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Conjugacy in Permutation Representations of the Symmetric Group

Extended Abstract

Yona Cherniavsky and Mishael Sklarz

Abstract. Although the conjugacy classes of the general linear group are known, it is not obvious (from
the canonic form of matrices) that two permutation matrices are similar if and only if they are conjugate
as permutations in the symmetric group, i.e. that conjugacy classes of Sn do not unite under the natural
representation. We prove this fact, and give its application to the enumeration of fixed points under a
natural action of Sn × Sn. We also consider the permutation representations of Sn which arise from the
action of Sn on k-tuples, and classify which of them unite conjugacy classes and which do not.

Résumé. Bien que les classes de conjugaison du groupe linéaire général soient bien connues, il n’est pas
évident (à partir de la forme canonique des matrices) que deux oermutations sont similaires si et seulement
si elles sont conjuguées comme permutations du groupe symétrique, i.e. que les classes de conjugaison
de Sn ne s’unissent pas sous la représentation naturelle.Nous prouvons ici ce fait et nous l’appliquons à
l’énumération des points fixes pour une action naturelle de Sn ×Sn. We étudions aussi la représentation par
permutations de Sn qui découle de l’action de Sn sur les k-uplets, et nous distinguons celles qui unissent les
classes de conjugaisons.

1. Introduction

In this extended abstract we study the action of Sn on ordered k-tuples. Denote by ρk the corresponding
permutation representation over an arbitrary field F. The following problem was presented to us by Lubotzky
and Roichman.

Problem 1. For which 1 ≤ k ≤ n and for which fields F does the following hold:

For any two permutations π, σ ∈ Sn, ρk(π) is conjugate to ρk(σ) in GL(n, F) if and only if π and σ are

conjugate in Sn.

This problem arises in the enumeration of invertible matrices with respect to a certain natural action of
Sn × Sn, see [BC] and Section 4 below.

For k = n, i.e. the regular representation, a negative solution to Problem 1 was essentially given by
Burnside (See [B] p. 23-24). In Section 2 it is shown that for k = 1 the answer is positive. A full solution
is given in Section 3: We find that ρ1 and ρ2 do not unite any classes, that ρ3 unites classes only when n
is even, and that ρk for k ≥ 4 always unites some classes. These results do not depend on the choice of the
field F. Finally, our results are applied in Section 4 to the enumeration of fixed points of a natural action of
Sn × Sn on invertible matrices. This is an extended abstract: Proofs and full details can be found in [CS].

2. The Natural Representation of Sn

There is a natural embedding of Sn in GL(n, F) where F is any field. Consider a permutation π ∈ Sn as
an n × n matrix obtained from the identity matrix by permutations of the rows. More explicitly: for every
permutation π ∈ Sn we identify π with the matrix:
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[π]i,j =

{

1 i = π(j)
0 otherwise

This representation can also be realized as the permutation representation which is obtained from the natural
action of Sn on {1, 2, . . . , n} defined by π · i = π(i).

Our first result is that this representation does not unite conjugacy classes of Sn. We shall use the
following well known fact:

Fact 2.1. If σ is a cycle of length n, then σk consists of (n, k) cycles, each of length n/(n, k).1

Proposition 2.1. Let F be a field of characteristic 0. The conjugacy classes of Sn do not unite in

GL(n, F). In other words, if π and σ are permutations with similar matrices in GL(n, F), then they are

conjugate in Sn too.

Proof. Let π and σ be permutations which are similar as matrices. First of all, we note that for any
k, πk and σk are also similar.

Each cycle of length k in π contributes the term xk − 1 into the characteristic polynomial of the per-
mutation matrix. Under the above restriction on char(F) it seems reasonable that the cycle structure of a
permutation can be recovered from the characteristic polynomial of the corresponding permutation matrix.
However, our proof utilizes the trace of the permutation matrix and the traces of its powers.

Denote by cd(π) the number cycles with length equal to d in π. We shall use induction on d to prove
that cd(π) = cd(σ), for all d, and this will show that π and σ are conjugate.

Since π and σ are similar as matrices, we have trace(π) = trace(σ). However, the trace function counts
the 1’s on the diagonal (here we use the restriction on char(F)), and each such 1 corresponds to a fixed point
of the permutation, so trace(π) = c1(π). Therefore, c1(π) = c1(σ), i.e. π and σ have the same number of
fixed points. This is the base of our induction.

Now let d be an arbitrary number, and suppose that ck(π) = ck(σ) for all k < d. From Lemma 2.1 it
follows that a k-cycle in π ends up as a product of k 1-cycles in πd if and only if k divides d. Therefore, we
can conclude that

trace(πd) =
∑

k|d

k · ck(π) = d · cd(π) +
∑

k|d,k<d

k · ck(π).

Now, by our induction hypothesis, for all proper divisors k | d we have ck(π) = ck(σ). On the other hand,
trace(πd) = trace(σd). This implies that cd(π) = cd(σ), and completes the induction argument.

We have shown that π and σ have the same cycle structure, so they are conjugate as permutations. �

Note that if F is such that char(F) < n then the trace of a permutation matrix no longer gives the
number of fixed points of the permutation, so a more devious route is necessary.

In this case it is impossible to recover the cycle structure of a permutation from the characteristic
polynomial of the corresponding permutation matrix: for example, if char(F) = 2 we have x4+1 = (x2+1)2 =
(x + 1)4, i.e. one cycle of length 4, two cycles of length 2 and four cycles of length 1 all have the same
characteristic polynomial.

However, in [CS] we extend Proposition 2.1, and prove the following:

Theorem 2.2. Let F be an arbitrary field. The conjugacy classes of Sn do not unite in GL(n, F). In

other words, if π and σ are permutations with similar matrices in GL(n, F), then they are conjugate in Sn

too.

The proof is obtained by considering certain eigenspaces of powers of π and σ. See [CS] for full details.
It should be noted that this property of the natural representation seems to be very “delicate”. For

example, in the natural representations of the signed permutation groups this property fails to hold. In
particular, in B2, the permutations σ = (1, 2) and τ = (1, 1̄) are not conjugate, and yet the matrices
associated with them, namely

P (σ) =

(

0 1
1 0

)

and P (τ) =

(

−1 0
0 1

)

are similar matrices.

1We use (n, k) to denote the greatest common divisor of n and k.
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3. Other Permutation Representations

3.1. Representations Arising from the Action of Sn on k-tuples. In Section 2 we proved that
the natural representation of Sn does not unite conjugacy classes. On the other hand, it is well known (see
[B] p. 23-24) that the regular representation of Sn (indeed, of any group) unites all elements of equal order.
The natural representation can be seen as the permutation representation obtained from the natural action
of Sn on the set {(1), (2), . . . , (n)} of 1-tuples. On the other hand, the regular representation can be seen as
the permutation representation which arises from the action of Sn on all n! ordered n-tuples of numbers from
{1, 2, . . . , n}. In this section we wish to address the representations in between: the representation arising
from the action of Sn on pairs, triplets, etc. and to see where the representations start uniting conjugacy
classes.

At first we shall confine ourselves to the complex field, and prove our results there. The results for
general fields will follow from these results.

We begin with a general theorem, which holds true for any representation of any finite group.

Theorem 3.1. Let G be a group, and σ, τ ∈ G. Let T : G → GL(d, C) a representation of G, with

character χ. Then T (σ) ∼ T (τ) as matrices if and only if χ(σk) = χ(τk) for all k.

Proof is given in [CS].
Note that the fact that the regular representation unites all elements of equal order can be derived from

this theorem: If χ is the character of the regular representation, then

χ(σk) =

{

|G| |σ| | k,

0 otherwise

so obviously χ(σk) = χ(τk) for all k if and only if σ and τ have the same order.
The criterion which we just presented is still rather complicated to use for general groups, but it can be

simplified in our case, because of the following simple fact.

Fact 3.2. Let σ ∈ Sn, with |σ| = m.

• If k is relatively prime to m. Then σk ∼ σ.

• For any k, σk ∼ σ(m,k).

Claim 3.3. Let T : Sn → GL(d, C) be a representation of the symmetric group, with character χ, and

σ, τ ∈ Sn elements of order m. Then T (σ) ∼ T (τ) if and only if χ(σk) = χ(τk) for k | m.

Corrolary 3.4. If σ and τ are of prime order p, then T (σ) ∼ T (τ) if and only if χ(σ) = χ(τ).

Definition 3.5. Let σ, τ ∈ Sn be elements of equal order m, such that if k 6= 1 and k | m then σk ∼ τk.
It follows from 3.3 that T (σ) ∼ T (τ) if and only if χ(σ) = χ(τ). We call such elements almost similar. In
fact, it is sufficient to require that σp ∼ τp for all prime divisors of m.

We next show that almost similar elements are typical examples of elements that are united by repre-
sentations, in the following sense:

Theorem 3.6. Let T : Sn → GL(d, C) be a representation. If T unites some two conjugacy classes,

then there must exist a pair of almost similar elements which it unites.

Having proved this, we now have a criterion to check whether a representation unites classes: It is
sufficient to show that all pairs of almost similar elements remain non united, i.e. that the character of the
representation takes different values on them.

Using this criterion, we show

Theorem 3.7.

(1) The natural representation does not unite classes.

(2) The representation arising from the action on pairs does not unite classes.

(3) The representation arising from the action on triplets unites classes iff n is even.

(4) Representations arising from the action on k-tuples, with k ≥ 4, always unite some classes.
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3.2. Representations Arising from the Action of Sn on Subsets. The natural route to follow
now would be to try and generalize these results to other permutation representations, and in particular to
those arising from the action of Sn on k-subsets of {1, 2, . . . , n}. The general answer eludes us at present,
and seems to be pretty unsatisfactory. However, we have managed to show that the representation arising
from the action of Sn on all subsets of [n] does in fact not unite any classes. In all this section, we shall
omit proofs, and refer the interested reader to [CS] for full details.

Theorem 3.8. The action of Sn on the power set 2[n] of [n] does not unite classes.

Consider now the action of Sn on even sized subsets of [n]. If n is even, then this action unites some
classes. For example, (1, 2)(3, 4) . . . (n − 1, n) and (1)(2)(3, 4) . . . (n − 1, n) get united. (They are almost
similar, and both fix 2n/2 sets.)

However, if n is odd, then this representation does not unite classes.

Theorem 3.9. Let n be odd. The action of Sn on the set of even-sized subsets of [n] does not unite

classes.

Finally, we conclude this section by exploring the behavior of the representation arising from the action
of Sn on odd sized subsets of [n].

Theorem 3.10. The action of Sn on the set of odd-sized subsets of [n] does not unite classes. This does

not depend on n’s parity.

3.3. General Fields. The proofs in the two previous sections apply only to the complex field C, (in
fact, to all fields with characteristic 0.) We shall now show that the same applies to any field. We shall base
ourselves on Theorem 2.1 from Section 2, where we proved that the natural representation does not unite
classes, regardless the base field.

Lemma 3.11. Let f : G → H and g : H → K be group homomorphisms.

(1) If f and g both do not unite classes, then also gf does not unite them.

(2) If gf does not unite classes, then neither does f .

Theorem 3.12. Let T be any permutation representation of Sn. If T does not unite classes when

considered a representation into GL(m, C), then it does not unite classes when considered as a representation

into GL(m, F), for any field F.

Proof. Any permutation representation can be factored into Sn → Sm → GL(m, C), where the first
homomorphism is the permutation representation and the second is the natural representation. Now, suppose
T does not unite classes. By Lemma 3.11, neither does the permutation representation Sn → Sm. We
already know that the natural representation does not unite classes, whatever the field. Tacking these two
homomorphisms together gives us the representation in any field, and another appeal to Lemma 3.11 proves
that it still doesn’t unite any classes. �

4. The action of Sn × Sn on invertible matrices

In this section we present an application of Theorem 2.1.

Definition 4.1. Let F be any field. We define an action of Sn × Sn on the group GL(n, F) by

(π, σ) • A = πAσ−1 where (π, σ) ∈ Sn × Sn and A ∈ GL(n, F) (1)

Definition 4.2. Let M be a finite subset of GL(n, F), invariant under the action of Sn × Sn defined
above. We denote by αM the permutation representation of Sn × Sn obtained from the action (1) . In the
sequel we identify the action (1) with the permutation representation αM associated with it.

Now we define a generalization of the conjugacy representation of Sn

We present a conjugacy representation of Sn on a subset M of GL(n, F).

Definition 4.3. Denote by β the permutation representation of Sn obtained by the following action on
M .

π ◦ A = (π, π) • A = πAπ−1 (2)

The connection between αM and βM is given by the following easily seen claim:
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Claim 4.4. Consider the diagonal embedding of Sn into Sn × Sn. Then

βM = αM ↓Sn×Sn

Sn
. �

Corrolary 4.5. For every finite set M ⊆ GL(n, F) invariant under the action (1) of Sn × Sn defined

above:

If π and σ are conjugate in Sn then

χαM
((π, σ)) = χαM

((π, π)) = χβM
(π) = #{A ∈ M |πA = Aπ} .

If π is not conjugate to σ in Sn then

χαM
((π, σ)) = 0 .

Proof. If π and σ are conjugate in Sn then (π, σ) is conjugate to (π, π) in Sn ×Sn. Since the character
is a class function, we have:

χαM

(

π, σ) = χαM
(π, π) = #{A ∈ M |πAπ−1 = A} = #{A ∈ M |πA = Aπ}

i.e. the value of the character of αM calculated on the element (π, σ) with π conjugate to σ in Sn is equal
to the number of matrices in M which commute with the permutation matrix π.

Now, we know that the character of a permutation representation counts the number of fixed points, so:

χαM
(π, σ) = #{A ∈ M |πAσ−1 = A} = #{A ∈ M |π = AσA−1}.

Note that π = AσA−1 means that π and σ are similar as invertible matrices. Thus, by Theorem 2.1, if π
and σ are not conjugate in Sn they can not be conjugate in GL(n, F) and we have:

{A ∈ M |π = AσA−1} = ∅

and so
χαM

(π, σ) = 0

if π and σ are not conjugate in Sn. �

For an application of Corrolary 4.5 to the enumeration of fixed points, see [BC].
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