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Abstract. The Grothendieck group of the tower of symmetric group algebras has a self-dual graded Hopf
algebra structure. In this work, we define the general notation of a tower of algebras and study the two
Grothendieck groups on this tower. Using representation theory, we prove that the two Grothendieck groups
are graded Hopf algebras. Moreover, we define a paring and show that the two Grothendieck groups are
dual to each other as Hopf algebras.

Résumé. Les configurations gréées sont des objets combinatoires inspirés par l’ansatz de Bethe, et qui sont
en correspondence avec les éléments cristallins de plus haut poids. Dans cette note, nous introduisons le
concept de ”configurations gréées généralisées”, en construisant une structure cristalline dans l’espace des
configurations gréées.

1. Introduction

In 1977, L. Geissinger realized that Sym (symmetric functions in infinite variables) is a self-dual graded
Hopf algebra [6], which can be interpreted as the self-dual Grothendieck Hopf algebra of the tower of
symmetric groups

⊕
n≥0 CSn using the work of Frobenius and Schur. After this, mathematicians have

encountered many instances of combinatorial Hopf algebras that can be realized as the Grothendieck Hopf
algebras of a tower of algebras. In each instance, they study a pair of dual Hopf algebras, and it turns out
that this duality can be interpreted as the duality of the Grothendieck groups of an appropriate tower of
algebras. For example, C. Malvenuto and C. Reutenauer established the duality between the Hopf algebra of
NSym (noncommutative symmetric functions) and the Hopf algebra of QSym (quasi-symmetric functions)
when looking at the combinatorics of descents [12]. Later, D. Krob and J.-Y. Thibon showed that this
duality can be interpreted as the duality of the Grothendieck groups associated to

⊕
n≥0 Hn(0) the tower of

Hecke algebras at q = 0 [10]. More recently, N. Bergeron, F. Hivert, and J.-Y. Thibon showed that if one
uses

⊕
n≥0 HCln(0) the tower of Hecke-Clifford algebras at q = 0, then one gets a similar interpretation for

the duality between the Peak algebra and its dual [2].
In this work, we study the algebraic structure on the Grothendieck groups G0(A) and K0(A) in the

more general case where (A =
⊕

n≥0 An, ρm,n) is a graded algebra and each component An is an algebra.
We will call A a tower of algebras if it satisfies some conditions. No formal study of this kind has been done
so far. Up to this point it was not clear what were the right conditions to impose on a tower of algebra to
get the desired algebraic structure on their Grothendieck groups. Here, we find a list of axioms on a tower
of algebras which will imply that their Grothendieck groups are graded Hopf algebras. Moreover, we define
a paring and show that the corresponding Grothendieck groups are dual to each other as Hopf algebras if
the tower of algebras satisfying an additional condition.

This paper is divided into 5 sections as follows. Section 1 is the introduction. In Section 2 we recall
some definitions and propositions about bialgebras and Grothendieck groups. In Section 3 we discuss the
axioms on a tower of algebras (A =

⊕
n≥0 An, ρm,n) with ρ preserving unities so that their Grothendieck
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groups are graded Hopf algebras. Moreover, we define a paring and show that the Grothendieck groups are
dual to each other as Hopf algebras. In Section 4 we weaken the condition of ρ and modify the definitions
of inductions and restrictions to get the similar results as above. In Section 5 we will give some examples to
indicate that the Grothendieck groups of a tower of algebras satisfying these axioms are Hopf algebras dual
to each other, and these axioms are necessary.

2. Notations and Propositions

In this section there is a brief review of some ideas from the theory of bialgebras [6] and Grothendieck
groups [8] which is useful for later discussion.

Definition 2.1. Let K be a commutative ring. A K-algebra B is a K-module with multiplication π :
B⊗K B → B and unit map µ : K → B satisfying associativity and unitary property, i.e., π(π⊗1) = π(1⊗π)
and π(µ⊗1) = π(1⊗µ), where 1 is the identity map of module B. Denote this algebra by the triple (B, π, µ).

A K-coalgebra C is a K-module with comultiplication ∆ : C → C ⊗ C and counit map ε : C → R
satisfying coassociativity and counitary property, i.e., (∆⊗ 1)∆ = (1⊗∆)∆ and (ε⊗ 1)∆ = (1⊗ ε)∆, where
1 is the identity map of module C. Denote this coalgebra by the triple (C, ∆, ε).

If a K-module B is simultaneously an algebra and a coalgebra it is called a bialgebra provided these
structures are compatible in the sense that the comultiplication and counit are algebra homomorphisms.
Explicitly this means that ε(µ(1)) = 1, ε(gh) = ε(g)ε(h), ∆µ(1) = µ(1) ⊗ µ(1), and ∆(gh) = Σgihp ⊗ g′ih

′
p

if ∆(g) = Σgi ⊗ g′i and ∆(h) = Σhp ⊗ h′
p, where 1 is the unity of K and gh = π(g ⊗ h). This is equivalent

to requiring that the multiplication and unit map are coalgebra homomorphisms. Denote this bialgebra by
the 5-tuple (B, π, µ,∆, ε).

A K-linear map γ : H → H on a bialgebra H is an antipode if for all h in H , Σhiγ(h′
i) = ε(h)1H =

Σγ(hi)h
′
i when ∆h = Σhi ⊗ h′

i. A Hopf algebra is a bialgebra with antipode.

Definition 2.2. An algebra B is a graded algebra if there is a direct sum decomposition B =
⊕

Bi (i ≥
0) such that the product of homogeneous of degrees p and q is homogeneous of degree p + q, that is,
π(Bp ⊗ Bq) ⊆ Bp+q, and µ(K) ⊆ B0.

A coalgebra C is a graded coalgebra if there is a direct sum decomposition C =
⊕

Ci (i ≥ 0) such that
∆(Cn) ⊆

⊕
(Ck ⊗ Cn−k) and ε(Cn) = 0 if n ≥ 1.

A bialgebra H =
⊕

Hi over K is called graded connected if it is Z-graded, concentrated in nonnegative
degrees, and satisfies H0 = K1H, where K is a field.

It is a known fact that a connected bialgebra is a connected Hopf algebra [17].
The coassociativity and counitary property are dual to associativity and unitary property, respectively.

It is natural to expect the dual of a coalgebra to be an algebra and vice versa. In fact, if a module is a
graded bialgebra with all homogeneous components finitely generated, then its graded dual is also a graded
bialgebra [6].

The definition of Grothendieck groups is introduced in [8]. Let B be an arbitrary algebra. Denote

BM = the category of all left B-modules,

Bmod = the category of all finitely generated left B-modules,
P(B) = the category of all finitely generated projective left B-modules.

Definition 2.3. Let C be one of the above categories. Let F be the free abelian group generated by
symbols (M), one for each isomorphism class of modules M in C. Let F0 be the subgroup of F generated
by all expressions

(M) − (L) − (N)

arising from all short exact sequences
0 → L → M → N → 0

in C. The Grothendieck group K0(C) of the category C is defined by

K0(C) = F/F0,

an abelian additive group. For M ∈ C, let [M ] denote its image in K0(C).

Each x ∈ K0(C) is expressible as a difference [M ]− [N ] with M, N ∈ C, though not in a unique manner.
Furthermore, it may occur that x = 0 even though M is not isomorphic to N .
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Definition 2.4. The Grothendieck group G0(B) of the algebra B is defined by

G0(B) = K0(Bmod).

The Grothendieck group K0(B) of the algebra B is defined by

K0(B) = K0(P(B)).

Thus, G0(B) is generated by expressions [M ], one for each isomorphism class (M) of finitely generated
left B-modules M , with relations

[M ] = [M ′] + [M ′′]

for each short exact sequence 0 → M ′ → M → M ′′ → 0 of finitely generated left B-modules.
K0(B) is generated by expressions [P ], one for each isomorphism class (P ) of finitely generated left

B-modules P , with relations

[P ⊕ P ′] = [P ] + [P ′]

for all P, P ′ ∈ P(B). (Note that each short exact sequence 0 → P ′ → P → P ′′ → 0 of modules from P(B)
must split, because P ′′ is a projective B-module. Hence, the defining relations for K0(B) can be expressed
in the simpler form involving direct sums, rather than exact sequences from P(B).)

Now let B be a finite-dimensional algebra over a field K. Let {V1, · · · , Vs} be a complete list of noniso-
morphic simple B-modules. Then their projective covers {P1, · · · , Ps} are a complete list of nonisomorphic
indecomposable projective B-modules [13]. With these lists, we have

Proposition 2.1.

G0(B) =

s⊕

i=1

Z[Vi]

is a free abelian group with basis {[V1], · · · , [Vs]}. And

K0(B) =

s⊕

i=1

Z[Pi]

is a free abelian group with basis {[P1], · · · , [Ps]}.

Let A be an algebra and B ⊆ A a subalgebra. Let M be a (left) A-module and N a (left) B-module,
then the induction of N from B to A is IndA

BN = A⊗B N an A-module and the restriction of M from A to
B is ResA

BM = HomA(A, M) a B-module.

3. Grothendieck groups of a tower of algebras (Preserving unities)

In this section, first we list all the axioms we need on a graded algebra (A =
⊕

n≥0 An, ρm,n) with ρ

preserving unities. Then we define the inductions and restrictions on their Grothendieck groups G0(A) and
K0(A) respectively. After this, we use these definitions to construct the multiplications and comultiplica-
tions on G0(A) and K0(A) and show that G0(A) and K0(A) are graded connected Hopf algebras with these
operators. Moreover, we define a paring on the Grothendieck groups G0(A) and K0(A). It develops that
they are dual to each other as Hopf algebras.

Let A =
⊕

n≥0 An, we call it a tower of algebras over field K = C if the following conditions are satisfied:

(1) An is a finite-dimensional algebra with unit, for each n. A0
∼= K.

(2) There is an external graded multiplication ρm,n : Am ⊗ An → Am+n such that
(a) ρm,n is an injective homomorphism of algebras, for all m and n (sending 1m ⊗ 1n to 1m+n);
(b) ρ is associative, that is, ρl+m,n · (ρl,m ⊗ 1n) = ρl,m+n · (1l ⊗ ρm,n) := ρl,m,n, for all l, m, n.

(3) An+m is a two-sided projective An ⊗ Am-module by the action defined to be a · (b ⊗ c) = aρm,n(b ⊗
c) and (b ⊗ c) · a = ρm,n(b ⊗ c)a, for a ∈ Am+n, b ∈ Am and c ∈ An.

(4) For every primitive idempotent g in Am+n, Am+ng ∼=
⊕

(Am⊗An)(e⊗f) as (left) Am⊗An-modules
if and only if gAm+n

∼=
⊕

(e⊗f)(Am⊗An) as (right) Am⊗An-modules for the same indexing of idempotents
(e ⊗ f)’s in Am ⊗ An.
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(5) The following equality holds

[Res
Am+n

Ak⊗Am+n−k
Ind

Am+n

Am⊗An
(M ⊗ N)]

=
∑

t+s=k[Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(ResAm

At⊗Am−t
M ⊗ ResAn

As⊗An−s
N)]

for all 0 < k < m + n, M an Am-module and N an An-module. We will explain the notations later.
Why we need these conditions? We can give a brief explanation here. Condition (1) guarantees that

their Grothendieck groups are grade connected; with conditions (2) and (3) the inductions and restrictions
are well defined; with (4) the duality holds; with (5) the multiplication and comultiplication are compatible.
We will come up to the details later.

Now we define the inductions on G0(A) as follows:

im,n : G0(Am)
⊗

Z
G0(An) → G0(Am+n)

[M ] ⊗ [N ] 7→ [Ind
Am+n

Am⊗An
M ⊗ N ],

where

Ind
Am+n

Am⊗An
M ⊗ N = Am+n

⊗
Am⊗An

(M ⊗ N)

=
Am+n ⊗ M ⊗ N

< a ⊗ [(b ⊗ c)(w ⊗ u)] − [aρm,n(b ⊗ c)] ⊗ w ⊗ u >
,

for a ∈ Am+n, b ∈ Am, c ∈ An, w ∈ M and u ∈ N. Here let k = t + s, define the twisted induction

Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(M1 ⊗ M2) ⊗ (N1 ⊗ N2)

= (Ak ⊗ Am+n−k)
⊗̃

At⊗Am−t⊗As⊗An−s
((M1 ⊗ M2) ⊗ (N1 ⊗ N2)).

This means
(a ⊗ b) ⊗ [(c1 ⊗ c2) · (w1 ⊗ w2) ⊗ (d1 ⊗ d2) · (u1 ⊗ u2)]

≡ [aρt,s(c1 ⊗ d1) ⊗ bρm−t,n−s(c2 ⊗ d2)] ⊗ (w1 ⊗ w2 ⊗ u1 ⊗ u2),

where a ∈ Ak, b ∈ Am+n−k, c1 ∈ At, c2 ∈ Am−t, d1 ∈ As, d2 ∈ An−s, wi ∈ Mi, ui ∈ Ni. Also define the
restrictions

rk,l : G0(An) → G0(Ak)
⊗

Z
G0(Al) with k + l = n

[N ] 7→ [ResAn

Ak⊗Al
N ],

where ResAn

Ak⊗Al
N = HomAn

(An, N) is an Ak ⊗ Al-module by the action defined to be ((b ⊗ c) · f)(a) =
f(aρk,l(b ⊗ c)), for a ∈ An, b ∈ Ak, c ∈ Al and f ∈ HomAn

(An, N).

Proposition 3.1. i and r are well defined.

Proof. Assume [M ] = [M ′] + [M ′′]. Since Am+n is a (right) projective Am ⊗ An-module, it is not
difficult to get that

0 → Am+n ⊗Am⊗An
(M ′ ⊗ N) → Am+n ⊗Am⊗An

(M ⊗ N) → Am+n ⊗Am⊗An
(M ′′ ⊗ N) → 0

is exact as left Am+n-modules by the properties of tensor product and short exact sequence. Hence

[Ind
Am+n

Am⊗An
M ⊗ N ] = [Ind

Am+n

Am⊗An
M ′ ⊗ N ] + [Ind

Am+n

Am⊗An
M ′′ ⊗ N ].

Similarly,

[Ind
Am+n

Am⊗An
M ⊗ N ] = [Ind

Am+n

Am⊗An
M ⊗ N ′] + [Ind

Am+n

Am⊗An
M ⊗ N ′′]

for [N ] = [N ′] + [N ′′]. Hence i is well defined on G0(A).
Assume [N ] = [N ′] + [N ′′]. Since HomAn

(An, M) ∼= M for all An-modules M , it is clear that

0 → HomAn
(An, N ′) → HomAn

(An, N) → HomAn
(An, N ′′) → 0

is exact, which is also exact as Ak ⊗ Al-modules. Hence

[ResAn

Ak⊗Al
N ] = [ResAn

Ak⊗Al
N ′] + [ResAn

Ak⊗Al
N ′′].

Therefore, all r are well defined. �
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Let G0(A) =
⊕

n≥0 G0(An). We construct the multiplication and comultiplication by i and r and define
the unit and counit as follows:

π : G0(A)
⊗

Z
G0(A) → G0(A)

by π|G0(Ak)
N

G0(Al) = ik,l

∆ : G0(A) → G0(A)
⊗

Z
G0(A)

by ∆|G0(An) =
∑

k+l=n rk,l

µ : Z → G0(A)
by µ(a) = a[K] ∈ G0(A0), for a ∈ Z

ε : G0(A) → Z

by ε([M ]) =

{
a if [M ] = a[K], where a ∈ Z

0 otherwise.

Later we will prove the associativity of π, the unitary property of µ, the coassociativity of ∆ and the
counitary property of ε, which imply that (G0(A), π, µ) is an algebra and (G0(A), ∆, ε) is a coalgebra. We
will also show the compatibility of the algebra and coalgebra structures to indicate that (G0(A), π, µ, ∆, ε)
is a graded connected bialgebra.

Now we define the inductions and restrictions on K0(A) analogously. As before,

i′m,n : K0(Am)
⊗

Z
K0(An) → K0(Am+n)

[P ] ⊗ [Q] 7→ [Ind
Am+n

Am⊗An
P ⊗ Q],

where

Ind
Am+n

Am⊗An
P ⊗ Q = Am+n

⊗
Am⊗An

(P ⊗ Q)

=
Am+n ⊗ P ⊗ Q

< a ⊗ [(b ⊗ c)(p ⊗ q)] − [aρm,n(b ⊗ c)] ⊗ p ⊗ q >
,

a ∈ Am+n, b ∈ Am, c ∈ An, p ∈ P and q ∈ Q. Let k = t + s. Denote

Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(P1 ⊗ P2) ⊗ (Q1 ⊗ Q2)

= (Ak ⊗ Am+n−k)
⊗̃

At⊗Am−t⊗As⊗An−s
((P1 ⊗ P2) ⊗ (Q1 ⊗ Q2))

the twisted induction with the same meaning as above. And set

r′k,l : K0(An) → K0(Ak)
⊗

Z
K0(Al) with k + l = n

[R] 7→ [ResAn

Ak⊗Al
R],

where ResAn

Ak⊗Al
R = HomAn

(An, R) as a left projective Ak ⊗ Al-module by the action defined to be ((b ⊗

c) · f)(a) = f(aρk,l(b ⊗ c)), a ∈ An, b ∈ Ak, c ∈ Al and f ∈ HomAn
(An, R).

Proposition 3.2. i′ and r′ are well defined.

Proof. To show that i′ are well defined, we only need that Ind
Am+n

Am⊗An
P ⊗Q = Am+n

⊗
Am⊗An

(P ⊗Q)
is a projective Am+n-module for all projective Am-module P and all projective An-module Q. This is
straightforward by the properties of tensor product and short exact sequence and the property of projective
modules that there is a module P ′ such that P ⊕ P ′ is a free module for the projective module P .

Assume R is a projective An-module. Since HomAn
(An, M) ∼= M for all An-modules M , we can get

that HomAn
(An, R) is a summand of some free An-module by the property of projective modules. Hence,

HomAn
(An, R) is a Ak ⊗ Al-module for all k and l with n = k + l. Therefore, r′ are well defined �
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Let K0(A) =
⊕

n≥0 K0(An). Using i′ and r′ we also define the multiplication, comultiplication, unit

and counit on K0(A).

π′ : K0(A)
⊗

Z
K0(A) → K0(A)

by π′|K0(Ak)
N

K0(Al) = i′k,l

∆′ : K0(A) → K0(A)
⊗

Z
K0(A)

by ∆′|K0(An) =
∑

k+l=n r′k,l

µ′ : Z → K0(A)
by µ′(a) = a[K] ∈ K0(A0), for a ∈ Z

ε′ : K0(A) → Z

by ε′([M ]) =

{
a if [M ] = a[K], where a ∈ Z

0 otherwise.

Similarly, we will realize that (K0(A), π′, µ′) is an algebra and (K0(A), ∆′, ε′) is a coalgebra later. It will
also be verified that the compatibility of these algebra and coalgebra structures hold, i.e., (K0(A), π′, µ′, ∆′, ε′)
is a graded connected bialgebra.

Theorem 3.1. (i) π is associative and
(
G0(A), π, µ

)
is an algebra. So is

(
K0(A), π′, µ′

)
.

(ii) ∆ is coassociative and
(
G0(A), ∆, ε

)
is a coalgebra. So is

(
K0(A), ∆′, ε′

)
.

(iii) ∆ and ε are algebra homomorphisms and G0(A) is a graded connected bialgebra. Hence G0(A) is a
graded Hopf algebra. So is K0(A).

Proof. (i) We only need to check the associativity of π, i.e., il+m,n · (il,m ⊗ 1n) = il,m+n · (1l ⊗ im,n).
Form the associativity of ρ and the definition of i, we can check it directly. Same for π′.

(ii) We only need to show the coassociativity of ∆, i.e., (rl,m ⊗ 1) · rl+m,n = (1 ⊗ rm,n) · rl,m+n. Form
the definition of r and the Adjointness Theorem [8], we can check it directly. Similarly for ∆′.

(iii) Using the definition of compatibility of algebra and coalgebra structures, we show that G0(A) is a
graded bialgebra since condition (5) holds. From condition (1), we know that G0(A) is a graded connected
bialgebra. Hence a graded Hopf algebra. Similarly for K0(A). �

Next we define a pairing on K0(A) × G0(A). With this pairing we can consider the duality between
K0(A) and G0(A). The pairing is defined as follows:

<, >: K0(A) × G0(A) → Z

such that

< [P ], [M ] >=

{
dimK

(
HomAn

(P, M)
)

if [P ] ∈ K0(An) and [M ] ∈ G0(An)
0 otherwise.

and with the same notation <, >: (K0(A) ⊗ K0(A)) × (G0(A) ⊗ G0(A)) → Z by

< [P ] ⊗ [Q], [M ]⊗ [N ] >=





dimK

(
HomAk⊗Al

(P ⊗ Q, M ⊗ N)
)

if [P ] ⊗ [Q] ∈ K0(Ak) ⊗ K0(Al)
and [M ] ⊗ [N ] ∈ G0(Ak) ⊗ G0(Al)

0 otherwise.

Proposition 3.3. <, > is a well-defined bilinear pairing on K0(A) × G0(A) satisfying the following
identities

< [P ] ⊗ [Q], [M ] ⊗ [N ] > = < [P ], [M ] >< [Q], [N ] >
< π′([P ] ⊗ [Q]), [M ] > = < [P ] ⊗ [Q], ∆[M ] >
< ∆′[P ], [M ] ⊗ [N ] > = < [P ], π([M ] ⊗ [N ]) >

< µ′(1), [M ] > = ε([M ])
< [P ], µ(1) > = ε′([P ]).

Proof. It is straightforward to check the linearity by the properties of short exact sequences and direst
sums of modules .

The identity < [P ] ⊗ [Q], [M ] ⊗ [N ] >=< [P ], [M ] >< [Q], [N ] > is trivial.
To show < π′([P ] ⊗ [Q]), [M ] >=< [P ] ⊗ [Q], ∆[M ] >, it is equivalent to prove that < i′k,l([P ] ⊗

[Q]), [M ] >=< [P ] ⊗ [Q], rk,l[M ] >, for all [P ] ∈ K0(Ak), [Q] ∈ K0(Al) and [M ] ∈ G0(Ak+l), which can be
reached by the Adjointness Theorem.

To show < ∆′[P ], [M ] ⊗ [N ] >=< [P ], π([M ] ⊗ [N ]) >, we only need to prove that < r′k,l[P ], [M ] ⊗

[N ] >=< [P ], ik,l([M ] ⊗ [N ]) >, for all [P ] ∈ K0(Ak+l), [M ] ∈ K0(Ak) and [N ] ∈ G0(Al). We can simplify
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this by proving that < r′k,l[P ], [M ] ⊗ [N ] >=< [P ], ik,l([M ] ⊗ [N ]) > holds when P is an indecomposable
projective Ak+l-module. We know that each indecomposable projective module corresponding to a primitive
idempotent. We establish this identity by the following lemma and condition (4).

Lemma 3.2. [15] Let B be a finite-dimensional algebra over field K, M a left B-module and e a primitive
idempotent. Then HomB(Be, M) ∼= eM as vector spaces.

< µ′(1), [M ] >= ε([M ]) and < [P ], µ(1) >= ε([P ]) follow from the definitions of µ and µ′. �

To get the duality between G0(A) and K0(A) these identities are not enough. We should verify that their
bases are orthonormal to each other. Let {V1, · · · , Vs} be a complete list of nonisomorphic simple An-modules.
Then the set of their projective covers {P1, · · · , Ps} is a complete list of nonisomorphic indecomposable
projective An-modules. Then

Proposition 3.4. < [Pi], [Vj ] >= δi,j for 1 ≤ i, j ≤ s.

Proof. This follows from the property of simple modules and the Schur’s Lemma. �

Theorem 3.3 (Main Result 1). (G0(A), π, µ, ∆, ε) and (K0(A), π′, µ′, ∆′, ε′) are both graded connected
bialgebras. Hence both are graded Hopf algebras. And they are dual to each other with respect to the pairing.

Proof. This follows directly from Theorem 3.1 and Propositions 3.3 and 3.4. �

4. Grothendieck groups of a tower of algebras (Not preserving unities)

In [1], N. Bergeron, C. Holhweg, M. Rosas, and M. Zabrocki consider a semi-tower of algebras with ρ
not preserving unities. If we only weaken the condition of ρ and modify the definitions of inductions and
restrictions can we get a similar result? In this section, we will do this job. The structure of this section is
parallel to Section 3.

Let A =
⊕

n≥0 An, we call it a tower of algebras over field K = C if the following conditions are satisfied:

(1) An is a finite-dimensional algebra with unit, for each n. A0
∼= K.

(2) There is an external graded multiplication ρm,n : Am ⊗ An → Am+n such that

(a) ρm,n is an injective homomorphism of algebras, for all m and n (but ρm,n(1m ⊗ 1n) 6=
1m+n for some or all m and n );

(b) ρ is associative, that is, ρl+m,n · (ρl,m ⊗ 1n) = ρl,m+n · (1l ⊗ ρm,n) := ρl,m,n, for
all l, m, n.

(3) An+m is a two-sided projective An ⊗ Am-module by the action defined to be a · (b ⊗ c) = aρm,n(b ⊗
c) and (b ⊗ c) · a = ρm,n(b ⊗ c)a, for a ∈ Am+n, b ∈ Am and c ∈ An.

(4) For every primitive idempotent g in Am+n, Am+ng ∼=
⊕

(Am⊗An)(e⊗f) as (left) Am⊗An-modules
if and only if gAm+n

∼=
⊕

(e⊗f)(Am⊗An) as (right) Am⊗An-modules for the same indexing of idempotents
(e ⊗ f)’s in Am ⊗ An.

(5) The following equalities hold

[Res
Am+n

Ak⊗Am+n−k
Ind

Am+n

Am⊗An
(M ⊗ N)]

=
∑

t+s=k[Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(ResAm

At⊗Am−t
M ⊗ ResAn

As⊗An−s
N)]

for all 0 < k < m + n, M an Am-module and N an An-module, and

[Res
Am+n

Ak⊗Am+n−k
Ind

Am+n

Am⊗An
(P ⊗ Q)]

=
∑

t+s=k[Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(ResAm

At⊗Am−t
P ⊗ ResAn

As⊗An−s
Q)]

for all 0 < k < m + n, P a projective Am-module and Q a projective An-module. We will explain the
notations later.

The definition of inductions on G0(A) is

im,n : G0(Am)
⊗

Z
G0(An) → G0(Am+n)

[M ] ⊗ [N ] 7→ [Ind
Am+n

Am⊗An
M ⊗ N ],
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which is same as the one in Section 3. Let k = t + s, define the twisted induction

Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(M1 ⊗ M2) ⊗ (N1 ⊗ N2)

= (Ak ⊗ Am+n−k)
⊗̃

At⊗Am−t⊗As⊗An−s
((M1 ⊗ M2) ⊗ (N1 ⊗ N2)),

which is also same as the one in Section 3. Define the restrictions r on G0(A) by

rk,l : G0(An) → G0(Ak)
⊗

Z
G0(Al) with k + l = n

[N ] 7→ [ResAn

Ak⊗Al
N ],

where ResAn

Ak⊗Al
N = {u ∈ N | ρk,l(1k ⊗ 1l)u = u} ⊆ N is an Ak ⊗ Al-module by the action defined to

be (b ⊗ c) · u = ρk,l(b ⊗ c)u, for u ∈ ResAn

Ak⊗Al
N, b ∈ Ak and c ∈ Al. When ρ preserving unities, we have

ResAn

Ak⊗Al
N = N ∼= HomAn

(An, N). This coincides with the restrictions r in Section 3.

Proposition 4.1. i and r are well defined.

Proof. For i, it follows from Proposition 3.1 since they have the same definition.
For r, we know ResAn

Ak⊗Al
N = ρk,l(1k ⊗ 1l)N and ρk,l(1k ⊗ 1l) is an idempotent in An, hence N =

ρk,l(1k ⊗ 1l)N ⊕ (1 − ρk,l(1k ⊗ 1l))N. From the properties of short exact sequence and homomorphisms of
modules which can be written as a direct sum, one can get that all r are well defined. �

As in Section 3, we define π, ∆, µ and ε by the inductions i and restrictions r on G0(A). Later we will
prove that G0(A) is a graded bialgebra with these operators.

Now we define inductions and restrictions on K0(A) as follows:

i′m,n : K0(Am)
⊗

Z
K0(An) → K0(Am+n)

[P ] ⊗ [Q] 7→ [Ind
Am+n

Am⊗An
P ⊗ Q],

where P = Amem, Q = Anen for some primitive idempotents em ∈ Am and en ∈ An, and

Ind
Am+n

Am⊗An
P ⊗ Q

= Ind
Am+n

Am⊗An
Amem ⊗ Anen

:= Am+nρm,n(em ⊗ en),

which is a projective Am ⊗ An-module. Here i′ is only defined on the basis of K0(Am) ⊗ K0(An). To get
induction we only need i′ to satisfy linearity. i.e.,

i′((a[P ′] + b[P ′′]) ⊗ (c[Q′] + d[Q′′]))
= aci′([P ′] ⊗ [Q′]) + adi′([P ′] ⊗ [Q′′]) + bci′([P ′′] ⊗ [Q′]) + bdi′([P ′′] ⊗ [Q′′]),

where a, b, c, d ∈ Z, P ′, P ′′ ∈ K0(Am) and Q′, Q′′ ∈ K0(An) are indecomposable. Hence i′ is well defined.
And when ρ preserving unities, this i′ coincides with the inductions i′ in Section 3.

Let k = t + s, define the twisted induction

Ĩnd
Ak⊗Am+n−k

At⊗Am−t⊗As⊗An−s
(Ate1 ⊗ Am−te2) ⊗ (Asf1 ⊗ An−sf2)

:= Akρt,s(e1 ⊗ f1) ⊗ Am+n−kρm−t,n−s(e2 ⊗ f2),

where e1, e2, f1 and f2 are primitive idempotents in At, Am−t, As and An−s respectively.
Set

r′k,l : K0(An) → K0(Ak)
⊗

Z
K0(Al) with k + l = n

[R] 7→ [ResAn

Ak⊗Al
R],

where ResAn

Ak⊗Al
R = {x ∈ R | ρk,l(1k ⊗ 1l)x = x} as a left projective Ak ⊗ Al-module.

Proposition 4.2. r′ is well defined.

Proof. To show r′ well defined, there are three steps. Let R be a projective An-module.
1. ρk,l(1k ⊗ 1l) is an idempotent and ResAn

Ak⊗Al
R = ρk,l(1k ⊗ 1l)R.

2. ResAn

Ak⊗Al
R is an Ak ⊗ Al-module.

3. ResAn

Ak⊗Al
R is a projective Ak ⊗ Al-module. Here we verify that ResAn

Ak⊗Al
R is a summand of R by

lemma 3.2, step 1 and the property of idempotents.
�
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As before, using the definitions of inductions i′ and restrictions r′ we construct π′, ∆′, µ′ and ε′ on
K0(A). Later we will prove that K0(A) with these operators is a graded bialgebra.

Theorem 4.1. (i) π is associative and
(
G0(A), π, µ

)
is an algebra. So is

(
K0(A), π′, µ′

)
.

(ii) ∆ is coassociative and
(
G0(A), ∆, ε

)
is a coalgebra. So is

(
K0(A), ∆′, ε′

)
.

(iii) ∆ and ε are algebra homomorphisms and G0(A) is a graded bialgebra. Hence G0(A) is a graded
Hopf algebra. So is K0(A).

Proof. (i) For G0(A), it holds from Theorem 3.1(i).
For the associativity of π′ in K0(A), we need to show i′l+m,n · (i′l,m ⊗ 1n) = i′l,m+n · (1l ⊗ i′m,n). One can

get it by the associativity of ρ and the definition of i′.
(ii) We only need to show the coassociativity of ∆, that is, (rl,m ⊗ 1) · rl+m,n = (1⊗ rm,n) · rl,m+n. This

follows from the associativity of ρ and the definition of r. Similarly for
(
K0(A), ∆′, ε′

)
.

(iii) From condition (5), one can prove that G0(A) is a graded bialgebra by the definition of compatibility
of algebra and coalgebra structures. Do the similar work to K0(A). From condition (1), we know that G0(A)
is a graded connected bialgebra. Hence a graded Hopf algebra. Similarly for K0(A). �

Define a pairing <, >: K0(A) × G0(A) → Z by

< [P ], [M ] >=

{
dimK

(
HomAn

(P, M)
)

if [P ] ∈ K0(An) and [M ] ∈ G0(An)
0 otherwise.

and with the same notation <, >: (K0(A) ⊗ K0(A)) × (G0(A) ⊗ G0(A)) → Z by

< [P ] ⊗ [Q], [M ]⊗ [N ] >=





dimK

(
HomAk⊗Al

(P ⊗ Q, M ⊗ N)
)

if [P ] ⊗ [Q] ∈ K0(Ak) ⊗ K0(Al)
and [M ] ⊗ [N ] ∈ G0(Ak) ⊗ G0(Al)

0 otherwise.

Proposition 4.3. <, > is a well-defined bilinear pairing on K0(A) × G0(A) satisfying the following
identities

< [P ] ⊗ [Q], [M ] ⊗ [N ] > = < [P ], [M ] >< [Q], [N ] >
< π′([P ] ⊗ [Q]), [M ] > = < [P ] ⊗ [Q], ∆[M ] >
< ∆′[P ], [M ] ⊗ [N ] > = < [P ], π([M ] ⊗ [N ]) >

< µ′(1), [M ] > = ε([M ])
< [P ], µ(1) > = ε′([P ]).

Proof. The bilinearity and the first identity are same as Proposition 3.3.
To show < π′([P ] ⊗ [Q]), [M ] >=< [P ] ⊗ [Q], ∆[M ] >, we only need to prove that < i′k,l([P ] ⊗

[Q]), [M ] >=< [P ] ⊗ [Q], rk,l[M ] >, for all [P ] ∈ K0(Ak), [Q] ∈ K0(Al) and [M ] ∈ G0(Ak+l). Without
loss of generality, let P = Akek and Q = Alel for some primitive idempotents ek ∈ Ak and el ∈ Al. Using
Lemma 3.2 one can get it straightforwardly.

To show < ∆′[P ], [M ] ⊗ [N ] >=< [P ], π([M ] ⊗ [N ]) >, we only need to prove that < r′k,l[P ], [M ] ⊗

[N ] >=< [P ], ik,l([M ] ⊗ [N ]) >, for all [P ] ∈ K0(Ak+l), [M ] ∈ K0(Ak) and [N ] ∈ G0(Al). One can get it
from Lemma 3.2 and condition (4).

< µ′(1), [M ] >= ε([M ]) and < [P ], µ(1) >= ε([P ]) follow from the definitions of µ and µ′. �

Theorem 4.2 (Main Result 2). (G0(A), π, µ, ∆, ε) and (K0(A), π′, µ′, ∆′, ε′) are both graded connected
bialgebras. Hence both are graded Hopf algebras. And they are dual to each other with respect to the pairing.

Proof. This follows directly from Theorem 4.1 and Propositions 4.3 and 3.4. �

5. Some examples

In this section, we will verify that
⊕

n≥0 Sn,
⊕

n≥0 Hn(0) and
⊕

n≥0 HCln(0) satisfy all the axioms
listed in Section 3. They are towers of algebras and we already know that their Grothendieck groups are
dual Hopf algebras, respectively. And we will discuss some graded algebras which don’t satisfy some axiom
are not towers of algebras. Consequently, their Grothendieck groups are not dual Hopf algebras.

Let A =
⊕

n≥0 An with An = CSn. Here

ρm,n : CSm ⊗ CSn → CSm+n
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is defined to be ρm,n(σ ⊗ τ) = σ(1)σ(2) · · ·σ(m)(τ(1) + m)(τ(2) + m) · · · (τ(n) + m) if we use the one line
notation of permutations, where σ ∈ Sm and τ ∈ Sn. It is easy to check that ρ’s preserve unities and
have the associativity. Since CSn is a semi-simple algebra, we know that CSm+n is a two-sided projec-
tive CSm ⊗CSn-module and satisfies condition (4). Condition (5) is just the Mackey’s Formula [16]. Hence
A = CSn is a tower of algebra and the Grothendieck group G0(A) = K0(A) is a self-dual graded Hopf algebra.

For
⊕

n≥0 Hn(0) of 0-Hecke algebras, the ρ’s are defined by ρm,n(Ti ⊗ 1) = Ti and ρm,n(1⊗Tj) = Tj+m,

where Ti’s and Tj ’s are the generators of Hm(0) and Hn(0), 1 ≤ i ≤ m − 1 and 1 ≤ i ≤ n − 1. For⊕
n≥0 HCln(0) of 0-Hecke-Clifford algebras, the ρ’s are defined by ρm,n(Ti ⊗ 1) = Ti, ρm,n(Ck ⊗ 1) = Ck,

ρm,n(1 ⊗ Tj) = Tj+m and ρm,n(1 ⊗ Cl) = Cl+m, where Ti’s with Ck’s and Tj ’s with Cl’s are the generators
of HClm(0) and HCln(0) respectively, 1 ≤ i ≤ m− 1, 1 ≤ k ≤ m, 1 ≤ i ≤ n− 1 and 1 ≤ l ≤ n. We will also
check that these two satisfy all the axioms listed in section 3. In the introduction we have mentioned that
their Grothendieck groups are dual graded Hopf algebras.

Now we describe an example not satisfying condition (5). In [1], (Π,∧) =
⊕

n≥0(CΠn,∧) of the partition
lattice algebras with

ρm,n : (CΠm,∧) ⊗ (CΠn,∧) → (CΠm+n,∧)

defined by ρm,n(A ⊗ B) = A|B, where A|B = {A1, A2, . . . , Al(A), B1 + m, B2 + m, . . . , Bl(B) + m}. Here ρ’s

do not preserve unities. Although
( ⊕

n≥0(CΠn,∧), {ρm,n}
)

satisfies conditions (1)-(4) in section 4, there

is no similar Mackey’s fomula (5), i.e., the operations of induction and restriction are not compatible as a
bialgebra. Hence the Grothendieck groups G0(Π,∧) and K0(Π,∧) do not have the Hopf algebra structure
although the operation of restriction on G0(Π,∧) is dual to the operation of induction on K0(Π,∧) and the
induction on G0(Π,∧) is dual as graded operations to restriction on K0(Π,∧).

If one consider a direct sum of algebras that does not satisfy conditions (3) then the inductions and
restrictions may not be well defined. Hence we can not construct the multiplication and comultiplication.
Consequently, its Grothendieck groups are not Hopf algebras. If it does not satisfy condition (4), then its
Grothendieck groups are graded Hopf algebras respectively but not necessarily dual to each other.
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