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Virtual crystal structure on rigged configurations

Anne Schilling

ABSTRACT. Rigged configurations are combinatorial objects origimgafrom the Bethe Ansatz, that label highest weight
crystal elements. In this note a newnrestrictedset of rigged configurations is introduced by constructimgyatal structure
on the set of rigged configurations.

RESUME. Les configurations gréées sont des objets combinatispirés par I'ansatz de Bethe, et qui sont en correspon-
dence avec les éléments cristallins de plus haut poidss Bette note, nous introduisons le concept de "configursiipéées
généralisées”, en construisant une structure ciirstatians I'espace des configurations gréées.

1. Introduction

This note is based on preprirfB3 which gives a crystal structure on rigged configuratiornsaib simply-laced
types. Here we use the virtual crystal meth2€,[3(Q to extend these results to nonsimply-laced types.

There are (at least) two main approaches to solvable lattamels and their associated quantum spin chains: the
Bethe Ansatz§] and the corner transfer matrix methda].|

In his 1931 paperd], Bethe solved the Heisenberg spin chain based on the $tyipgthesis which asserts that
the eigenvalues of the Hamiltonian form certain stringhii¢omplex plane as the size of the system tends to infinity.
The Bethe Ansatz has been applied to many models to proveletanpss of the Bethe vectors. The eigenvalues and
eigenvectors of the Hamiltonian are indexed by rigged comnéiions. However, numerical studies indicate that the
string hypothesis is not always trug [

The corner transfer matrix (CTM) method, introduced by Ba¥], labels the eigenvectors by one-dimensional
lattice paths. These lattice paths have a natural intexfioetin terms of Kashiwara’s crystal base theat$,[17,
namely as highest weight crystal elements in a tensor ptaddinite-dimensional crystals.

Even though neither the Bethe Ansatz nor the corner tramsédrix method are mathematically rigorous, they
suggest the existence of a bijection between the two index samely rigged configurations on the one hand and
highest weight crystal paths on the other (see Figure 1). tl@ispecial case when the spin chain is defined on
Vi) @ Vips) @ -+ ® Vi), whereV[,,.) is the irreducibleGL(n) representation indexed by the partitigm;) for
u; € N, a bijection between rigged configurations and semi-stahdaung tableaux was given by Kerov, Kirillov
and Reshetikhind1, 23. This bijection was proven and extended to the case wherf;theare any sequence of
rectangles in25]. The bijection has many amazing properties. For exampékés the cocharge statistiesdefined
on rigged configurations to the coenergy statisticdefined on crystals.

Rigged configurations and crystal paths also exist for ditpas. In [L4, 19 the existence of Kirillov—Reshetikhin
crystalsB"™* was conjectured, which can be naturally associated witlltimeinant weightA,. wheres is a positive
integer and\,. is ther-th fundamental weight of the underlying algebra of finiteay For a tensor product of Kirillov—
Reshetikhin crystal$3 = B™* @ --- ® B™*1 and a dominant weight let P(B, A) be the set of all highest
weight elements of weight in B. In the same paper44, 19, fermionic formulasM (L, A) for the one-dimensional
configuration sums{ (B, A) := 2_beP(BA) q”® were conjectured. The fermionic formulas admit a combinato

interpretation in terms of the set of rigged configuratiBa¥ L, A), whereL is the multiplicity array ofB. A statistic
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preserving bijectior® : P(B,A) — RC(L, A) has been proven in various cas2§,[28, 32, 3pwhich implies the
following identity

(1.1) X(B,A) = Z gP® = Z ) = M(L,A).
beP(B,A) (v,J)ERC(L,A)

Since the sets in (1.1) are finite, these are polynomiajs iWhenB = BY** @ ... @ BY*1 of type A, they are none
other than the Kostka—Foulkes polynomials.

Rigged configurations corresponding to highest weighttatymths are only the tip of an iceberg. In this note we
extend the definition of rigged configurations to all crysti@ments by the explicit construction of a crystal struetur
on the set ofinrestrictedrigged configurations (see Definition 4.1). For simply-htgoes, the proof is given irBp]
and uses Stembridge’s local characterization of simptedecrystals37]. For nonsimply-laced algebras, we show
here how to apply the method of virtual crysta®®[ 3Q to construct the crystal operators on rigged configuration

The equivalence of the crystal structures on rigged cordifms and crystal paths together with the correspon-
dence for highest weight vectors yields the equality of gatireg functions in analogy to (1.1) (see Theorem 4.10 and
Corollary 4.11). Denote the unrestricted set of paths aggled configurations b(B, A) andRC(L, A), respec-
tively. The corresponding generating functioXi$B, A) = M (L, A) are unrestricted generalized Kostka polynomials
or g-supernomial coefficients. A direct bijectiah : P(B,A) — RC(L, A) for type A along the lines of25] is
constructedinT, §.

Rigged configurations are closely tied to fermionic fornsulgermionic formulas are explicit expressions for the
partition function of the underlying physical model whidflect their particle structure. For more details regarding
the background of fermionic formulas se®4[ 19, 2(Q. For type A we obtain an explicit characterization of the
unrestricted rigged configurations in terms of lower boumdguantum numbers which yields a new fermionic formula
for unrestricted Kostka polynomials of typg& Surprisingly, this formula is different from the fermianfiormulas
in [13, 1§ obtained in the special cases Bf = B1'** @ --- ® BL'*1 andB = B™! @ --- @ B"1. The rigged
configurations corresponding to the fermionic formulas1$,[1g were related to ribbon tableaux and the cospin
generating functions of Lascoux, Leclerc, Thib@6][27 in reference 31]. To distinguish these rigged configurations
from the ones introduced in this paper, let us call them nibtigged configurations.

The Lascoux—Leclerc—Thibon (LLT) polynomial2d, 27 have recently made their debut in the theory of Mac-
donald polynomials in the seminal paper by Haiman, Hagluoehr [9]. The main obstacle in obtaining a combina-
torial formula for the Macdonald—Kostka polynomials is ®ehur positivity of certain LLT polynomials. A related
problem is the conjecture of Kirillov and Shimozor] that the cospin generating function of ribbon tableauxadsju
the generalized Kostka polynomial. A possible avenue te@this conjecture would be a direct bijection between
the unrestricted rigged configurations of this paper anlanitrigged configurations.

One of the motivations for considering unrestricted riggedfigurations was Takagi’'s worl8§] on the inverse
scattering transform, which provides a bijection betweares in thesls box ball system and rigged configurations.
In this setting rigged configurations play the role of actangle variables. Box ball systems can be produced from
crystals of solvable lattice models for algebras other #1arf10, 11, 12. The inverse scattering transform can be
generalized to thel,, case R3], which should give a box-ball interpretation of the unreeséd rigged configurations
presented here.

Another motivation for the study of unrestricted configioatsums, fermionic formulas and associated rigged
configurations is their appearance in generalizationsoBtiley lemma3, 39. The Andrews—Bailey constructiof |
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4] relies on an iterative transformation property of thbinomial coefficient, which is one of the simplest unreséd
configuration sums, and can be used to prove infinite famifeRogers—Ramanujan type identities. The explicit
formulas provided in this paper might trigger further pregs towards generalizations to higher-rank or other types o
the Andrews—Bailey construction.

The paper is organized as follows. In Section 2 we reviewdsasbout crystal bases and virtual crystals. In
Section 3 we define rigged configurations. The new crystatgire on rigged configurations is presented in section 4.
Section 5 is devoted to typ4, where we give an explicit characterization of the unretdd rigged configurations, a
fermionic formula for unrestricted Kostka polynomialsdahe affine crystal structure.

2. Crystals

2.1. Axiomatic definition. Kashiwara L6, 17 introduced acrystal as an edge-colored directed graph satisfying
a simple set of axioms. Lgtbe a symmetrizable Kac—Moody algebra with associated coobot and weight lattices
Q,QV, P. LetI be the index set of the Dynkin diagram and denote the simpis reimple coroots and fundamental
weights by, h; andA; (i € I), respectively. There is a natural pairifig -) : Q¥ ® P — Z defined by(h, , A;) =
51‘]‘.

The vertices of the crystal graph are elements of @sekhe edges of the crystal graph are colored by the index
setl. A P-weightedI-crystal satisfies the following properties:

(1) Fix ani € I. If all edges are removed except those colargtie connected components are finite directed
linear paths called thestrings of B. Givenb € B, definef;(b) (resp. e;(b)) to be the vertex following
(resp. preceding) in its i-string; if there is no such vertex, declafgb) (resp. ¢;(b)) to be undefined.
Defineyp;(b) (resp.c;(b)) to be the number of arrows frotnto the end (resp. beginning) of itsstring.

(2) Thereis afunctionvt : B — P such thatwvt(f;(b)) = wt(b) — o; ande; (b) — €;(b) = (h;, wt(b)).

2.2. Virtual crystals. There exist natural inclusions of affine Lie algebras ascaigid in Figures 2 and 3. Even
though these embeddings do not carry over to the correspgndantum algebras, it is expected that such embeddings
exist for crystals. Note that every affine algebra can be el into one of typet™), D) and E(Y) which are the
untwisted affine algebras whose canonical simple Lie sebadgis simply-laced. Crystal embeddings corresponding
to Y, Agi), Dfﬁl — Agj,l have been studied i”2], whereas the crystal embeddin@él),fléi[1 — foll have
been established ir3(].

Consider an embedding of the affine algebra with Dynkin diagK into one with diagrantY”. We consider a
graph automorphism of Y that fixes the 0 node. For typégffl, o(i) = 2n — i (mod2n). For typeDfllj1 the
automorphism interchanges the nodemndn + 1 and fixes all other nodes. There is an additional automonpfos
typeD(l), namely, the cyclic permutation of the nodes 1,2 and 3. F;mEél) the automorphism exchanges nodes 1
and 5 and nodes 2 and 4. In Figures 2 and 3 the automorphisritiustrated pictorially by arrows.

Let I andI¥ be the vertex sets of the diagradisandY respectively/Y /o the set of orbits of the action of
onIY,and: : I* — IY /o a bijection which preserves edges and sentis).

EXAMPLE 2.1.

If X is one ofCY, Agi), Dfﬁl andY = A&)ﬁl, thenc(0) =0, ¢(i) = {i,2n — i} for 1 < i < nandu(n) = n.
If X = B or AY) | andy = D), then.(i) = i fori < n.andu(n) = {n,n +1}.

If X is D or GV andy = DV, then.(0) = 0, (1) = 2 and.(2) = {1,3,4}.

If X is E? or F{" andY = E{", then.(0) = 0, (1) = 1, u(2) = 3, 1(3) = {2,4} and.(4) = {1,5}.

To describe the embedding we endow the bijectiavith additional data. For eache I* we shall define a
multiplication factorv; that depends on the location ©#ith respect to a distinguished arrow (multiple bond}\in
Removing the arrow leaves two connected components. Thar fgds defined as follows:

(1) SupposeX has a unique arrow.
(@) Suppose the arrow points towards the componefit heny; = 1 for all i € 1.
(b) Suppose the arrow points away from the componefit dherry; is the order ob for 7 in the component
of 0 and is1 otherwise.
(2) SupposeX has two arrows. Then;, = 1for1 < i <n — 1. Fori € {0,n},y; = 2 (which is the order of
o) if the arrow incident ta points away from it and i$ otherwise.
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FIGURE 2. Embeddingﬁé”,&?ﬂﬁl

— Agz)q andB,(Ll), Aéi)fl — D1(zl+)1

ExaMPLE 2.2. The values of; are summarized in the following table:

X

A

Df) v =1 for all ¢

By

BY |~ =2 foro<i<n-—1
’yn:

GV |v=3 fori = 0,1
Yo =1

FU 4 =2 fori =0,1,2
v =1 fori =3,4

O,(Ll) v =1 fori<i<n
Yo =" =2

Aéi) vi=1 for0 <i<n
’yn:

Dfﬂl Vi = forall ¢

The embedding’ : PX — PY of weight lattices is defined by
‘I’(Alx) =% Z A}/-
Jeu(d)
Let V be aY-crystal. We define the virtual crystal operatéfsﬁ- for i € IX as the composites df -crystal
operatorsf;, e; given by

2.1) F=11 " ad &= ]] ¢
jeu(z) jeu(z)
These are designed to simulatecrystal operatorg;, e¢; for i € IX. The typeY operators on the right hand side,
may be performed in any order, since distinct nogleé$ € (i) are not adjacent i and thus their corresponding
raising and lowering operators commute.
A virtual crystal is a pair(V, V') such that:
(1) Vis aY-crystal.
(2) V c Vis closed undeg;, f; fori € IX.
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FIGURE 3. Embedding&", DY — D" andF", E? — EV

(3) There is anX-crystalB and anX -crystal isomorphisn¥ : B — V such that;, f; correspond t@;, ﬁ

Sometimes by abuse of notatidn,will be referred to as a virtual crystal.
Let us define th& -crystal
f}r,s — ® B{/,st

jeu(r)
except forAS?) andr = n in which casel/™* = BI* @ BI**. Denote byu(V"*) the extremal vector of weight
W(sA,)in Vs,

DEFINITION 2.3. LetV™* be the subset df " generated frona (V™) using the virtual crystal operatogsand
fiforie IX.

CONJECTURE2.4. [30, Conjecture 3.7There is an isomorphism of -crystalsV : By® = V"¢ such thak; and
i correspond t&; and f; respectively, for alk € 1X.

In [29] Conjecture 2.4 is proved for embeddir@él),Aéi), Dfﬁl — Aéi)fl ands = 1. In [30] Conjecture 2.4
is proved for all nonexceptional types wheg- 1.

3. Rigged configurations

In this section we define rigged configurations for all affireckMoody algebras. Typegi) requires some special
treatment. We need the variapt of the multiplication factory, which is7, = v, except forAgl) anda = n when
vn = 1. Also seta, = a, forall a € I except for type4§i) in which casex, are the simple roots of typB,,.

LetL = (Ll(.“))(a,i)eH be an array of nonnegative integers whfe= {1,2,...,n} x Z~, called the multiplicity
array, wheren is the rank of the underlying algebra anda weight. Then ariL, A)-configuration is an arrayn =

(mga))(a,i)eﬁ such that

(3.1) S oim®a, = Y LA, - A

(a,i)eH (a,i)eH

except for type4§i). In this case the right hand side should be replacedibli.s) where: is aZ-linear map from the
weight lattice of type”,, to the weight lattice of typé3,, such that

J(AC) = AP fori<a<n
7208 fora=n.
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The vacancy numbers of a given configuration are defined as

o 2(a, | o e~ . e g (a
(3.2) pg ) = Z _ 2aalaw) mm(’yaz,’ybj)m;b) + me(z,])L§ ).
(b eH (ot | ) >0

An (L, A)-configurationis calleddmissibleif pf.“) > 0forall (a,i) € H. The set of admissible_, A)-configurations
is denoted bYC(L, A).

A rigged configuration is a pair(m, J) wherem = (mE“))(a7i)eH is an admissiblé L, A)-configuration and
J = (J.(“))(a_,i)eﬁ is a matrix of partitions such that the partitid;.‘]“) is contained in a rectangle of sizel(.“) X p§a>.

The set of rigged configurations for fixddandA is denoted b\RC(L, A).
Rigged configurations can also be represented as a sequgrengitions such that each part of each partition is
labeled or “rigged” by a number. Let = (v, v ... »() be the sequence of partitions obtained from=

(mE“)) as follows. Letml(.“)(z/) be the number of parts in'® of sizei. Thenv is determined by requiring that
m%’i)l(l/) = mz(.a) and mg-a)(u) =0 forj¢~,2Z.

The vacancy numbeP'* (v) for each pari of () is then

POWw) =3 - 20l ) o0 ¢ S min(, L,

bel (| o) >0 a
whereQ;(p) is the number of boxes in the firstolumns of the partitiop. The relation tcpE‘” is
P = P ).

A tuple (i, z) wherei is a part ofv(*) andz is a part ofJi(“) is called a string of the rigged partitiqm, .J)(*). Herei
is the length and: the label of the string. Theolabelof a string(i, x) of (v, J)(® is Pi(“)(z/) — .

EXAMPLE 3.1. LetA = A; + A; of type A, LY = 7 and all othetZ.") = 0. Then
00

00

11 e RC(L, M),

(v, J) = 01

=)

11
1

OO OO
[cNeoNeNo)

where the first number behind each part is th

[v]

label and tlendeme is the vacancy number.

There is also a statistic calledchargedefined on rigged configurations. 3gt= % The cocharge is given
by
ty (g |« . e i e\ (a
ce(v) = Z . % mm(%z,%])mg )mg-b)
(isa).(bg)er 0 alra

1 a R a
=5 2 tim{® (3 mini LS ")

(ayi)eM §>0

(3.3)

for a configuration andcc(v, J) = cc(v) +|J| where|J| = 3_ , ;e t}{|Ji(“)| is the sum of the sizes of all partitions

J{) weighted byt .

As mentioned in the introduction, rigged configurationgespond to highest weight crystal elements. B&t
be a Kirillov—Reshetikhin crystal fofr, s) € H andB = B™* @ B"-1%-1 @ ... ® B"%  Associate taB the
multiplicity array L = (L§T>)(T7S)€H whereLﬁT) counts the number of tensor factd$° in B. Denote by

P(B,A) = {b e B|wt(b) = A, e;(b) undefined for ali € I'}
the set of all highest weight elements of weighin B. There is a natural statistics defined Bn called energy
function or more precisely tail coenergy functiéh: B — Z (see B5, Eq. (5.1)] for a precise definition).
The following theorem was proven ig%| fortypeflf}_)1 and generaB = B™® @ ... ® B"*1,in [32] for type
DY andB = B"+!' ® --- @ B! and in B5] for type D'V andB = B+ @ - - @ B,
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THEOREM 3.2. [25, 32, 3% For A a dominant weightB as above and. the corresponding multiplicity array,
there is a bijection® : P(B,A) — RC(L,A) which preserves the statistics, that 8(b) = cc(®(b)) for all
be P(B,A).

Defining the generating functions

(3.4) X(B,A)= > ¢”® and M(L,A)= g,
beEP(B,A) (v,J)ERC(L,A)
we get the immediate corollary of Theorem 3.2.
COROLLARY 3.3. 25,32, 3§ LetA, B andL asin Theorem 3.2. Theki(B,A) = M (L, A).

4. Crystal structure on rigged configurations

The rigged configurations of section 3 correspond to higlregght crystal elements. In this section we introduce
the set of unrestricted rigged configuratidR€ (L) by defining a crystal structure generated from highest wieigh
vectors given by elements IRC(L) = Unep+ RC(L, A) by the Kashiwara operatoks,, f,. For simply-laced
algebras the following definition was given i83 Definition 3.3]. The multiplication factors, for the simply-laced
case are equal tb

DEFINITION 4.1. LetL be a multiplicity array. Define the set afrestricted rigged configurationsRC(L) as
the set generated from the elementRid(L) by the application of the operatofs, e, for 1 < a < n defined as
follows:

(1) Definee, (v, J) by removingy, boxes from a string of length in (v, .J)(*) leaving all colabels fixed and
increasing the new label by one. Heétas the length of the string with the smallest negative riggad
smallest length. If no such string exists(v, J) is undefined.

(2) Define f,(v,J) by addingy, boxes to a string of length in (v, .J)(*) leaving all colabels fixed and de-
creasing the new label by one. Herds the length of the string with the smallest nonpositiveyingy of
largest length. If no such string exists, add a new stringogth one and label -1. If the result is not a valid
unrestricted rigged configuratigf (v, J) is undefined.

ExamPLE 4.2. For(v, J) of Example 3.1 we have

| —1-1 |
L 100 11
) = [Too 11 St
L loo0 T
Lloo
and
00 |
00 11
fs(v,J) = 00 | |11 0‘81'1-
00 LJl11
00

THEOREM4.3. The operatorg,, f, of Definition 4.1 are the Kashiwara crystal operators.

For simply-laced algebras Theorem 4.3 was prover88} by using the local characterization of simply-laced
crystals given by Stembridg8&T]. In the following we show that, assuming that the virtuatstal embeddings of

section 2.2 hold, Theorem 4.3 is also true for the nonsinfgded algebras.
We definevirtual rigged configurations in analogy to virtual crystals. HerB = B™*r @ ... ® B™* is a

tensor product of Kirillov-Reshetikhin crystals afhd= (LZ(.“)) the corresponding multiplicity array.

DEFINITION 4.4. LetX — Y be one of the algebra embeddings of section 2.2,weight andB a crystal for
type X. Let (V, 17) be the virtualY -crystal corresponding t&. ThenRCY(L, A) is the set of elementy, f) €
RC(L, ¥(A)) such that:

(1) Foralli € Zo, m\” = " andJ® = J if a andb are in the same-orbit in ¥,
(2) Foralli € Zwg, a € I*, andb € 1(a) C IV, we havemlgb) = 0if j € 7.Z and the parts oti(b) are
multiples of~,.
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THEOREM4.5. [30, Theorem 4.2]here is a bijectioRC(L, A) — RC"(L, A) sending(v, J) — (7, A) given
as follows. For alla € I, b € (a) C IY, andi € Zx,,

T/T\Lg;)i = ml(-a) and ‘7»(72 = vaJi(a).
The cocharge changes by(7, f) = o cc(v, J).

PrROOF OFTHEOREM4.3. Theorem 4.3 was proved i@J] for the simply-laced algebras. Hence, assuming that
the virtual crystal embeddings of section 2.2 hold, it seffito check that,, f, of Definition 4.1 satisfy (2.1). By
Theorem 4.5 this reduces to checking tliaiande, preserve the conditions of Definition 4.4. We demonstraite th
for f,; the arguments fo€, are analogous. L&®, J) € RCY(L, A). Sincef, andfb of Definition 4.1 for simply-
laced algebras commutelife «(a), point (1) of Definition 4.4 follows focfa(u J) To prove that point (2) holds, it
suffices to check that if, > 1, then the various applications ¢f in fa select the same string, times. Note that for
simply-laced algebras the applicationfafchanges the vacancy numkié’f) by
(4.1) B =B = (aa | aw)x(i > k),
wherek is the length of the selected string. By the definitionkdfsee Definition 4.1) and the fact that all riggings
in the a-th rigged partition have parity, by point (2) of Definition 4.4, all riggings of strlngs of lethgi > k in
(7, J)(“) are greater or equal tes + v, where—s is the smallest rigging appearing(n, J) . By (4.1) the riggings
of lengthi > k in (7, J)(® change by -2. Hence the smallgssuch that—s -+ Yo —2j < —s—jisj = 7. This

shows thaty, applications off,, select the same string, which in turn proves tﬁ@(ﬁ? J) satisfies the conditions of
Definition 4.4. O

THEOREM4.6. With the same assumptions as in Theorem 3.2, the graph geddram(7, J) € RC(L, A) and
the crystal operators,,, f, of Definition 4.1 is isomorphic to the crystal graph{A) of highest weighA.

PROOF For simply-laced types this was proven BB[ Theorem 3.7]. For nonsimply-laced types this follows
from Theorems 4.3 and 4.5. O

EXAMPLE 4.7. Consider the crystd( ‘) of type A in B = (BY1)®3, Here is the crystal graph in the usual
labeling and the rigged configuration labeling:

121 (o ?
YN 7N
221 131 (110 EEREES
zl 11 2 11
231 132 [ToO-1 H-t0o
2 1 21 11
331 232 [, - 20
A
332 P,

THEOREM4.8. The cochargec as defined ir{3.3)is constant on connected crystal components.

PROOF For simply-laced types this was proved BB[ Theorem 3.9]. For nonsimply-laced types this follows
from Theorems 4.3 and 4.5. O

ExaMPLE 4.9. The cocharge of the connected componentin Exampls4.7 i
ForB = B™* @ ... ® B™* andA € P let
P(B,A) ={be B|wt(b) = A}.
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THEOREM4.10. LetA € P, B be as in Theorem 3.2 andthe corresponding multiplicity array. Then there is a
bijection® : P(B, A) — RC(L, A) which preserves the statistics, thati3(b) = cc(®(b)) forall b € P(B, A).

PROOF. By Theorem 3.2 there is such a bijection for the maximal eletsb € P(B). By Theorems 4.6 and 4.8

this extends to all oP(B, A). O
Extending the definitions of (3.4) to
(4.2) XB,A)= > ¢°® and MEILA)= D WD,
beP(B,A) (v,J)ERC(L,A)

we obtain the corollary:

COROLLARY 4.11. With all hypotheses of Theorem 4.10, we hA\&3, A) = M (L, A).

. . . . 1
5. Unrestricted rigged configurations for typeAfll1

In this section we give an explicit description of the eletsénRC(L, X) for typeAffll. Generally speaking, the
elements are rigged configurations where the labels liedmtthe vacancy number and certain lower bounds defined
explicitly. This characterization will be used in sectio® 5o write down an explicit fermionic formuld/ (L, \) for
the unrestricted configuration sulii( B, A). Section 5.3 is devoted to the affine crystal structurBO{ L, \).

5.1. Characterization of unrestricted rigged configuratians. Let L = (LE”)QWGH be a multiplicity array
andX = (A1, ..., \,) be then-tuple of nonnegative integers. The se{ &f \)-configurationsC(L, ) is the set of all
sequences of partitions = (v(?)),<; such that (3.1) holds. As discussed in Section 3, in the usitihg a rigged
configurationv, J) € RC(L, \) consists of a configuratiane C(L, \) together with a double sequence of partitions
J = {Ji(“) | (a,i) € H} such that the partitiodl.(“) is contained in anl(.“) X pl(.“) rectangle. In particular this requires
thatpl(.“) > 0. The unrestricted rigged configuratiops J) € RC(L, A) can contain labels that are negative, that is,
the lower bound on the parts ilf“) can be less than zero.

To define the lower bounds we need the following notation. Xet (c1,ca,...,c,—1), Wherecy, = Apy1 +
Ai+2 + -+ + A, is the length of thek-th column of )\, and let A(\') be the set of tableaux of shapésuch that
the entries are strictly decreasing along columns, andettbers in columrk are from the sef1,2, ..., ¢x—1} with
Co = Cq.

ExaMPLE 5.1. Forn =4 andX = (0,1, 1,1), the setd()\’) consists of the following tableaux

3[3]2] [3]3]2] [3]2]2] [3]3[1] [3]3][1] [3]2]1]
2[2 21 21 2/2 2/1 2[1] -
1] 1] 11 1] 11 1

REMARK 5.2. Denote by, , the entry oft € A()') in row j and columnk. Note thatc, —j +1 < ¢ <
ck—1 — j + 1 since the entries in columh are strictly decreasing and lie in the 4t 2,...,c;_1}. This implies
tik < ck—1—j+1<t;k_1,sothatthe rows of are weakly decreasing.

Givent € A(X), we define théower bound as

Cq Ca+1
M) = =D x(i 2 tga) + 3 X(0 = tiarn),
j=1 j=1
where recall thag(S) = 1 if the the statement is true andy(.S) = 0 otherwise.

Let M, p,m € Z such thatn > 0. A (M, p, m)-quasipartitioru is a tuple of integerg = (1, pi2, - - - , fim) SUCh
thatM < ppy < pim—1 < -+ < pp < p. Eachy; is called a part of:. Note that forAM/ = 0 this would be a partition
with at mostm parts each not exceedipg

The following theorem shows that the set of unrestrictegatconfigurations can be characterized via the lower
bounds.

THEOREM5.3. [33 Theorem 4.6Let (v, J) € RC(L, ). Thenw € C(L, A) and.J is a(M ) (t), p!), m(*)-
quasipartition for some € A()'). Conversely, everfy, .J) such that € C(L, \) and.J“ is a (M (), p{™ , m{"))-
quasipartition for some € A()\) isinRC(L, \).

3
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EXAMPLE 5.4. Letn =4, A =(2,2,1,1), L:(Ll) =6and all otherLE“) =0. Then

(v,J) = 1] -20 [(TJoo [J-11

L 103

is an unrestricted rigged configurationR&(L, A), where we have written the partsi)j‘a) next to the parts of length

iin partitionv(%). The second number is the corresponding vacancy nupﬁ"b?erThis shows that the labels are indeed
all weakly below the vacancy numbers. For

411]
3

e AN

‘>—~|I\DOJ>J>

we get the lower bounds

— 12 m, O

which are less or equal to the riggings(in J).

For type A; we havel = (A, \2) so thatA = {¢} contains just the single one-column tableau of heght
filled with the numberg, 2,. .., A2. In this caseM;(t) = — Zj.il x(i > t;1) = —i, which agrees with the findings
of [38].

The characterization of unrestricted rigged configurai@nsimilar to the characterization of level-restricted
rigged configurations34, Definition 5.5]. Whereas the unrestricted rigged confijares are characterized in terms
of lower bounds, for level-restricted rigged configuraitime vacancy number has to be modified according to tableaux
in a certain set.

5.2. Fermionic formula. With the explicit characterization of the unrestrictedgeg configurations of Sec-
tion 5.1, it is possible to derive an explicit formula for thelynomials)M (L, A) of (4.2).
Let SA()) be the set of all nonempty subsets4f\’) and set

M@(S) = max{M“(t) [t e S}  forS e SAN).
By inclusion-exclusion the set of all allowed riggings fogigenv € C(L, \) is

U 0T g s au((S), pi™, m(*))-quasipartition.
SeSAN)

Theg-binomial coefficien{?], defined as

") =

where(q), = (1 — ¢)(1 — ¢*)---(1 — ¢"), is the generating function of partitions with at mestparts each not
exceeding. Hence the polynomial/ (L, A\) may be rewritten as

@ (@ _ 3@
1) ML= Y (DY e M®) ] {mz‘ i — M(S)

(a)
SESAN) veC(L,\) (a.6)EH m;

calledfermionic formula. By Corollary 4.11 this is also a formula for the unrestritt®nfiguration sunX (B, A).
This formula is different from the fermionic formulas df3, 1§ which exist in the special case whénis the multi-
plicity array of B= B"** @ ---® Bt orB= B! @ ... ® B,

5.3. The Kashiwara operatorsey and f,. The Kirillov—Reshetikhin crystal&™* are affine crystals and admit
the Kashiwara operatoksy and f,. It was shown in 36] that for typeAffl1 they can be defined in terms of the

promotion operator pr as

1

ep=pr ~oeopr and fO:pr_loflopr.
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The promotion operator is a bijectign : B — B such that the following diagram commutes foralkt I

B> _.nB

(5.2) fal J,fa-H

B —— B
pr

and such that for everlyc B the weight is rotated
(5.3) (hat1, wi(pr(b))) = (ha , Wt (b)).
Here subscripts are taken modulo
We are now going to define the promotion operator on unréstriéggged configurations.
DEFINITION 5.5. Let(v, J) € RC(L, \). Thenpr(v, J) is obtained as follows:
(1) Set(v/,J) = ff22--- f) (v, J) wheref,, acts on(v, .J)(™ = .
(2) Apply the following algorithmp to (', J’) ), times: Find the smallest singular string (s, J')(™). Let
the length be(™). Repeatedly find the smallest singular stringzity J')(*) of length/(*) > ¢(*+1) for all
1 < k < n. Shorten the selected strings by one and make them singjdar.a

EXAMPLE 5.6. LetB = B22, L the corresponding multiplicity array and= (1,0, 1,2). Then

wn= o 57V [T 1 erc@y)

113
414

corresponds to the tableau=

€ P(B, \). After step (1) of Definition 5.5 we have

o= o FHT 57

L0 L
Then applying step (2) yields

pr(v, /)= 0 [Jo [ ]-1

1)1
2147

LEMMA 5.7. [33, Lemma 4.10The mappr of Definition 5.5 is well-defined and satisfi@s2)for 1 < a < n—2
and(5.3)for0 <a <n —1.

which corresponds to the tablept(b) =

Lemma 7 of B6| states that for a single Kirillov—Reshetikhin crystal = B™* the promotion operatopr is
uniquely determined by (5.2) fdr< a < n — 2 and (5.3) for0 < a < n — 1. Hence by Lemma 5.5r onRC(L) is
indeed the correct promotion operator wheis the multiplicity array ofB = B™*.

THEOREMb.8. [33, Theorem 4.11) et L be the multiplicity array ofB = B™*. Thenpr : RC(L) — RC(L) of
Definition 5.5 is the promotion operator on rigged configivas.

CONJECTUREbS.9. [33, Conjecture 4.12Theorem 5.8 is true for ang = B"**¢ @ - .- @ B™%1,

Unfortunately, the characterizatioB§, Lemma 7] does not suffice to defipe uniquely on tensor products
B = B™® @ ... ® B™*. In [8] a bijection® : P(B,\) — RC(L, \) is defined via a direct algorithm. It
is expected that Conjecture 5.9 can be proven by showingpthahd ® commute. Alternatively, an independent
characterization opr on tensor factors would give a new, more conceptual way ohitgfithe bijectiond between
paths and (unrestricted) rigged configurations. A proof tha crystal operatorg, ande, commute with® for
a=1,2,...,n—1is givenin B].
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