpillars. Further, it distinguishes among the symmetric caterpillars.

Proof. Let C be a symmetric caterpillar. We saw in Proposition 3.3 that a given n-vertex caterpillar
C was symmetric if, and only if, SC is symmetric. That is, n − j ∈ SC if, and only if, j ∈ SC .

In the case when n is even and j = n
2 we have j = n − j, but otherwise we have j 6= n − j. Thus, for a

symmetric caterpillar, Corollary 4.2 gives

(14) (−1)n[p(j,n−j)]XC = 0 if j 6∈ SC ,

(15) (−1)n[p(j,n−j)]XC = 2 if j ∈ SC and j 6=
n

2
,

and if n is even, then

(16) (−1)n[p( n

2
, n

2
)]XC = 1 if

n

2
∈ SC .

We have shown all symmetric caterpillars satisfy Equations 14, 15, and 16. Conversely, if a caterpillar
satisfies Equations 14, 15, and 16, we shall show it is symmetric. Let a caterpillar C satisfy Equations 14,
15, and 16 and let j be a member of SC . To show C is symmetric, we need only show that n − j ∈ SC . If
j = n

2 , then n− j = j, so immediately n− j ∈ SC . If j 6= n
2 , then by Equation 15 and Corollary 4.2 we find

n − j ∈ SC , as required.

Hence we can use the chromatic symmetric function to distinguish the symmetric caterpillars from those
that are nonsymmetric. Further, by Equations 14, 15, 16, and Corollary 4.2, the spine set of the caterpillar
can be determined from its chromatic symmetric function. From Equation 9 we know that the spine set
of a caterpillar determines the caterpillar. Thus chromatic symmetric function distinguishes the symmetric
caterpillars from one another.

�

We can now make a slight perturbation of Theorem 4.3. Towards this end, we shall say that a nonsym-
metric caterpillar C is near-symmetric if SC ∪{i} is a symmetric subset for some number i ∈ {2, 3, . . . n−2}.

Example: The caterpillar C with 11 vertices whose spine set is SC = {3, 4, 8} is near-symmetric, as
{3, 4, 7, 8} is a symmetric subset of {2, 3, . . . , 9}.

Theorem 4.4. The chromatic symmetric function distinguishes the near-symmetric caterpillars from

those caterpillars which are not near-symmetric. Further, it distinguishes among the near-symmetric cater-

pillars.

Proof. Let C be a near-symmertric caterpillar, say with SC ∪{n− i} being a symmetric subset. Then
necessarily i ∈ SC . Looking at the coefficients of pλ in XC for partitions into two parts gives

(17) (−1)n[p(j,n−j)]XC = 0 if j 6∈ SC ,

(18) (−1)n[p(j,n−j)]XC = 2 if j ∈ SC and j 6=
n

2
, i,

(19) (−1)n[p(i,n−i)]XC = 1,

and if n is even, then

(20) (−1)n[p(j,n−j)]XC = 1 if j =
n

2
∈ SC .

Conversely, any caterpillar C which satisfies Equations 17, 18, 19, and 20 for some value i is found to
be near-symmetric upon considering Corollary 4.2, as adding n − i to SC creates a symmetric subset.

As before, from Equations 17, 18, 19, and 20 and Corollary 4.2 we see that the chromatic symmetric
function of a near-symmetric caterpillar determines the spine set SC of the caterpillar. Then by Equation 9,
we can recover C from SC . �
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Combining Theorems 4.3 and 4.4 we obtain the following result.

Theorem 4.5. Let C be the set of caterpillars and S be the set of caterpillars that are either symmetric

or near-symmetric. Then if C1 ∈ C and C2 ∈ S, we have XC1
= XC2

if, and only if, C1
∼= C2.

5. Counting Symmetric Caterpillars

Proposition 5.1. Let S(n, k) denote the number of nonisomorphic n-vertex symmetric caterpillars

with k internal edges.

(1) If k is even, S(n, k) =

(

bn−3
2 c
k
2

)

.

(2) If k is odd, then

(a) S(n, k) =

(

n
2 − 2
k−1
2

)

when n is even, and

(b) S(n, k) = 0 when n is odd.

Proof. Suppose k, the number of edges in the spine, is even. Then visually the line of symmetry of C

crosses the spine at the vertex in the center of the spine.
If n is even, then n − 1, the number of edges, is odd. Hence one of the edges is forced to be along the

line of symmetry of C. Under our labelling procedure, and by redrawing if necessary, we can assume the
edge along the line of symmetry is labelled n

2 . For example:
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From the symmetry of the caterpillar, the rest of the caterpillar is determined once we know which k
2

of the first n
2 − 1 edges are internal edges. Thus we count the number of sets S ⊆ {2, 3, . . . , n

2 − 1} with k
2

elements, giving

(

n
2 − 2

k
2

)

=

(

n−4
2
k
2

)

=

(

bn−3
2 c
k
2

)

symmetric caterpillars.

If n is odd, then the number of edges is even and, by redrawing if necessary, n−1
2 of the n − 1 edges

lie on each side of the line of symmetry. Further, knowing which of the first n−1
2 edges are internal edges

determines the caterpillar. Thus we count sets of the form S ⊆ {2, 3, . . . , n−1
2 } containing k

2 elements,

obtaining

(

n−1
2 − 1

k
2

)

=

(

n−3
2
k
2

)

=

(

bn−3
2 c
k
2

)

symmetric caterpillars. This completes the proof of 1.

Now if k, the number of edges in the spine, is odd, then visually the line of symmetry of C bisects the
central edge of the spine. Apart from this edge, every other edge is paired with its reflection across the line
of symmetry. Thus the total number of edges is odd, forcing n to be even. This gives S(n, k) = 0 for odd n.

If we assume n is even and C is symmetric, then the central edge of the spine of C is labelled n
2 by our

labelling procedure, and, as before, knowing the internal edges of one side of the caterpillar determines the
other.

1

2 n − 2

n
2 n − 1

r

r

r

r

r

r r

r r

r r

r

r

r

r

r

Thus we seek to count all sets of the form S ⊆ {2, 3, . . . , n
2 − 1} containing k−1

2 elements. This gives
(

n
2 − 2
k−1
2

)

symmetric caterpillars in this final case. �

From this result, one can check that the total number of symmetric caterpillars with n vertices is 2b
n−2

2
c.

A more direct approach can be found in [Harary/ Schwenk, 1973], where it is also shown that the total

number of caterpillars with n vertices is 2n−4 + 2b
n−4

2
c.

6. Conclusions

In the majority of this paper we have remained within the context of caterpillars as opposed to trees in

general. As previously noted, there are 2n−4 +2b
n−4

2
c n-vertex caterpillars. We have proved the result in the

case of symmetric caterpillars, of which there are 2b
n−2

2
c, and also in the case of near-symmetric caterpillars

[Morin, 2005].
By collecting various results, we find that we have proved the following.

Proposition 6.1. There are collections Qn of n-vertex graphs such that:

(1) limn→∞ |Qn| = ∞,

(2) χ(G1, k) = χ(G2, k) for every pair of graphs G1, G2 ∈ Qn, and

(3) If G1, G2 ∈ Qn and XG1
= XG2

, then G1 = G2.
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Proof. We look at the collection Qn of symmetric caterpillars with n vertices. We have Property 1
by Proposition 5.1. Since all the caterpillars in Qn has n vertices, we have χ(G, k) = k(k − 1)n−1 for each
G ∈ Qn. Finally Theorem 4.3 gives Property 3. �

We note that Qn could have also been chosen to be the set of near-symmetric n-vertex caterpillars in
the above proof.
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