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Abstract. We study the number of permutations in the symmetric group on n elements that avoid con-
secutive patterns S. We show that the spectrum of an associated integral operator on the space L2[0, 1]m

determines the asymptotic behavior of such permutations. Moreover, using an operator version of the clas-
sical Frobenius-Perron theorem due to Krĕın and Rutman, we prove asymptotic results for large classes of
patterns S. This extends previously known results of Elizalde.

Résumé. Nous étudions le nombre de permutations dans le groupe symétrique sur n éléments qui évitent des
motifs S consécutifs. Nous montrons que le spectre d’un opérateur intégral associé sur L2[0, 1]m détermine
le comportement asymptotique de telles permutations. Utilisant de plus une version d’opérateur du théorm̀e
classique de Frobenius-Perron en raison de Krĕın et Rutman, nous donnons des résultats asymptotiques

pour les grandes classes de motifs S. Ceci étend résultats précédemment des connus de Elizalde.

1. Introduction

In this paper, we study integral operators of the form

T : L2 ([0, 1]
m

) −→ L2 ([0, 1]
m

)(1.1)

f 7−→
∫ 1

0

χ(t, x1, . . . , xm)f(t, x1, . . . , xm−1) dt

and their applications to the theory of pattern avoidance in permutations. Here χ is a real-valued function
on [0, 1]

m+1
which takes the values 0 or 1 on each of the simplices in the standard triangulation of [0, 1]

m+1
,

i.e., the partition

[0, 1]k =
⋃

π∈Sk

∆π

where the simplex ∆π is given by

∆π =
{

(x1, . . . , xk) : xπ−1(1) ≤ xπ−1(2) ≤ · · · ≤ xπ−1(k)

}

We will show how integral operators of this type arise naturally in counting pattern-avoiding permutations
where the pattern has length m+ 1.

Recall that a pattern of length m + 1 is an element σ ∈ Sm+1. A permutation π ∈ Sn, n ≥ m + 1,
avoids the consecutive pattern σ if there is no integer j, 0 ≤ j ≤ n − m − 1, with the property that
πj+σ−1(1) < πj+σ−1(2) < · · · < πj+σ−1(m+1). More generally, if S is a subset of Sm+1, we say that π avoids
S if π avoids each σ ∈ S.

Fix a subset S of Sm+1 and, for n ≥ m + 1, let an denote the number of permutations π ∈ Sn that

avoid S. Let χS : [0, 1]m+1 → {0, 1} be given by

(1.2) χS(x1, . . . , xm+1) =

{

0 if xσ−1(1) ≤ xσ−1(2) ≤ · · · ≤ xσ−1(m+1) for some σ ∈ S;
1 otherwise.
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Let TS be the integral operator on L2 ([0, 1]
m

) given by

(1.3) (TSf)(x1, . . . , xm) =

∫ 1

0

χS(t, x1, . . . , xm)f(t, x1, . . . , xm−1) dt.

Theorem 1.1. The formula

(1.4)
an

n!
= (1, T n−m

S 1)

holds for any n ≥ m+ 1, where 1 denotes the constant function with value 1 and ( · , · ) denotes the usual
inner product on L2 ([0, 1]m). Moreover, we have the inequality

(1.5)
an

n!
≤ CS

(

a2m

(2m)!

)n/m

.

The inequality (1.5) is not optimal.
It is natural to attempt a large-n asymptotic expansion of the right-hand side of (1.4) using the spectral

theory of the operator TS . Recall that, if A is a bounded operator, the resolvent set of the operator A is the
set ρ(A) of complex numbers with the property that (A− zI)−1 exists as a bounded operator. The spectrum
of A is the set σ(A) is the complement of ρ(A) in C. The spectral radius of a bounded operator A is the
quantity

r(A) = lim sup
n→∞

‖An‖1/n
.

Note that σ(A) is contained in the closed disc of radius r(A) about 0 in C (see, for example, §VI.3 of [12]).

Theorem 1.2. Let TS be an integral operator of the form (1.3) for some nonempty pattern S. Then
σ(TS) is a discrete set with 0 as its only possible accumulation point. Moreover, r(TS) < 1 strictly.

The proof uses the fact that, although TS is not compact, the operator T k
S is compact–in fact Hilbert-

Schmidt–for any k ≥ m. We will show that the Hilbert-Schmidt norm of Tm
S is strictly less than 1, from

which the statement about the spectral radius follows. We will also give examples of sets of patterns S for
which r(TS) = 0, and the ratio an/n! converges to zero as n→ ∞.

Our main interest is in patterns for which r(TS) > 0. With an additional condition on S, we can use
spectral theory to obtain an asymptotic formula for an. Below (Theorem 1.5), we will give a sufficient
condition on a pattern S so that the hypotheses of Theorem 1.3 hold. To state this condition, recall that
an operator A on the space L2(X,µ) of complex-valued measurable functions on the measure space (X,µ)
is called strongly positive if for every f ≥ 0 there is an integer n so that (T nf)(x) > 0 for almost every x.
As we show through examples below, there are patterns S for which TS is not strongly positive.

Theorem 1.3. Suppose that TS is an operator of the form (1.3) for some set of patterns S, and that
TS is strongly positive. Then TS has a unique simple eigenvalue ρ > 0 with positive eigenfunction φ, and all
other eigenvalues λ ∈ σ(TS) satisfy |λ| < ρ strictly. Moreover, the adjoint operator T ∗

S has ρ as its unique
positive eigenvalue and a positive eigenfunction ψ of T ∗

S with eigenvalue ρ.

It is important to note that the strong positivity of TS implies that TS has nonzero spectral radius, and
that the positive eigenvalue is the only eigenvalue on the circle |z| = ρ. The existence of such a “spectral
gap” and the associated positive eigenfunctions follows from an operator version of the celebrated Perron-
Frobenius Theorem (see, e.g., Gantmacher [8], vol. 2, §XIII.2) due to Krĕın and Rutman (see Theorem 6.3
of [10]). Under the assumption of Theorem 1.3, let

(1.6) r2(TS) = sup
λ∈σ(TS),λ6=ρ

|λ|

Using spectral theory, we obtain:

Theorem 1.4. Suppose that TS is a strongly positive operator of the form (1.3). Let ρ be the largest
eigenvalue of TS with associated eigenfunction φ. Let ψ be the eigenfunction of the adjoint operator T ∗

S with
eigenvalue ρ. Finally, let r2 be given by equation (1.6). Then we have

an

n!
= ρn−m (ψ, 1)(1, φ)

(ψ, φ)
+ O(rn−m

2 ).
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Here ( · , · ) denotes the usual inner product on L2 ([0, 1]
m

). Note that the leading term in this expansion
is strictly positive since φ and ψ are positive functions of TS and T ∗

S . Higher-order terms in the expansion
can be computed if further eigenvalues and eigenfunctions of the operator TS are known (see, for example,
Section 3 in what follows); see Section 2.3 for a statement of the full expansion.

We can give a sufficient condition in combinatorial terms for a pattern S to have a spectral gap in the
sense of Theorem 1.3. To do so we associate to a pattern S a directed graph, GS , defined as follows. If
x ∈ Zm is a vector of positive integers define Π(x) to be the permutation π ∈ Sm with the property that
xi < xj if and only if π(i) < π(j) for all 1 ≤ i < j ≤ m. The vertices of GS are the elements of Sm,
and the edge σ = (σ1, . . . , σm+1) ∈ Sm+1 − S goes from the permutation Π(σ1, . . . , σm) to the permutation
Π(σ2, . . . , σm+1). The graph GS is strongly connected if any point of GS is connected to any other point of
GS by a directed path. A strongly connected graph is aperiodic if there exists a positive integer k and two
vertices u and v such that there exists a directed path from u to v of any length greater than or equal to k.
The condition that two such vertices exist is equivalent to the statement that between any two vertices in
the graph, one can find directed paths of any length greater than or equal to k.

Theorem 1.5. Let S ⊂ Sm+1 and suppose that GS is strongly connected and the two monotone per-
mutations 12 · · ·m+ 1 and m+ 1 · · · 21 do not belong to the set S. Then TS is strongly positive. Hence we
conclude that there exist three positive constants ρ, r2 and c such that r2 < ρ and

an

n!
= cρn−m + O(rn−m

2 ).

Example 1.6. Let S be the set {132, 231}. Hence, S-avoiding permutations are permutations without a
peak, and there are 2n−1 such permutations in Sn. In this case, the operator TS has no eigenvalues and our
spectral methods do not apply. Also, observe that the graph GS is not strongly connected, so Theorem 1.5
does not apply.

Example 1.7. Let S be the set {123, 213, 231, 321}. The directed graph GS is strongly connected, but
not aperiodic. Again Theorem 1.5 does not apply. In fact, in this case, an = 2 for all n ≥ 2.

In many cases of interest the leading term is explicitly computable. Using Theorem 1.4, we will prove
the following asymptotic formulas.

Theorem 1.8. The number an of 123-avoiding permutations in Sn obeys the asymptotic formula

an

n!
= λn+1

0 exp

(

1

2λ0

)

+ O
(

λn
−1

)

where

λ0 =
3
√

3

2π
, λ−1 =

3
√

3

4π
.

In this case, all of the eigenvalues of TS are real and TS has empty kernel. We can easily obtain higher-
order terms in the expansion from the spectral methods used there since, in fact, all of the eigenvalues and
eigenfunctions of the operator TS and its adjoint can be computed explicitly: see Theorem 3.3.

We also have the following result for 213-avoiding permutations.

Theorem 1.9. The number bn of 213-avoiding permutations in the symmetric group Sn obeys the
asymptotic formula

bn/n! = exp

(

1

2λ2
0

)

· λn+1
0 + O

(

(

1√
2

)n−2
)

,

where λ0 = 0.7839769312 . . . is the unique real root to the equation

erf

(

1

λ
√

2

)

=

√

2

π
.

In this case, the other eigenvalues of TS are not real and the kernel of TS has infinite dimension.
We close our introduction by a brief overview on the subject of pattern avoidance in permutations (for

more details we refer to [2]). The “classical” definition of a pattern is slightly different than one provided
above. We say that a permutation π avoids a pattern σ if π does not contain a subsequence which is order-
isomorphic to σ. The study of such patterns originated in theoretical computer science by Donald Knuth [9].
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However, the first systematic study was done by Simon and Schmidt [13], who completely classified the
avoidance of patterns of length three. Since then several hundred papers related to the field have been
published.

One of the most important results in the subject is the proof by Marcus and Tardos [11] of the so-called
Stanley-Wilf conjecture related to the asymptotic behavior of the number of permutations that avoid a given
pattern. It states that for any pattern S there exists a constant c (depending on σ) such that the number of
the permutations of length n that avoid S is less than cn.

In this paper we also study asymptotic behavior of permutations avoiding patterns, but we consider
consecutive patterns, occurrences of which correspond to (contiguous) factors, rather than subsequences,
anywhere in permutations. Suppose αn(S) is the number of permutations avoiding a consecutive pattern S.

It is known [5] that limn→∞ n
√

αn(S)/n! is a nonnegative constant. Moreover, in [6] asymptotics for the
following consecutive patterns is given: 123, 132, 1342, 1234, and 1243. These results are obtained by
representation of permutations as increasing binary trees, then using symbolic methods followed by solving
certain linear differential equations with polynomial coefficients to get corresponding exponential generating
functions, and, finally, using the following result:

Theorem 1.10. [See [7, Chapter 4] for a discussion] Let A(z) be a meromorphic function on a domain
of the complex plane including the origin, and let ρ be the unique pole of A(z) such that |ρ| is minimum.
Then the following asymptotic estimate holds:

[zn]A(z) ∼ γ · ρ−n

where γ is the residue of A in ρ.

In our paper we develop a general method (not involving generating functions) that gives detailed
asymptotic expansions and allows for explicit computation of leading terms in many cases. As special cases
of our results, we get a more detailed asymptotics for some of the results of Elizalde and Noy [6].

The outline of this paper is as follows. In § 2 we prove Theorems 1.1, 1.2, 1.3, and 1.4. We also note some
symmetries of the operator TS for certain patterns S, and consider the case of descent pattern avoidance.
We use Theorem 1.4 to give the proof of Theorem 1.8 in Section 3 and the proof of Theorem 1.9 in Section 4.

2. The Operator T

Lemma 2.1. Let T be an operator of the form (1.1) with 0 ≤ χ(x) ≤ 1 for all x ∈ [0, 1]m. Then ‖T ‖ ≤ 1
and Tm is compact.

The adjoint operator of T is given by the expression

T ∗(f) =

∫ 1

0

χ(x1, . . . , xm, u)f(x2, . . . , xm, u) du.

2.1. Symmetries. Let J and R be the following two involutions on the space L2([0, 1]m):

(Jf)(x1, x2, . . . , xm) = f(1 − xm, . . . , 1 − x2, 1 − x1),(2.1)

(Rf)(x1, x2, . . . , xm) = f(xm, . . . , x2, x1).(2.2)

Observe that both J and R are self adjoint operators.

Lemma 2.2. Assume that χ has the symmetry

χ(x1, x2, . . . , xm, xm+1) = χ(1 − xm+1, 1 − xm, . . . , 1 − x2, 1 − x1).

Then the adjoint of the associated operator T is given by T ∗ = JTJ . Moreover, if φ is an eigenfunction of
the operator T with eigenvalue λ then Jφ is an eigenfunction of the adjoint T ∗ with the eigenvalue λ.

Similarly to Lemma 2.2 we have the next lemma.

Lemma 2.3. Assume that χ has the symmetry

χ(x1, x2, . . . , xm, xm+1) = χ(xm+1, xm, . . . , x2, x1).

Then we have that the adjoint of the associated operator T is given by T ∗ = RTR. Moreover, if φ is an
eigenfunction of the operator T with eigenvalue λ then Rφ is an eigenfunction of the adjoint T ∗ with the
eigenvalue λ.
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Finally, we have the following relation between TS and T ∗
S . For a permutation π ∈ Sn, let π∗ be the

reverse permutation, that is, if π = (π1, π2, . . . , πn) then π∗ = (πn, πn−1, . . . , π1). Similarly, if S ⊂ Sn, then
S∗ = {π ∈ Sn : π∗ ∈ S}.

Lemma 2.4. The equality
T ∗

S = RTS∗R

holds, where R is given by (2.2).

2.2. Connection with Pattern Avoidance. Here we show how operators of the form (1.1) arise
naturally in the study of pattern-avoiding permutations, proving Theorem 1.1. We recall that the standard
triangulation of the unit cube [0, 1]

n
into n-simplices is in one-to-one correspondence with permutations

σ ∈ Sn: a given σ corresponds to the simplex
{

(x1, . . . , xn) : xσ−1(1) ≤ xσ−1(2) ≤ · · · ≤ xσ−1(n)

}

which has Euclidean volume (n!)−1.
Choose and fix a nonempty subset S of Sm+1 (the set of patterns to be avoided), and define χS and TS

respectively as in (1.2) and (1.3). For n ≥ m+ 1, let

(2.3) χn(x1, . . . , xn) =

n−m
∏

j=1

χS(xj , . . . , xm+j)

Then χn(x) is 0 if x belongs to an n-simplex of [0, 1]
n

corresponding to a permutation containing a forbidden
pattern (starting at any j between 1 and n − m), and 1 otherwise. From this observation, the following
lemma is immediate.

Lemma 2.5. The formula

an = n!

∫

[0,1]n
χn(x) dx

holds for any n ≥ m.

Now define a sequence of functions {fn}∞n=m on [0, 1]
m

by the formulas

fm(y1, . . . , ym) = 1

fn(y1, . . . , ym) =

∫

[0,1]n−m

χn(x1, . . . , xn−m, y1, . . . , ym) dx.

Lemma 2.6. For any n ≥ m, the formula

fn+1(y1, . . . , ym) = (TSfn)(y1, . . . , ym)

holds.

We can also estimate the norm of ‖Tm
S ‖. The following estimate shows that ‖Tm

S ‖ < 1 strictly, when S
is non-empty.

Lemma 2.7. The estimate

‖Tm
S ‖ ≤

(

a2m

(2m)!

)1/2

holds.

Proof of Theorem 1.1. From Lemma 2.5 and the definition of fn, it is easy to see that for any
n ≥ m+ 1,

an

n!
= (1, fn)

where the right-hand side is the inner product of the constant function 1 and the function fn in L2 ([0, 1]
m

).
From Lemma 2.6 it follows that fm+n = T n

S fm = T n
S 1 from which we conclude that for any n ≥ m+ 1,

an

n!
=
(

1, T n−m
S 1

)

.

It easily follows that
an

n!
≤
∥

∥T n−m
S

∥

∥
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and if n = km+ r with 0 ≤ r ≤ m− 1 we have by Lemma 2.7 that

∥

∥T n−m
S

∥

∥ ≤
(

a2m

(2m)!

)(k−1)/2

‖T ‖r

from which it follows that

an

n!
≤ CS

(

a2m

(2m)!

)n/m

.

�

2.3. Spectral Theory: The Spectral Gap. In this subsection, we prove Theorem 1.2.
Suppose that T is a bounded operator on a Hilbert space H with the property that Tm is compact for

some positive integer m. For a bounded operator A, let σ(A) denote the spectrum of A, i.e., the set of all

λ ∈ C for which (A− λI)
−1

does not exist as a bounded operator on H. Recall that the spectral mapping
theorem (see Dunford and Schwarz [3], chapter VII, Theorem 11, p. 569) implies that if f is an analytic
function and T is a bounded operator, then the spectrum of f(T ) is the image under f of σ(T ). Here f(T )
is defined by

f(T ) =
1

2πi

∫

γ

f(z)(T − zI)−1dz

where γ is any contour surrounding σ(T ); is is easy to see that if f(z) = zm, then this coincides with the
usual definition of Tm. Since σ(Tm) is at most a countable set with 0 as the only possible accumulation
point, we immediately obtain:

Lemma 2.8. Suppose that T is a bounded operator on a Hilbert space H and that Tm is compact for
some positive integer m. Then the spectrum of T is at most countable and has zero as the only possible
accumulation point.

Proof of Theorem 1.2. All of the statements except the assertion that r(TS) < 1 follow from
Lemma 2.8. From Lemma 2.7 we have ‖Tm

S ‖ < 1 The discreteness of the spectrum of TS implies that
r(TS) = sup {|λ| : λ ∈ σ(TS)}. Since σ(Tm

S ) = {λm : λ ∈ σ(TS)} it follows from this estimate that σ(TS) is

contained in a closed disc of radius (a2m/(2m)!)
1/(2m)

< 1. �

To give the proof of Theorem 1.3, we note the following result which is a special case of Theorem 6.3 in
Krĕın and Rutman [10].

Theorem 2.9. (see [10], Theorem 6.3) Let (X,µ) be a measure space and A be a compact operator on
L2(X,µ). Suppose that A is strongly positive. Then:
(a) There is a unique strictly positive function φ ∈ L2(X,µ) and ρ > 0 with Aφ = ρφ and ‖φ‖ = 1,
(b) There is a unique nonnegative function ψ ∈ L2(X,µ) with A∗ψ = ρψ and ‖ψ‖ = 1, and
(c) If λ is any other eigenvalue of A, then |λ| < ρ strictly.

Proof of Theorem 1.3. It follows from the hypothesis and Theorem 2.9(a) and (c) that the operator
T k

S has a positive eigenvalue α of maximum modulus with associated positive eigenfunction φ. Let ρ be the
unique positive kth root of α. By the spectral mapping theorem, ωρ is an eigenvalue of TS for some kth
root of unity ω = exp(2πij/k), 0 ≤ j ≤ k − 1. From the spectral mapping theorem again, it follows that
ωnρn is an eigenvalue of T n

S for any positive integer n. Moreover, since ωkρk is an eigenvalue of maximum
modulus for T k

S , it follows from the spectral mapping theorem that ωnρn will be an eigenvalue of maximum
modulus for T n

S if n ≥ k. But T n
S is positivity improving for any such n, so ωn is real for all n ≥ k. Hence

ω = 1 and ρ is an eigenvalue of TS. We may now identify φ as the unique positive eigenfunction of TS

whose real eigenvalue ρ > 0 has maximum modulus, and applying the spectral mapping theorem again we
see that all other eigenvalues of TS have modulus strictly less than ρ. The statements about T ∗

S follow from
Theorem 2.9(b) and (c) and a similar argument. �

To prove Theorem 1.5, we will need the following lemma. In what follows, ∆π denotes the simplex in
[0, 1]

n
corresponding to π ∈ Sn.
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Lemma 2.10. Let S ⊂ Sm+1 and suppose that GS is strongly connected and the two monotone permuta-
tions 12 · · ·m+ 1 and m+ 1 · · · 21 do not belong to the set S. Then there exist a positive integer k such that
for any two permutations σ and π in Sn and any function f ∈ L2 ([0, 1]

m
) such that f |∆π

is nonnegative

and nonzero, the function T kf
∣

∣

∆σ
is strictly positive.

Now consider the adjoint operator T ∗
S . Since (T ∗

S)
m

is compact it follows that σ(T ∗
S) is a discrete set

whose only accumulation point is 0. It is not difficult to see that σ(T ∗
S)\ {0} consists of those λ with

λ ∈ σ(TS). Indeed, if λ ∈ σ(T ) and λ 6= 0, then λ is an isolated singularity of T . Hence ker(T − λI) is
nonempty since ker(T −λI) is the range of the projection given by the residue of (T − zI)−1 at z = λ. Since
any eigenvector of T with eigenvalue λ is also an eigenvector of Tm with eigenvalue λm and Tm is compact,
it follows that Vλ = ker(T − λI) has finite dimension Nλ for any λ 6= 0. A similar argument applies to T ∗,
and the identity

[

(T − zI)
−1
]∗

= (T ∗ − zI)
−1

shows that the finite-dimensional space Wλ = ker(T ∗ − λI) has the same dimension as Vλ. Recall that

P = Res
z=λ

(T − zI)
−1

projects onto Vλ, so clearly P ∗ projects onto Wλ.

Now let
{

ϕi
}Nλ

i=1
be an orthogonal basis for Vλ. By the Riesz representation theorem, the functional

ψ 7→ (ϕi, Pψ) is represented by a vector ψi so that

(2.4) P =

Nλ
∑

i=1

(ψi, · )ϕi.

Since P ∗ is the projection onto ker
(

T ∗ − λI
)

, the vectors ψi are eigenvectors of T ∗ with eigenvalue λ. The

condition that P 2 = P implies that

(2.5)
(

ψi, ϕj
)

= δij

These conditions suffice to determine the ψj given a choice of
{

ϕj
}

.

2.4. Spectral Theory: The Expansion Theorem. We now consider the spectral expansion of T n,
assuming now that σ(T ) is contained in the interior of the unit disc. From the analytic functional calculus
we have

T n =
1

2πi

∫

|z|=1

(T − zI)
−1

zn dz

If we write σ(T ) = {λk}∞k=1 with |λ1| ≥ |λ2| ≥ . . . ≥ 0 and let rk = |λk| we then have

(2.6) T n =

k
∑

j=1

λn
j Pj + O

(

rn
k+1

)

by shrinking the contour. Here Pj is the projection for λ = λj and the remainder estimate depends on

sup
|z|=r

∥

∥

∥
(T − zI)

−1
∥

∥

∥

where r > 0 is chosen so that (i) all the eigenvalues {λj}k
j=1 lie in the exterior of the disc of radius r and (ii)

the circle |z| = r contains no eigenvalues of T . This choice is possible since σ(T ) is discrete.
Note that, in case σ(T ) = {0}, we do not obtain a meaningful formula–there must be at least one nonzero

eigenvalue for the expansion to make sense.

Proof of Theorem 1.4. We take T = TS and note that, by hypothesis, the eigenvalue of TS having
greatest modulus is positive and simple. From (2.6), (2.4) and the simplicity of ρ we get

(1, T k
S1) = ρk(ψ, 1)(ϕ, 1) + O

(

rk
2

)

provided (ψ, ϕ) = 1; here ϕ and ψ are respectively the eigenfunctions of TS and T ∗
S associated with eigen-

value ρ. The conclusion is immediate. �
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From (2.6) and (2.4), one can refine the expansion as follows if other eigenvalues and eigenvectors are
known. Ordering the eigenvalues as above we have for any integer N that

(2.7)
(

1, T k
S1
)

=

N
∑

j=1

cjλ
k
j + O(rk

N+1)

where

cj = (1, Pj1)

=

Nj
∑

m=1

(ψm
j , 1)(ϕm

j , 1)

where
{

ϕm
j

}

and
{

ψm
j

}

are bases for the λ = λj eigenspaces of TS and T ∗
S , respectively, so chosen that the

normalization (2.5) holds.

2.5. Descent pattern avoidance. The descent set of a permutation π in the symmetric group on n
elements is the subset of {1, . . . , n− 1}, given by {i : πi > πi+1}. An equivalent notion is the descent word,
defined as follows. The descent word of the permutation π is the word u = u1 · · ·un−1 where ui = a if
πi < πi+1 and ui = b otherwise.

Let U be a collection of ab-words of length m. The permutation π avoids the set U if there is no
consecutive subword of the descent word of π contained in the collection U .

Descent pattern avoidance is a special case of consecutive pattern avoidance. For instance, permuta-
tions avoiding the word aab is the permutations avoiding the set S = {1243, 1342, 2341}, since these three
permutations are the permutations with descent word aab.

For an ab-word u of length m−1 define the descent polytope Pu to be the subset of the unit cube [0, 1]m

corresponding to all vectors with descent word u. That is,

Pu = {(x1, . . . , xm) ∈ [0, 1]m : xi ≤ xi+1 if ui = a and xi ≥ xi+1 if ui = b}.
Observe that the m-dimensional unit cube is the union of the 2m−1 descent polytopes Pu. Now the operator
T corresponding to the descent pattern avoidance of the set U has the following form. For an ab-word u of
length m− 2 and y ∈ {a, b} we have

T (f)|Puy
=

∫ x1

0

χ(auy) · f(t, x1, . . . , xm−1)|Pau
dt(2.8)

+

∫ 1

x1

χ(buy) · f(t, x1, . . . , xm−1)|Pbu
dt,

where by abuse of notation we let χ(w) = 1 if w does not belong to the set U and χ(w) = 0 otherwise.

Proposition 2.11. Let T be the operator associated with a descent pattern avoidance and let k be an
integer such that 1 ≤ k ≤ m − 1. Let u be an ab-word of length m − 1. Then the function T k(f) restricted
to the descent polytope Pu only depends on the variables x1 through xm−k.

Corollary 2.12. Let T be the operator associated with a descent pattern avoidance and let φ be an
eigenfunction associated with a non-zero eigenvalue λ. Let u be an ab-word of length m − 1. Then the
eigenfunction restricted to the descent polytope Pu only depends on the variable x1.

Let V be the subspace of L2([0, 1]m) consisting of all functions f that only depend on the variable x1

when restricted to each of the descent polytopes Pu. Observe that the subspace V is invariant under the
operator T . That is, the operator T restricts to the subspace V . Moreover the constant function 1 belongs
to V . Hence to understand the behavior of T n(1) it is enough to study this restricted operator.

In order to describe the subspace V more explicitly define for an ab-word u of lengthm−1 the polynomial
f(u;x1) as follows:

f(u;x1) =

∫

(x1,x2,...,xm)∈Pu

1dx2 · · ·dxm.

This polynomial was first introduced and studied in [4], with a different indexing.
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Let p be a vector (pu(x1))u∈{a,b}m−1 . That is, the vector p consists of one-variable functions in the

variable x1 and is indexed by ab-words of length m− 1. Consider the function f on [0, 1]m defined by

f(x1, . . . , xm)|Pu
= pu(x1)

for all ab-words u of length m − 1. Observe that the function f belongs to L2([0, 1]m), and hence to the
invariant subspace V , if and only if

∫ 1

0

f(u;x1) · |pu(x1)|2 dx1 <∞

for all ab-words u of length m− 1. For two functions f and g in the subspace V , corresponding to the two
vectors (pu(x1))u∈{a,b}m−1 and (qu(x1))u∈{a,b}m−1 , the inner product is given by

(f, g) =
∑

u∈{a,b}m−1

∫ 1

0

f(u;x1) · pu(x1) · qu(x1)dx1.

This discussion leads to the following structural result about the subspace V .

Proposition 2.13. The invariant subspace V is isometrically isomorphic to the space L2 ([0, 1])
2m−1

.

3. 123-Avoiding Permutations

A 123-avoiding permutation is a permutation π ∈ Sn with no index j so that πj < πj+1 < πj+2, where
1 ≤ j ≤ n− 2. We denote by an the number of 123-avoiding permutations in Sn. Thus, in the notation of
the introduction S consists of the single permutation 123 and

(3.1) χS(x1, x2, x3) =

{

0 if x1 ≤ x2 ≤ x3;
1 otherwise.

We will obtain an asymptotic formula for an by computing the eigenvalues and eigenfunctions of the cor-
responding operator TS and using the spectral expansions of Section 2.3. As we will see, in this case the
operator TS has real eigenvalues and a trivial kernel. This is related to the fact that the eigenvalue problem
for TS can be recast as an eigenvalue problem for a first-order system of differential equations.

3.1. Eigenfunctions and Eigenvectors. Since 123-avoiding permutations can be viewed as permu-
tations with no double descents Corollary 2.12 allows us to recast then problem of finding eigenfunctions in
two variables into finding two one-variable functions.

Proposition 3.1. The eigenvalues λk of the operator T on L2([0, 1]2) are given by

(3.2) λk =

√
3

2π ·
(

k + 1
3

) ,

where k ∈ Z and the associated eigenfunctions φk =

{

pk(x) if 0 ≤ x ≤ y ≤ 1
qk(x) if 0 ≤ y ≤ x ≤ 1

are given by

(3.3) φk = exp
(

− x

2λ

)

·







cos
(

π
6 +

√
3

2 · x
λ

)

if 0 ≤ x ≤ y ≤ 1,

sin
(

π
3 +

√
3

2 · x
λ

)

if 0 ≤ y ≤ x ≤ 1.

Note that the eigenvalues are ordered by

λ0 > −λ−1 > λ1 > −λ−2 > λ2 > −λ−3 > λ3 > · · · > 0.

By applying the involution J we obtain the adjoint eigenfunction

(3.4) ψk = exp

(

y − 1

2λ

)

·







cos
(

π
6 +

√
3

2 · 1−y
λ

)

if 0 ≤ x ≤ y ≤ 1,

sin
(

π
3 +

√
3

2 · 1−y
λ

)

if 0 ≤ y ≤ x ≤ 1.
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Proposition 3.2. For the eigenfunctions φk = φ of T and ψk = ψ of T ∗ with eigenvalue λk = λ =√
3/(2π(k + 1/3)),

(1, φ) = (1, ψ) =

√
3

2
λ2(3.5)

(ψ, φ) =
3

4
(−1)kλ exp

(

− 1

2λ

)

(3.6)

In particular

(3.7)
(1, φ) (1, ψ)

(φ, ψ)
= (−1)kλ3 exp

(

1

2λ

)

3.2. Asymptotics. The above computations show that all eigenvalues of TS are simple and give ex-
plicit formulas. We thus obtain the following expansion for an/n! as an immediate consequence of (2.7),
Propositions 3.1, and 3.2.

Theorem 3.3. For any positive integer n ≥ 2 and any positive integer K, the formula

an

n!
=
∑

|k|≤K

(−1)kλn+1
k exp

(

1

2λk

)

+ O
(

rn
K+1

)

holds, where λk is given by (3.2) and

rk =

√
3

2π ·
(

k − 1
3

)

4. 213-Avoiding Permutations

A 213-avoiding permutation is a permutation π ∈ Sn which contains no sequence of the form

πj+1 < πj < πj+2

for any j with 1 ≤ j ≤ n − 2. We denote the number of 213-avoiding permutations of Sn by bn. Thus, S
consists of the single permutation (213) and

χS(x1, x2, x3) =

{

0 if x2 ≤ x1 ≤ x3,
1 otherwise.

By symmetry, the study of 213-avoiding permutations is equivalent to 132-avoiding permutations, 231-
avoiding permutations and 312-avoiding permutations. However the case of 213-avoiding permutations gives
the most straightforward equations.

We will compute the eigenvalues and eigenfunctions of the operator TS and obtain an asymptotic ex-
pansion for bn using spectral methods. In this case, it turns out that TS has a nontrivial kernel and its
eigenvalues need not be real. However, its eigenvalue of largest modulus is real and isolated, as we will show,
so that we can still obtain an asymptotic formula for bn.

4.1. Eigenfunctions and Eigenvectors. In what follows, we will make use of the error function

(4.1) erf(x) =
2√
π

∫ x

0

exp(−t2) dt

which extends to an entire function on C, and the function

(4.2) q(x) = exp

(

− x2

2λ2

)

.

Let

f(x, y) =

{

p(x, y) if 0 ≤ x ≤ y ≤ 1,
q(x, y) if 0 ≤ y ≤ x ≤ 1.

Then

(Tf)(x, y) =

{

∫ x

0
p(t, x)dt+

∫ 1

y
q(t, x)dt if 0 ≤ x ≤ y ≤ 1,

∫ x

0 p(t, x)dt+
∫ 1

x q(t, x)dt if 0 ≤ y ≤ x ≤ 1.

Now we characterize the nonzero eigenvalues and eigenfunctions.
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Proposition 4.1. The non-zero eigenvalues λ of the operator T satisfies the equation

(4.3) erf

(

1√
2 · λ

)

=

√
2√
π

and the corresponding eigenfunctions are

ϕ(x, y) =

{

q(x) − 1

λ

∫ y

x q(t) dt if x ≤ y,

q(x) if x > y,

where q(x) is given by (4.2).

The adjoint operator T ∗ is given by

T ∗(f(x, y)) =

{

∫ y

0 q(y, u)du+
∫ 1

y p(y, u)du if 0 ≤ x ≤ y ≤ 1,
∫ y

0 q(y, u)du+
∫ x

y p(y, u)du if 0 ≤ y ≤ x ≤ 1.

Proposition 4.2. For a non-zero eigenvalue λ of the operator T the corresponding eigenfunction of the
adjoint operator T ∗ is

ψ(x, y) =

{

p∗(y) if 0 ≤ x ≤ y ≤ 1,

p∗(y) − 1
λ ·
∫ 1

x
p∗(u)du if 0 ≤ y ≤ x ≤ 1.

where

(4.4) p∗(y) = −2 · y · exp

(

y2

2λ2

)

+ 2 · λ+
√

2π · y · exp

(

y2

2λ2

)

· erf
(

y√
2λ

)

.

Proposition 4.3. For a non-zero eigenvalue λ with eigenvector φ and adjoint eigenvector ψ, we have

(1, φ) = λ2,

(1, ψ) = 2 · λ3,

(ψ, φ) = 2 · λ2 · exp(−1/(2λ2)).

In particular,
(1, φ) · (1, ψ)

(ψ, φ)
= λ3 · exp(1/(2λ2)).

4.2. Asymptotics. To obtain leading asymptotics for bn, we need to compute the eigenvalue of greatest
modulus of the operator TS and show that all other eigenvalues of T have strictly smaller moduli. From the
eigenvalue condition (4.3), it suffices to study the roots of the equation erf(z) =

√

2/π.

Since the error function is an increasing function on the real axis, the equation erf(z) =
√

2/
√
π has

a unique real root z0 = 0.9019484541 . . .. Hence the eigenvalue equation (4.3) has the unique real root
λ0 = 0.7839769312 . . .. Since the error function is an odd function we know by the strong version of the little
Picard theorem that the equation erf(z) =

√
2/

√
π has infinitely many roots. The location of these roots is

the subject of the next result.

Proposition 4.4. The equation erf(z) =
√

2/
√
π has exactly one root in the interior of the unit disc,

namely the unique real root z0 = 0.9019484541 . . ., and all other (infinitely many) roots lie in the complement
of the closed unit disc.

As a corollary we have:

Corollary 4.5. The eigenvalue equation (4.3) has the unique real root

λ0 = 0.7839769312 . . .

outside the disc of radius 1/
√

2 centered at the origin, and all other (infinitely many) roots lie inside this
disc.

Combining Propositions 4.1 through 4.3 and Corollary 4.5 using Theorem 1.4 we obtain Theorem 1.9.
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5. Concluding remarks

In the case of descent pattern avoidance, can one prove that T restricted to the invariant subspace V is
compact? We have done so in the case of 123-avoiding permutations.

It is straightforward to design a Viennot “pyramid” to compute the number an of S-avoiding permuta-
tions. For the original Viennot triangle, see [14, 15]. Let the entry ai1,...,im

n of the pyramid be the number
of permutations in the symmetric group on n elements, avoiding the set S and ending with the m entries

i1, . . . , im. Then the entry ai1,...,im
n is a sum of entries of the form a

j,i1,...,im−1

n−1 . This sum being a discrete
analogue of the operator T . How far does this analogue between the discrete model and the continuous one
go? Does the function fn = T n−m(1) approximate the n-th level of the pyramid? More exactly, how well
does the integer ai1,...,im

n compare with n! · fn(i1/n, . . . , im/n)?
The next four largest roots to the eigenvalue equation in the 213-avoiding permutation case are:

λ1 = 0.2141426360 . . .± 0.2085807022 . . . · i
λ2 = −0.1677323922 . . .± 0.2418627350 . . . · i

Knowing these roots enables us to give an explicit error estimate in Theorem 1.9.
In this paper our object is to understand consecutive pattern avoidance. Generalized pattern avoidance

was introduced by Babson and Steingŕımsson [1]. Is there an analytic approach to obtain asymptotics
for these classes of permutations? Lastly, it would be daring to ask for an analytic proof of the former
Stanley-Wilf conjecture, recently proved in [11].

References
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