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Virtual crystal structure on rigged configurations

Anne Schilling

ABSTRACT. Rigged configurations are combinatorial objects originating from the Bethe Ansatz, that label highest weight
crystal elements. In this note a newunrestrictedset of rigged configurations is introduced by constructing acrystal structure
on the set of rigged configurations.

RÉSUMÉ. Les configurations gréées sont des objets combinatoiresinspirés par l’ansatz de Bethe, et qui sont en correspon-
dence avec les éléments cristallins de plus haut poids. Dans cette note, nous introduisons le concept de ”configurations gréées
généralisées”, en construisant une structure cristalline dans l’espace des configurations gréées.

1. Introduction

This note is based on preprint [33] which gives a crystal structure on rigged configurations for all simply-laced
types. Here we use the virtual crystal method [29, 30] to extend these results to nonsimply-laced types.

There are (at least) two main approaches to solvable latticemodels and their associated quantum spin chains: the
Bethe Ansatz [6] and the corner transfer matrix method [5].

In his 1931 paper [6], Bethe solved the Heisenberg spin chain based on the stringhypothesis which asserts that
the eigenvalues of the Hamiltonian form certain strings in the complex plane as the size of the system tends to infinity.
The Bethe Ansatz has been applied to many models to prove completeness of the Bethe vectors. The eigenvalues and
eigenvectors of the Hamiltonian are indexed by rigged configurations. However, numerical studies indicate that the
string hypothesis is not always true [2].

The corner transfer matrix (CTM) method, introduced by Baxter [5], labels the eigenvectors by one-dimensional
lattice paths. These lattice paths have a natural interpretation in terms of Kashiwara’s crystal base theory [16, 17],
namely as highest weight crystal elements in a tensor product of finite-dimensional crystals.

Even though neither the Bethe Ansatz nor the corner transfermatrix method are mathematically rigorous, they
suggest the existence of a bijection between the two index sets, namely rigged configurations on the one hand and
highest weight crystal paths on the other (see Figure 1). Forthe special case when the spin chain is defined on
V(µ1) ⊗ V(µ2) ⊗ · · · ⊗ V(µk), whereV(µi) is the irreducibleGL(n) representation indexed by the partition(µi) for
µi ∈ N, a bijection between rigged configurations and semi-standard Young tableaux was given by Kerov, Kirillov
and Reshetikhin [21, 22]. This bijection was proven and extended to the case when the(µi) are any sequence of
rectangles in [25]. The bijection has many amazing properties. For example ittakes the cocharge statisticscc defined
on rigged configurations to the coenergy statisticsD defined on crystals.

Rigged configurations and crystal paths also exist for othertypes. In [14, 15] the existence of Kirillov–Reshetikhin
crystalsBr,s was conjectured, which can be naturally associated with thedominant weightsΛr wheres is a positive
integer andΛr is ther-th fundamental weight of the underlying algebra of finite type. For a tensor product of Kirillov–
Reshetikhin crystalsB = Brk,sk ⊗ · · · ⊗ Br1,s1 and a dominant weightΛ let P(B, Λ) be the set of all highest
weight elements of weightΛ in B. In the same papers [14, 15], fermionic formulasM(L, Λ) for the one-dimensional
configuration sumsX(B, Λ) :=

∑
b∈P(B,Λ) qD(b) were conjectured. The fermionic formulas admit a combinatorial

interpretation in terms of the set of rigged configurationsRC(L, Λ), whereL is the multiplicity array ofB. A statistic
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FIGURE 1. Schematic origin of rigged configurations and crystal paths

preserving bijectionΦ : P(B, Λ) → RC(L, Λ) has been proven in various cases [25, 28, 32, 35] which implies the
following identity

(1.1) X(B, Λ) :=
∑

b∈P(B,Λ)

qD(b) =
∑

(ν,J)∈RC(L,Λ)

qcc(ν,J) =: M(L, Λ).

Since the sets in (1.1) are finite, these are polynomials inq. WhenB = B1,sk ⊗ · · · ⊗ B1,s1 of typeA, they are none
other than the Kostka–Foulkes polynomials.

Rigged configurations corresponding to highest weight crystal paths are only the tip of an iceberg. In this note we
extend the definition of rigged configurations to all crystalelements by the explicit construction of a crystal structure
on the set ofunrestrictedrigged configurations (see Definition 4.1). For simply-laced types, the proof is given in [32]
and uses Stembridge’s local characterization of simply-laced crystals [37]. For nonsimply-laced algebras, we show
here how to apply the method of virtual crystals [29, 30] to construct the crystal operators on rigged configurations.

The equivalence of the crystal structures on rigged configurations and crystal paths together with the correspon-
dence for highest weight vectors yields the equality of generating functions in analogy to (1.1) (see Theorem 4.10 and
Corollary 4.11). Denote the unrestricted set of paths and rigged configurations byP(B, Λ) andRC(L, Λ), respec-
tively. The corresponding generating functionsX(B, Λ) = M(L, Λ) are unrestricted generalized Kostka polynomials
or q-supernomial coefficients. A direct bijectionΦ : P(B, Λ) → RC(L, Λ) for type A along the lines of [25] is
constructed in [7, 8].

Rigged configurations are closely tied to fermionic formulas. Fermionic formulas are explicit expressions for the
partition function of the underlying physical model which reflect their particle structure. For more details regarding
the background of fermionic formulas see [14, 19, 20]. For typeA we obtain an explicit characterization of the
unrestricted rigged configurations in terms of lower boundson quantum numbers which yields a new fermionic formula
for unrestricted Kostka polynomials of typeA. Surprisingly, this formula is different from the fermionic formulas
in [13, 18] obtained in the special cases ofB = B1,sk ⊗ · · · ⊗ B1,s1 andB = Brk,1 ⊗ · · · ⊗ Br1,1. The rigged
configurations corresponding to the fermionic formulas of [13, 18] were related to ribbon tableaux and the cospin
generating functions of Lascoux, Leclerc, Thibon [26, 27] in reference [31]. To distinguish these rigged configurations
from the ones introduced in this paper, let us call them ribbon rigged configurations.

The Lascoux–Leclerc–Thibon (LLT) polynomials [26, 27] have recently made their debut in the theory of Mac-
donald polynomials in the seminal paper by Haiman, Haglund,Loehr [9]. The main obstacle in obtaining a combina-
torial formula for the Macdonald–Kostka polynomials is theSchur positivity of certain LLT polynomials. A related
problem is the conjecture of Kirillov and Shimozono [24] that the cospin generating function of ribbon tableaux equals
the generalized Kostka polynomial. A possible avenue to prove this conjecture would be a direct bijection between
the unrestricted rigged configurations of this paper and ribbon rigged configurations.

One of the motivations for considering unrestricted riggedconfigurations was Takagi’s work [38] on the inverse
scattering transform, which provides a bijection between states in thesl2 box ball system and rigged configurations.
In this setting rigged configurations play the role of action-angle variables. Box ball systems can be produced from
crystals of solvable lattice models for algebras other thansl2 [10, 11, 12]. The inverse scattering transform can be
generalized to thesln case [23], which should give a box-ball interpretation of the unrestricted rigged configurations
presented here.

Another motivation for the study of unrestricted configuration sums, fermionic formulas and associated rigged
configurations is their appearance in generalizations of the Bailey lemma [3, 39]. The Andrews–Bailey construction [1,
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4] relies on an iterative transformation property of theq-binomial coefficient, which is one of the simplest unrestricted
configuration sums, and can be used to prove infinite familiesof Rogers–Ramanujan type identities. The explicit
formulas provided in this paper might trigger further progress towards generalizations to higher-rank or other types of
the Andrews–Bailey construction.

The paper is organized as follows. In Section 2 we review basics about crystal bases and virtual crystals. In
Section 3 we define rigged configurations. The new crystal structure on rigged configurations is presented in section 4.
Section 5 is devoted to typeA, where we give an explicit characterization of the unrestricted rigged configurations, a
fermionic formula for unrestricted Kostka polynomials, and the affine crystal structure.

2. Crystals

2.1. Axiomatic definition. Kashiwara [16, 17] introduced acrystal as an edge-colored directed graph satisfying
a simple set of axioms. Letg be a symmetrizable Kac–Moody algebra with associated root,coroot and weight lattices
Q, Q∨, P . Let I be the index set of the Dynkin diagram and denote the simple roots, simple coroots and fundamental
weights byαi, hi andΛi (i ∈ I), respectively. There is a natural pairing〈· , ·〉 : Q∨ ⊗ P → Z defined by〈hi , Λj〉 =
δij .

The vertices of the crystal graph are elements of a setB. The edges of the crystal graph are colored by the index
setI. A P -weightedI-crystal satisfies the following properties:

(1) Fix ani ∈ I. If all edges are removed except those coloredi, the connected components are finite directed
linear paths called thei-strings of B. Givenb ∈ B, definefi(b) (resp. ei(b)) to be the vertex following
(resp. preceding)b in its i-string; if there is no such vertex, declarefi(b) (resp. ei(b)) to be undefined.
Defineϕi(b) (resp.εi(b)) to be the number of arrows fromb to the end (resp. beginning) of itsi-string.

(2) There is a functionwt : B → P such thatwt(fi(b)) = wt(b) − αi andϕi(b) − εi(b) = 〈hi , wt(b)〉.

2.2. Virtual crystals. There exist natural inclusions of affine Lie algebras as indicated in Figures 2 and 3. Even
though these embeddings do not carry over to the corresponding quantum algebras, it is expected that such embeddings
exist for crystals. Note that every affine algebra can be embedded into one of typeA(1), D(1) andE(1) which are the
untwisted affine algebras whose canonical simple Lie subalgebra is simply-laced. Crystal embeddings corresponding
to C

(1)
n , A

(2)
2n , D

(2)
n+1 ↪→ A

(1)
2n−1 have been studied in [29], whereas the crystal embeddingsB

(1)
n , A

(2)
2n−1 ↪→ D

(1)
n+1 have

been established in [30].
Consider an embedding of the affine algebra with Dynkin diagramX into one with diagramY . We consider a

graph automorphismσ of Y that fixes the 0 node. For typeA(1)
2n−1, σ(i) = 2n − i (mod 2n). For typeD

(1)
n+1 the

automorphism interchanges the nodesn andn + 1 and fixes all other nodes. There is an additional automorphism for
typeD

(1)
4 , namely, the cyclic permutation of the nodes 1,2 and 3. For typeE

(1)
6 the automorphism exchanges nodes 1

and 5 and nodes 2 and 4. In Figures 2 and 3 the automorphismσ is illustrated pictorially by arrows.
Let IX andIY be the vertex sets of the diagramsX andY respectively,IY /σ the set of orbits of the action ofσ

on IY , andι : IX → IY /σ a bijection which preserves edges and sends0 to 0.

EXAMPLE 2.1.
If X is one ofC(1)

n , A
(2)
2n , D

(2)
n+1 andY = A

(1)
2n−1, thenι(0) = 0, ι(i) = {i, 2n− i} for 1 ≤ i < n andι(n) = n.

If X = B
(1)
n or A

(2)
2n−1 andY = D

(1)
n+1, thenι(i) = i for i < n andι(n) = {n, n + 1}.

If X is D
(3)
4 or G

(1)
2 andY = D

(1)
4 , thenι(0) = 0, ι(1) = 2 andι(2) = {1, 3, 4}.

If X is E
(2)
6 or F

(1)
4 andY = E

(1)
6 , thenι(0) = 0, ι(1) = 1, ι(2) = 3, ι(3) = {2, 4} andι(4) = {1, 5}.

To describe the embedding we endow the bijectionι with additional data. For eachi ∈ IX we shall define a
multiplication factorγi that depends on the location ofi with respect to a distinguished arrow (multiple bond) inX .
Removing the arrow leaves two connected components. The factor γi is defined as follows:

(1) SupposeX has a unique arrow.
(a) Suppose the arrow points towards the component of0. Thenγi = 1 for all i ∈ IX .
(b) Suppose the arrow points away from the component of0. Thenγi is the order ofσ for i in the component

of 0 and is1 otherwise.
(2) SupposeX has two arrows. Thenγi = 1 for 1 ≤ i ≤ n − 1. For i ∈ {0, n}, γi = 2 (which is the order of

σ) if the arrow incident toi points away from it and is1 otherwise.
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FIGURE 2. EmbeddingsC(1)
n , A

(2)
2n , D

(2)
n+1 ↪→ A

(1)
2n−1 andB

(1)
n , A

(2)
2n−1 ↪→ D

(1)
n+1

EXAMPLE 2.2. The values ofγi are summarized in the following table:

X

A
(2)
2n−1

D
(3)
4 γi = 1 for all i

E
(2)
6

B
(1)
n γi = 2 for 0 ≤ i ≤ n − 1

γn = 1

G
(1)
2 γi = 3 for i = 0, 1

γ2 = 1

F
(1)
4 γi = 2 for i = 0, 1, 2

γi = 1 for i = 3, 4

C
(1)
n γi = 1 for 1 ≤ i < n

γ0 = γn = 2

A
(2)
2n γi = 1 for 0 ≤ i < n

γn = 2

D
(2)
n+1 γi = 1 for all i

The embeddingΨ : PX → PY of weight lattices is defined by

Ψ(ΛX
i ) = γi

∑

j∈ι(i)

ΛY
j .

Let V̂ be aY -crystal. We define the virtual crystal operatorsêi, f̂i for i ∈ IX as the composites ofY -crystal
operatorsfj, ej given by

(2.1) f̂i =
∏

j∈ι(i)

fγi

j and êi =
∏

j∈ι(i)

eγi

j .

These are designed to simulateX-crystal operatorsfi, ei for i ∈ IX . The typeY operators on the right hand side,
may be performed in any order, since distinct nodesj, j′ ∈ ι(i) are not adjacent inY and thus their corresponding
raising and lowering operators commute.

A virtual crystal is a pair(V, V̂ ) such that:

(1) V̂ is aY -crystal.
(2) V ⊂ V̂ is closed under̂ei, f̂i for i ∈ IX .
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(3) There is anX-crystalB and anX-crystal isomorphismΨ : B → V such thatei, fi correspond tôei, f̂i.

Sometimes by abuse of notation,V will be referred to as a virtual crystal.
Let us define theY -crystal

V̂ r,s =
⊗

j∈ι(r)

Bj,γrs
Y

except forA(2)
2n andr = n in which caseV̂ n,s = Bn,s

Y ⊗ Bn,s
Y . Denote byu(V̂ r,s) the extremal vector of weight

Ψ(sΛr) in V̂ r,s.

DEFINITION 2.3. LetV r,s be the subset of̂V r,s generated fromu(V̂ r,s) using the virtual crystal operatorŝei and
f̂i for i ∈ IX .

CONJECTURE2.4. [30, Conjecture 3.7]There is an isomorphism ofX-crystalsΨ : Br,s
X

∼= V r,s such thatei and

fi correspond tôei and f̂i respectively, for alli ∈ IX .

In [29] Conjecture 2.4 is proved for embeddingsC
(1)
n , A

(2)
2n , D

(2)
n+1 ↪→ A

(1)
2n−1 ands = 1. In [30] Conjecture 2.4

is proved for all nonexceptional types whenr = 1.

3. Rigged configurations

In this section we define rigged configurations for all affine Kac–Moody algebras. TypeA(2)
2n requires some special

treatment. We need the variantγ̃a of the multiplication factorγa which is γ̃a = γa except forA(2)
2n anda = n when

γ̃n = 1. Also setα̃a = αa for all a ∈ I except for typeA(2)
2n in which casẽαa are the simple roots of typeBn.

Let L = (L
(a)
i )(a,i)∈H be an array of nonnegative integers whereH = {1, 2, . . . , n}×Z>0, called the multiplicity

array, wheren is the rank of the underlying algebra andΛ a weight. Then an(L, Λ)-configuration is an arraym =

(m
(a)
i )(a,i)∈H such that

(3.1)
∑

(a,i)∈H

i m
(a)
i α̃a =

∑

(a,i)∈H

i L
(a)
i Λa − Λ

except for typeA(2)
2n . In this case the right hand side should be replaced byι(r.h.s) whereι is aZ-linear map from the

weight lattice of typeCn to the weight lattice of typeBn such that

ι(ΛC
a ) =

{
ΛB

a for 1 ≤ a < n

2ΛB
a for a = n.
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The vacancy numbers of a given configuration are defined as

(3.2) p
(a)
i =

∑

(b,j)∈H

−
2(αa | αb)

γb(αa | αa)
min(γ̃ai, γ̃bj)m

(b)
j +

∑

j≥0

min(i, j)L
(a)
j .

An (L, Λ)-configuration is calledadmissibleif p
(a)
i ≥ 0 for all (a, i) ∈ H. The set of admissible(L, Λ)-configurations

is denoted byC(L, Λ).

A rigged configuration is a pair(m, J) wherem = (m
(a)
i )(a,i)∈H is an admissible(L, Λ)-configuration and

J = (J
(a)
i )(a,i)∈H is a matrix of partitions such that the partitionJ

(a)
i is contained in a rectangle of sizem(a)

i × p
(a)
i .

The set of rigged configurations for fixedL andΛ is denoted byRC(L, Λ).
Rigged configurations can also be represented as a sequence of partitions such that each part of each partition is

labeled or “rigged” by a number. Letν = (ν(1), ν(2), . . . , ν(n)) be the sequence of partitions obtained fromm =

(m
(a)
i ) as follows. Letm(a)

i (ν) be the number of parts inν(a) of sizei. Thenν is determined by requiring that

m
(a)
eγai(ν) = m

(a)
i and m

(a)
j (ν) = 0 for j 6∈ γ̃aZ.

The vacancy numberP (a)
i (ν) for each parti of ν(a) is then

P
(a)
i (ν) =

∑

b∈I

−
2(αa | αb)

γb(αa | αa)
Qi(ν

(b)) +
∑

j≥0

min(
i

γ̃a

, j)L
(a)
j ,

whereQi(ρ) is the number of boxes in the firsti columns of the partitionρ. The relation top(a)
i is

p
(a)
i = P

(a)
eγai(ν).

A tuple (i, x) wherei is a part ofν(a) andx is a part ofJ (a)
i is called a string of the rigged partition(ν, J)(a). Herei

is the length andx the label of the string. Thecolabelof a string(i, x) of (ν, J)(a) is P
(a)
i (ν) − x.

EXAMPLE 3.1. LetΛ = Λ1 + Λ3 of typeA
(2)
6 , L

(1)
1 = 7 and all otherL(a)

i = 0. Then

(ν, J) =

0 0
0 0
0 0
0 0
0 0

0 0
1 1
1 1

1 1
0 1

∈ RC(L, Λ),

where the first number behind each part is the label and the second one is the vacancy number.

There is also a statistic calledcochargedefined on rigged configurations. Sett∨a = |ι(a)|γa

γ0
. The cocharge is given

by

cc(ν) =
∑

(i,a),(b,j)∈H

t∨a
γb

·
(αa | αb)

(αa | αa)
min(γ̃ai, γ̃bj)m

(a)
i m

(b)
j

=
1

2

∑

(a,i)∈H

t∨a m
(a)
i

(∑

j≥0

min(i, j)L
(a)
j − p

(a)
i

)(3.3)

for a configurationν andcc(ν, J) = cc(ν)+ |J | where|J | =
∑

(a,i)∈H t∨a |J
(a)
i | is the sum of the sizes of all partitions

J
(a)
i weighted byt∨a .

As mentioned in the introduction, rigged configurations correspond to highest weight crystal elements. LetBr,s

be a Kirillov–Reshetikhin crystal for(r, s) ∈ H andB = Brk,sk ⊗ Brk−1,sk−1 ⊗ · · · ⊗ Br1,s1 . Associate toB the
multiplicity arrayL = (L

(r)
s )(r,s)∈H whereL

(r)
s counts the number of tensor factorsBr,s in B. Denote by

P(B, Λ) = {b ∈ B | wt(b) = Λ, ei(b) undefined for alli ∈ I}

the set of all highest weight elements of weightΛ in B. There is a natural statistics defined onB, called energy
function or more precisely tail coenergy functionD : B → Z (see [35, Eq. (5.1)] for a precise definition).

The following theorem was proven in [25] for typeA
(1)
n−1 and generalB = Brk,sk ⊗ · · ·⊗Br1,s1 , in [32] for type

D
(1)
n andB = Brk,1 ⊗ · · · ⊗ Br1,1 and in [35] for typeD

(1)
n andB = B1,sk ⊗ · · · ⊗ B1,s1 .
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THEOREM 3.2. [25, 32, 35] For Λ a dominant weight,B as above andL the corresponding multiplicity array,
there is a bijectionΦ : P(B, Λ) → RC(L, Λ) which preserves the statistics, that is,D(b) = cc(Φ(b)) for all
b ∈ P(B, Λ).

Defining the generating functions

(3.4) X(B, Λ) =
∑

b∈P(B,Λ)

qD(b) and M(L, Λ) =
∑

(ν,J)∈RC(L,Λ)

qcc(ν,J),

we get the immediate corollary of Theorem 3.2.

COROLLARY 3.3. [25, 32, 35] LetΛ, B andL as in Theorem 3.2. ThenX(B, Λ) = M(L, Λ).

4. Crystal structure on rigged configurations

The rigged configurations of section 3 correspond to highestweight crystal elements. In this section we introduce
the set of unrestricted rigged configurationsRC(L) by defining a crystal structure generated from highest weight
vectors given by elements inRC(L) =

⋃
Λ∈P+ RC(L, Λ) by the Kashiwara operatorsea, fa. For simply-laced

algebras the following definition was given in [33, Definition 3.3]. The multiplication factorsγa for the simply-laced
case are equal to1.

DEFINITION 4.1. LetL be a multiplicity array. Define the set ofunrestricted rigged configurationsRC(L) as
the set generated from the elements inRC(L) by the application of the operatorsfa, ea for 1 ≤ a ≤ n defined as
follows:

(1) Defineea(ν, J) by removingγa boxes from a string of lengthk in (ν, J)(a) leaving all colabels fixed and
increasing the new label by one. Herek is the length of the string with the smallest negative rigging of
smallest length. If no such string exists,ea(ν, J) is undefined.

(2) Definefa(ν, J) by addingγa boxes to a string of lengthk in (ν, J)(a) leaving all colabels fixed and de-
creasing the new label by one. Herek is the length of the string with the smallest nonpositive rigging of
largest length. If no such string exists, add a new string of length one and label -1. If the result is not a valid
unrestricted rigged configurationfa(ν, J) is undefined.

EXAMPLE 4.2. For(ν, J) of Example 3.1 we have

f1(ν, J) =

−1 -1
0 0
0 0
0 0
0 0

1 1
1 1
1 1

1 1
0 1

and

f3(ν, J) =

0 0
0 0
0 0
0 0
0 0

1 1
1 1
1 1

−1 -1
0 0

.

THEOREM 4.3. The operatorsea, fa of Definition 4.1 are the Kashiwara crystal operators.

For simply-laced algebras Theorem 4.3 was proven in [33] by using the local characterization of simply-laced
crystals given by Stembridge [37]. In the following we show that, assuming that the virtual crystal embeddings of
section 2.2 hold, Theorem 4.3 is also true for the nonsimply-laced algebras.

We definevirtual rigged configurations in analogy to virtual crystals. HereB = Brk,sk ⊗ · · · ⊗ Br1,s1 is a
tensor product of Kirillov-Reshetikhin crystals andL = (L

(a)
i ) the corresponding multiplicity array.

DEFINITION 4.4. LetX ↪→ Y be one of the algebra embeddings of section 2.2,Λ a weight andB a crystal for
type X . Let (V, V̂ ) be the virtualY -crystal corresponding toB. ThenRCv(L, Λ) is the set of elements(ν̂, Ĵ) ∈

RC(L̂, Ψ(Λ)) such that:

(1) For alli ∈ Z>0, m̂
(a)
i = m̂

(b)
i andĴ

(a)
i = Ĵ

(b)
i if a andb are in the sameσ-orbit in IY .

(2) For all i ∈ Z>0, a ∈ IX , andb ∈ ι(a) ⊂ IY , we havem̂(b)
j = 0 if j 6∈ γ̃aZ and the parts of̂J (b)

i are
multiples ofγa.
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THEOREM 4.5. [30, Theorem 4.2]There is a bijectionRC(L, Λ) → RCv(L, Λ) sending(ν, J) 7→ (ν̂, Ĵ) given
as follows. For alla ∈ IX , b ∈ ι(a) ⊂ IY , andi ∈ Z>0,

m̂
(b)
eγai

= m
(a)
i and Ĵ

(b)
eγai

= γaJ
(a)
i .

The cocharge changes bycc(ν̂, Ĵ) = γ0 cc(ν, J).

PROOF OFTHEOREM 4.3. Theorem 4.3 was proved in [33] for the simply-laced algebras. Hence, assuming that
the virtual crystal embeddings of section 2.2 hold, it suffices to check thatea, fa of Definition 4.1 satisfy (2.1). By
Theorem 4.5 this reduces to checking thatf̂a and êa preserve the conditions of Definition 4.4. We demonstrate this
for f̂a; the arguments for̂ea are analogous. Let(ν̂, Ĵ) ∈ RCv(L, Λ). Sincefa andfb of Definition 4.1 for simply-
laced algebras commute ifb ∈ ι(a), point (1) of Definition 4.4 follows forf̂a(ν̂, Ĵ). To prove that point (2) holds, it
suffices to check that ifγa > 1, then the various applications offa in f̂a select the same stringγa times. Note that for
simply-laced algebras the application offa changes the vacancy numberp̂

(b)
i by

(4.1) p̂
(b)
i 7→ p̂

(b)
i − (αa | αb)χ(i > k),

wherek is the length of the selected string. By the definition ofk (see Definition 4.1) and the fact that all riggings
in the a-th rigged partition have parityγa by point (2) of Definition 4.4, all riggings of strings of length i > k in
(ν̂, Ĵ)(a) are greater or equal to−s+γa, where−s is the smallest rigging appearing in(ν̂, Ĵ)(a). By (4.1) the riggings
of lengthi > k in (ν̂, Ĵ)(a) change by -2. Hence the smallestj such that−s + γa − 2j ≤ −s − j is j = γa. This
shows thatγa applications offa select the same string, which in turn proves thatf̂a(ν̂, Ĵ) satisfies the conditions of
Definition 4.4. �

THEOREM 4.6. With the same assumptions as in Theorem 3.2, the graph generated from(ν, J) ∈ RC(L, Λ) and
the crystal operatorsea, fa of Definition 4.1 is isomorphic to the crystal graphB(Λ) of highest weightΛ.

PROOF. For simply-laced types this was proven in [33, Theorem 3.7]. For nonsimply-laced types this follows
from Theorems 4.3 and 4.5. �

EXAMPLE 4.7. Consider the crystalB( ) of typeA2 in B = (B1,1)⊗3. Here is the crystal graph in the usual

labeling and the rigged configuration labeling:
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−1
−1
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2

1

1

1

2
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THEOREM 4.8. The cochargecc as defined in(3.3) is constant on connected crystal components.

PROOF. For simply-laced types this was proved in [33, Theorem 3.9]. For nonsimply-laced types this follows
from Theorems 4.3 and 4.5. �

EXAMPLE 4.9. The cocharge of the connected component in Example 4.7 is 1.

ForB = Brk,sk ⊗ · · · ⊗ Br1,s1 andΛ ∈ P let

P(B, Λ) = {b ∈ B | wt(b) = Λ}.
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THEOREM 4.10. LetΛ ∈ P , B be as in Theorem 3.2 andL the corresponding multiplicity array. Then there is a
bijectionΦ : P(B, Λ) → RC(L, Λ) which preserves the statistics, that is,D(b) = cc(Φ(b)) for all b ∈ P(B, Λ).

PROOF. By Theorem 3.2 there is such a bijection for the maximal elementsb ∈ P(B). By Theorems 4.6 and 4.8
this extends to all ofP(B, Λ). �

Extending the definitions of (3.4) to

(4.2) X(B, Λ) =
∑

b∈P(B,Λ)

qD(b) and M(L, Λ) =
∑

(ν,J)∈RC(L,Λ)

qcc(ν,J),

we obtain the corollary:

COROLLARY 4.11. With all hypotheses of Theorem 4.10, we haveX(B, Λ) = M(L, Λ).

5. Unrestricted rigged configurations for typeA
(1)
n−1

In this section we give an explicit description of the elements inRC(L, λ) for typeA
(1)
n−1. Generally speaking, the

elements are rigged configurations where the labels lie between the vacancy number and certain lower bounds defined
explicitly. This characterization will be used in section 5.2 to write down an explicit fermionic formulaM(L, λ) for
the unrestricted configuration sumX(B, λ). Section 5.3 is devoted to the affine crystal structure ofRC(L, λ).

5.1. Characterization of unrestricted rigged configurations. Let L = (L
(a)
i )(a,i)∈H be a multiplicity array

andλ = (λ1, . . . , λn) be then-tuple of nonnegative integers. The set of(L, λ)-configurationsC(L, λ) is the set of all
sequences of partitionsν = (ν(a))a∈I such that (3.1) holds. As discussed in Section 3, in the usualsetting a rigged
configuration(ν, J) ∈ RC(L, λ) consists of a configurationν ∈ C(L, λ) together with a double sequence of partitions

J = {J
(a)
i | (a, i) ∈ H} such that the partitionJ (a)

i is contained in am(a)
i × p

(a)
i rectangle. In particular this requires

thatp(a)
i ≥ 0. The unrestricted rigged configurations(ν, J) ∈ RC(L, λ) can contain labels that are negative, that is,

the lower bound on the parts inJ (a)
i can be less than zero.

To define the lower bounds we need the following notation. Letλ′ = (c1, c2, . . . , cn−1)
t, whereck = λk+1 +

λk+2 + · · · + λn is the length of thek-th column ofλ′, and letA(λ′) be the set of tableaux of shapeλ′ such that
the entries are strictly decreasing along columns, and the letters in columnk are from the set{1, 2, . . . , ck−1} with
c0 = c1.

EXAMPLE 5.1. Forn = 4 andλ = (0, 1, 1, 1), the setA(λ′) consists of the following tableaux

3 3 2
2 2
1

3 3 2
2 1
1

3 2 2
2 1
1

3 3 1
2 2
1

3 3 1
2 1
1

3 2 1
2 1
1

.

REMARK 5.2. Denote bytj,k the entry oft ∈ A(λ′) in row j and columnk. Note thatck − j + 1 ≤ tj,k ≤
ck−1 − j + 1 since the entries in columnk are strictly decreasing and lie in the set{1, 2, . . . , ck−1}. This implies
tj,k ≤ ck−1 − j + 1 ≤ tj,k−1, so that the rows oft are weakly decreasing.

Givent ∈ A(λ′), we define thelower bound as

M
(a)
i (t) = −

ca∑

j=1

χ(i ≥ tj,a) +

ca+1∑

j=1

χ(i ≥ tj,a+1),

where recall thatχ(S) = 1 if the the statementS is true andχ(S) = 0 otherwise.
Let M, p, m ∈ Z such thatm ≥ 0. A (M, p, m)-quasipartitionµ is a tuple of integersµ = (µ1, µ2, . . . , µm) such

thatM ≤ µm ≤ µm−1 ≤ · · · ≤ µ1 ≤ p. Eachµi is called a part ofµ. Note that forM = 0 this would be a partition
with at mostm parts each not exceedingp.

The following theorem shows that the set of unrestricted rigged configurations can be characterized via the lower
bounds.

THEOREM5.3. [33, Theorem 4.6]Let(ν, J) ∈ RC(L, λ). Thenν ∈ C(L, λ) andJ
(a)
i is a(M

(a)
i (t), p

(a)
i , m

(a)
i )-

quasipartition for somet ∈ A(λ′). Conversely, every(ν, J) such thatν ∈ C(L, λ) andJ
(a)
i is a(M

(a)
i (t), p

(a)
i , m

(a)
i )-

quasipartition for somet ∈ A(λ′) is in RC(L, λ).
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EXAMPLE 5.4. Letn = 4, λ = (2, 2, 1, 1), L(1)
1 = 6 and all otherL(a)

i = 0. Then

(ν, J) = −2 0
0 3

0 0 −1 -1

is an unrestricted rigged configuration inRC(L, λ), where we have written the parts ofJ
(a)
i next to the parts of length

i in partitionν(a). The second number is the corresponding vacancy numberp
(a)
i . This shows that the labels are indeed

all weakly below the vacancy numbers. For

4 4 1
3 3
2
1

∈ A(λ′)

we get the lower bounds

−2
−1 0 −1,

which are less or equal to the riggings in(ν, J).

For typeA1 we haveλ = (λ1, λ2) so thatA = {t} contains just the single one-column tableau of heightλ2

filled with the numbers1, 2, . . . , λ2. In this caseMi(t) = −
∑λ2

j=1 χ(i ≥ tj,1) = −i, which agrees with the findings
of [38].

The characterization of unrestricted rigged configurations is similar to the characterization of level-restricted
rigged configurations [34, Definition 5.5]. Whereas the unrestricted rigged configurations are characterized in terms
of lower bounds, for level-restricted rigged configurations the vacancy number has to be modified according to tableaux
in a certain set.

5.2. Fermionic formula. With the explicit characterization of the unrestricted rigged configurations of Sec-
tion 5.1, it is possible to derive an explicit formula for thepolynomialsM(L, λ) of (4.2).

Let SA(λ′) be the set of all nonempty subsets ofA(λ′) and set

M
(a)
i (S) = max{M

(a)
i (t) | t ∈ S} for S ∈ SA(λ′).

By inclusion-exclusion the set of all allowed riggings for agivenν ∈ C(L, λ) is
⋃

S∈SA(λ′)

(−1)|S|+1{J | J
(a)
i is a(M

(a)
i (S), p

(a)
i , m

(a)
i )-quasipartition}.

Theq-binomial coefficient
[
m+p

m

]
, defined as

[
m + p

m

]
=

(q)m+p

(q)m(q)p

,

where(q)n = (1 − q)(1 − q2) · · · (1 − qn), is the generating function of partitions with at mostm parts each not
exceedingp. Hence the polynomialM(L, λ) may be rewritten as

(5.1) M(L, λ) =
∑

S∈SA(λ′)

(−1)|S|+1
∑

ν∈C(L,λ)

qcc(ν)+
P

(a,i)∈H
m

(a)
i

M
(a)
i

(S)
∏

(a,i)∈H

[
m

(a)
i + p

(a)
i − M

(a)
i (S)

m
(a)
i

]

calledfermionic formula . By Corollary 4.11 this is also a formula for the unrestricted configuration sumX(B, λ).
This formula is different from the fermionic formulas of [13, 18] which exist in the special case whenL is the multi-
plicity array ofB = B1,sk ⊗ · · · ⊗ B1,s1 or B = Brk,1 ⊗ · · · ⊗ Br1,1.

5.3. The Kashiwara operatorse0 and f0. The Kirillov–Reshetikhin crystalsBr,s are affine crystals and admit
the Kashiwara operatorse0 andf0. It was shown in [36] that for typeA

(1)
n−1 they can be defined in terms of the

promotion operator pr as

e0 = pr−1 ◦ e1 ◦ pr and f0 = pr−1 ◦ f1 ◦ pr.
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The promotion operator is a bijectionpr : B → B such that the following diagram commutes for alla ∈ I

(5.2)

B
pr

−−−−→ B

fa

y
yfa+1

B −−−−→
pr

B

and such that for everyb ∈ B the weight is rotated

(5.3) 〈ha+1 , wt(pr(b))〉 = 〈ha , wt(b)〉.

Here subscripts are taken modulon.
We are now going to define the promotion operator on unrestricted rigged configurations.

DEFINITION 5.5. Let(ν, J) ∈ RC(L, λ). Thenpr(ν, J) is obtained as follows:

(1) Set(ν′, J ′) = fλ1
1 fλ2

2 · · · fλn
n (ν, J) wherefn acts on(ν, J)(n) = ∅.

(2) Apply the following algorithmρ to (ν′, J ′) λn times: Find the smallest singular string in(ν′, J ′)(n). Let
the length bè (n). Repeatedly find the smallest singular string in(ν′, J ′)(k) of length`(k) ≥ `(k+1) for all
1 ≤ k < n. Shorten the selected strings by one and make them singular again.

EXAMPLE 5.6. LetB = B2,2, L the corresponding multiplicity array andλ = (1, 0, 1, 2). Then

(ν, J) = 0
−1

−1
−1 ∈ RC(L, λ)

corresponds to the tableaub = 1 3
4 4

∈ P(B, λ). After step (1) of Definition 5.5 we have

(ν′, J ′) = −1 1
0

−1
−1

−1.

Then applying step (2) yields

pr(ν, J) = ∅ 0 −1

which corresponds to the tableaupr(b) = 1 1
2 4

.

LEMMA 5.7. [33, Lemma 4.10]The mappr of Definition 5.5 is well-defined and satisfies(5.2)for 1 ≤ a ≤ n− 2
and (5.3)for 0 ≤ a ≤ n − 1.

Lemma 7 of [36] states that for a single Kirillov–Reshetikhin crystalB = Br,s the promotion operatorpr is
uniquely determined by (5.2) for1 ≤ a ≤ n − 2 and (5.3) for0 ≤ a ≤ n − 1. Hence by Lemma 5.7pr onRC(L) is
indeed the correct promotion operator whenL is the multiplicity array ofB = Br,s.

THEOREM 5.8. [33, Theorem 4.11]LetL be the multiplicity array ofB = Br,s. Thenpr : RC(L) → RC(L) of
Definition 5.5 is the promotion operator on rigged configurations.

CONJECTURE5.9. [33, Conjecture 4.12]Theorem 5.8 is true for anyB = Brk,sk ⊗ · · · ⊗ Br1,s1 .

Unfortunately, the characterization [36, Lemma 7] does not suffice to definepr uniquely on tensor products
B = Brk,sk ⊗ · · · ⊗ Br1,s1 . In [8] a bijectionΦ : P(B, λ) → RC(L, λ) is defined via a direct algorithm. It
is expected that Conjecture 5.9 can be proven by showing thatpr andΦ commute. Alternatively, an independent
characterization ofpr on tensor factors would give a new, more conceptual way of defining the bijectionΦ between
paths and (unrestricted) rigged configurations. A proof that the crystal operatorsfa and ea commute withΦ for
a = 1, 2, . . . , n − 1 is given in [8].
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