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Central Delannoy numbers, Legendre polynomials, and a balanced join

operation preserving the Cohen-Macaulay property

Gábor Hetyei

Abstract. We introduce a new join operation on colored simplicial complexes that preserves the Cohen-
Macaulay property. An example of this operation puts the connection between the central Delannoy numbers
and Legendre polynomials in a wider context.

Résumé. Nous introduisons une nouvelle opération qui joint des complexes simpliciaux équilibrés d’une
telle manière que la propriété de Cohen-Macaulay est preservée. Une exemple de cette opération remette la
rélation entre les nombres Delannoy centraux et les polynomiaux de Legendre dans un contexte plus large.

Introduction

The Delannoy numbers, introduced by Henri Delannoy [7] more than a hundred years ago, became
recently subject of renewed interest, mostly in connection with lattice path enumeration problems. It was
also noted for more than half a century, that a somewhat mysterious connection exists between the central
Delannoy numbers and Legendre polynomials. This relation was mostly dismissed as a “coincidence” since
the Legendre polynomials do not seem to appear otherwise in connection with lattice path enumeration
questions.

In our work we attempt to lift a corner of the shroud covering this mystery. First we observe that a
variant of table A049600 in the On-Line Encyclopedia of Integer Sequences [13] embeds the central Delannoy
numbers into another, asymmetric table, and the entries of this table may be expressed by a generalization of
the Legendre polynomial substitution formula: the non-diagonal entries are connected to Jacobi polynomials.
Then we show that the lattice path enumeration problem associated to these asymmetric Delannoy numbers
is naturally identifiable with a 2-colored lattice path enumeration problem (Section 2). This variant helps
represent each asymmetric Delannoy number as the number of facets in the balanced join of a simplex and
the order complex of a fairly transparent poset which we call a Jacobi poset. The balanced join operation
takes two balanced simplicial complexes colored with the same set of colors as its input and yields a balanced
simplicial complex colored with the same set of colors as its output. It is introduced in Section 3, which also
describes the Jacobi posets.

The balanced join operation we were lead to introduce turns out to be fairly interesting by its own
merit. According to a famous result of Stanley [14], the h-vector of a balanced Cohen-Macaulay is the
f -vector of another colored complex. (The converse, and the generalization to flag numbers was shown by
Björner, Frankl, and Stanley [2].) Since the proof is algebraic, it is usually hard to construct the colored
complex explicitly. Using the balanced join operation, we may construct balanced simplicial complexes as
the balanced join of a balanced complex and a simplex such that the h-vector of the join is the f -vector
of the original colored complex. This applies even if the balanced join does not have the Cohen-Macaulay
property. Our main result is Theorem 4.3, stating that the balanced join of two balanced Cohen-Macaulay
simplicial complexes is Cohen-Macaulay.
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In Section 5 we return to the Jacobi posets introduced in Section 3 and prove that their order complex
is Cohen-Macaulay, thus our main result is applicable to the example that inspired it. The proof consists
of providing an EL-labeling from which the the Cohen-Macaulay property follows by the results of Björner
and Wachs [3] and [4]. By the results of Björner, Frankl, and Stanley [2] the flag h-vector of a Jacobi poset
is the flag f -vector of a colored complex. We find this colored complex as the order complex of a strict direct
product of two chains. We define the strict direct product of two posets by requiring a strict inequality in
both coordinates.

Since removing the top and bottom elements from a Jacobi poset yields a “half-strict” direct product of
two chains, there is another potentially interesting bivariate operation looming on the horizon. In Section 6
we introduce a right-strict direct product on posets that allows to assign to a pair (P, Q) of an arbitrary
poset P and a graded poset Q a graded poset of the same rank as Q. There is reason to suspect that this
product too, preserves the Cohen-Macaulay property, as we can show that the flag h-vector of a right-strict
product is positive if the order complex of P has a positive h-vector, and Q has a positive flag h-vector.

In the concluding Section 7 we point out the impossibility of two seemingly plausible generalizations,
and highlight the question in commutative algebra that arises when we try to generalize our main result,
Theorem 4.3.

The journey taken will hopefully convince more mathematicians that Delannoy numbers are interesting,
since they lead to some interesting results and questions in commutative algebra and algebraic combinatorics.
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1. Preliminaries

1.1. Delannoy numbers. The Delannoy array (di,j : i, j ∈ Z) was introduced by Henri Delannoy [7]
in the nineteenth century. This array may be defined by the recursion formula

(1.1) di,j = di−1,j + di,j−1 + di−1,j−1

with the conditions d0,0 = 1 and di,j = 0 if i < 0 or j < 0. For i, j ≥ 0 the number di,j represents the number
of lattice walks from (0, 0) to (i, j) with steps (1, 0), (0, 1), and (1, 1) The significance of these numbers is
explained within a historic context in the paper “Why Delannoy numbers?”[1] by Banderier and Schwer. The
diagonal elements (dn,n : n ≥ 0) in this array are the (central) Delannoy numbers (A001850 of Sloane [13]).
These numbers are known through the books of Comtet [6] and Stanley [16], but it is Sulanke’s paper [17]
that gives the most complete list of all known uses of Delannoy numbers (a total of 29 configurations). For
more information and a detailed bibliography we refer the reader to the above mentioned sources.

1.2. Balanced simplicial complexes and the Cohen Macaulay property. A simplicial complex
4 on the vertex set V is a family of subsets of V , such that {v} ∈ 4 for all v ∈ V and every subset of a
σ ∈ 4 belongs to 4. An element σ ∈ 4 is a face and |σ| − 1 is its dimension. The dimension of 4 is the
maximum of the dimensions of its faces. A maximal face is a facet and 4 is pure if all its facets have the
same dimension. The number of i-dimensional faces is denoted by fi. An equivalent encoding of the f -vector
(f−1, . . . , fn−1) of an (n − 1)-dimensional simplicial complex is its h-vector h-vector (h0, . . . , hn) given by

hi =
∑i

j=0(−1)i−j
(
n−j
i−j

)
fj−1. An (n− 1)-dimensional simplicial complex 4 is balanced if its vertices may be

colored using n colors such that every face has all its vertices colored differently. (See [15, 4.1 Definition].1)
It is always assumed that a fixed coloring is part of the structure of a balanced complex. For such a complex
we may refine the notions of f -vector and h-vector, as follows. Assume we use the set of colors {1, 2, . . . , n}.
For any S ⊆ {1, 2, . . . , n} let fS be the number of faces whose vertices are colored exactly with the colors
from S. The vector (fS : S ⊆ {1, 2, . . . , n}) is called the flag f -vector of the colored complex. The flag
h-vector is then the vector (hS : S ⊆ {1, 2, . . . , n}) whose entries are given by

hS =
∑

T⊆S

(−1)|S\T |fT .

1In the original definition of a balanced complex (occurring in [14]) it was also assumed that the complex is pure, but as
it was observed by Stanley in [15, §III.4], “there is no real reason for this restriction”.
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A fundamental theorem on balanced simplicial complexes is Stanley’s result [14, Corollary 4.5].

Theorem 1.1 (Stanley). The h-vector of a balanced Cohen-Macaulay simplicial complex is the f -vector
of some other simplicial complex.

The definition of the Cohen-Macaulay property is fairly involved, we refer the reader to Stanley [15].
To prove our main result, we use Reisner’s criterion [15, Chapter II, Corollary 4.1] which characterizes
Cohen-Macaulay simplicial complexes in terms of the homology groups of each link. The link lk4(τ) of a
face τ ∈ 4 is defined by

lk4(τ) := {σ ∈ 4 : σ ∩ τ = ∅, σ ∪ τ ∈ 4}.

The homology used is simplicial homology [15, Chapter 0, Section 4]. An oriented j-simplex in 4 is a j-face
σ = {v0, . . . , vj} ∈ 4, enriched with an equivalence class of orderings, two orderings being equivalent if
they differ by an even permutation of vertices. We write [v0, v1, . . . , vj ] for the oriented simplex associated
to the equivalence class of the linear order v0 < . . . < vj . The k-module Cj(4) (for j = −1, . . . , dim(4),
where k is a field) is then the free k-module generated by all oriented j-simplices modulo the relations
[σ1] + [σ2] = 0 whenever [σ1] and [σ2] are different oriented simplices corresponding to the j-simplex. These
modules, together with the boundary maps ∂j : Cj(4) → Cj−1(4), given by

∂j [v0, . . . , vj ] =

j∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vj ]

form the oriented chain complex of 4. (As usual, v̂i indicates omitting vi.) Reisner’s criterion is then the
following.

Theorem 1.2 (Reisner). The simplicial complex 4 is Cohen-Macaulay over k if and only if for all

σ ∈ 4 and i < dim lk4(σ) we have H̃i(lk4(σ), k) = 0. Here H̃i denotes the i-th reduced homology group of
the appropriate oriented chain complex.

Rephrasing results of his work with Björner and Frankl [2], Stanley refined Theorem 1.1 to flag numbers
as follows [15, Chapter III, Theorem 4.6].

Theorem 1.3 (Björner-Frankl-Stanley). A vector (βS : S ⊆ {1, 2, . . . , n}) is the flag h-vector of some
(n−1)-dimensional balanced Cohen-Macaulay simplicial complex if and only if it is the flag f -vector of some
other colored simplicial complex.

Remark 1.4. Although Stanley uses the term “balanced” twice in his statement [15, Chapter III, Theo-
rem 4.6], it is clear from his proof that the second complex only needs to be colored with the same color set as
the first. The number of colors thus used may exceed the size of the largest face in the second complex. For
example, an (n − 1)-simplex is balanced and Cohen-Macaulay, all entries in its flag f -vector are 1’s. The
flag h-entries are all zero except for h∅ = 1. Thus the second complex must have only one face, the empty
set. This complex may be trivially colored using n colors (without actually using any of them).

An important example of a balanced simplicial complex is the order complex 4(P \ {0̂, 1̂}) of a graded
partially ordered set P . The order complex 4(Q) of any poset Q is the simplicial complex on the vertex set

Q whose faces are the chains of Q. A poset is graded if it has a unique minimum 0̂, a unique maximum 1̂,
and a rank function ρ. Since all saturated chains of P have the same cardinality, 4(P \ {0̂, 1̂}) is pure, and

coloring every element with its rank makes 4(P \ {0̂, 1̂}) balanced.

2. Central Delannoy numbers and Legendre polynomials

The following connection between the central Delannoy numbers and Legendre polynomials has been
known for at least half a century [8], [10], [11]:

(2.1) dn,n = Pn(3),

where Pn(x) is the n-th Legendre polynomial. To date there seems to be a consensus that this link is not
very relevant. Banderier and Schwer [1] note that there is no “natural” correspondence between Legendre
polynomials and the original lattice path enumeration problem associated to the Delannoy array, while
Sulanke [17] states that “the definition of Legendre polynomials does not appear to foster any combinatorial
interpretation leading to enumeration”.
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Without disagreeing with these statements concerning the original lattice path-enumeration problem, in
this section we point out the existence of a modified lattice path enumeration problem whose solution yields

a modified Delannoy array d̃m,n satisfying d̃n,n = dn,n and

(2.2) d̃m,n = P (0,m−n)
n (3) for m ≥ n.

Here P
(α,β)
n (x) is the n-th Jacobi polynomial of type (α, β) defined by

P (α,β)
n (x) = (−2)−n(n!)−1(1 − x)−α(1 + x)−β dn

dxn

(
(1 − x)n+α(1 + x)n+β

)
.

Since the polynomials P
(0,0)
n (x) are the Legendre polynomials [5, Chapter V, (2.2)], substituting m = n = 0

into (2.2) yields (2.1). In section 3 we present a face-enumeration problem associated to Jacobi polynomials
that is related our modified lattice path enumeration problem.

The lattice path enumeration problem in question is essentially identical to the one of A049600 in the
On-Line Encyclopedia of Integer Sequences [13].

Definition 2.1. For any (m, n) ∈ N × N let us denote by d̃m,n the number of lattice paths from (0, 0)
to (m, n + 1) having steps (x, y) ∈ N× P. (Here P denotes the set of positive integers.) We call the numbers

d̃m,n (m, n ≥ 0) the asymmetric Delannoy numbers.

d̃m,n :=

H
H

H
H

H
m

n
0 1 2 3 4

0 1 2 4 8 16
1 1 3 8 20 48
2 1 4 13 38 104
3 1 5 19 63 192
4 1 6 26 96 321

Table 1. The asymmetric Delannoy numbers d̃m,n for 0 ≤ m, n ≤ 4.

It is immediate from our definition that d̃m,n = T (n + 1, m) for the array T given in A049600. As a

consequence we get d̃n,n = T (n + 1, n) which is the central Delannoy number dn,n, as noted in A049600.
Compared to A049600, we shifted the rows up by 1 to move the central Delannoy numbers to the main
diagonal, and then we reflected the resulting table to its main diagonal, since this will allow picturing the
partially ordered sets in section 3 the “usual” way, i.e., with the larger elements being above the smaller
ones. As an immediate consequence of the definition we obtain the following:

Lemma 2.2. The asymmetric Delannoy numbers satisfy

d̃m,n =
n∑

j=0

(
n

j

)(
m + j

j

)
.

It is worth noting that substituting n = m into Lemma 2.2 yields a well-known representation of the
central Delannoy number dn,n. (See, Sulanke [17, Example 1].) We may also easily verify (2.2), as follows.

A Jacobi polynomial P
(α,β)
n (x) with nonnegative integer parameters α, β may be also given in the form

(2.3) P (α,β)
n (x) =

∑

j

(
n + α + β + j

j

)(
n + α

j + α

)(
x − 1

2

)j

See, e.g., Wilf [Chapter 4, Exercise 15 (b)][18]. Substituting α = 0 we obtain

(2.4) P (0,β)
n (x) =

∑

j

(
n + β + j

j

)(
n

j

)(
x − 1

2

)j

,

from which (2.2) follows by setting β = m − n and x = 3.

Corollary 2.3. The asymmetric Delannoy numbers satisfy (2.2).
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Remark 2.4. It is usually required that α, β > −1 in the definition of the Jacobi polynomials “for
integrability purposes”, cf. Chihara [5, Chapter V., section 2.]. That said, using (2.4) we may extend the

definition of P
(0,β)
n (x) to any integer β ≥ −n. Using this extended definition, we may state (2.2) for any

m, n ≥ 0.

A combinatorial interpretation of (2.2) will be facilitated by the following reinterpretation of our lattice
path enumeration problem.

Proposition 2.1. For any (m, n) ∈ N × N the number d̃m,n also enumerates all 2-colored lattice paths
from (0, 0) to (m, n) satisfying the following:

(i) Each step is either a blue (0, 1) or a red (x, y) ∈ N × N \ {(0, 0)}.
(ii) At least one of any two consecutive steps is a blue (0, 1).

Proof. It is easy to verify directly that the number of all 2-colored lattice paths from (0, 0) to (m, n)

with the above properties is
∑n

j=0

(
n
j

)(
m+j

j

)
, and so we get d̃m,n by Lemma 2.2. (j is the number of blue

steps). But only a little more effort is necessary to find a fairly plausible bijection between the corresponding
sets of lattice paths. Consider first a lattice path from (0, 0) to (m, n + 1) satisfying Definition 2.1. Replace

(2, 5)

(2, 6)

(0, 0) (0, 0)(0, 0)

(2, 6)

Figure 1. Transforming a lattice path into a 2-colored lattice path.

each step (x, y) ∈ N×P with one or two colored steps as follows. If (x, y) 6= (0, 1) then replace it with a blue
(0, 1) followed by a red (x, y − 1). If (x, y) = (0, 1) then replace it with a blue (0, 1). The resulting 2-colored
lattice path from (0, 0) to (m, n + 1) satisfies conditions (i) and (ii), moreover it starts always with a blue
(0, 1). Remove this first blue step and shift the colored lattice path down by 1 unit. We obtain a 2-colored
lattice path from (0, 0) to (m, n) satisfying the conditions of our proposition. Fig. 1 shows the two stages of
such a transformation. (In the picture, m = 2 and n = 5. Red edges are marked with dashed lines.)

Finding the inverse of this transformation is easy. Given a valid 2-colored lattice path from (0, 0) to
(m, n), let us first shift the path up by 1 and prepend a blue (0, 1) step from (0, 0) to (0, 1). Thus we obtain a
2-colored lattice path from (0, 0) to (m, n) satisfying (i), while condition (ii) may be strengthened to stating
that every red step is preceded by a blue (0, 1) step. Replace each red step (x, y) and the blue step preceding
it with a single colorless step (x, y + 1). After this, remove the blue color of the remaining (0, 1)-steps.

We leave it to the reader to verify the fact that the two operations described above are inverses of each
other. �

Using the equivalent definition of Proposition 2.1 it is easy to verify the following additional property of
the asymmetric Delannoy numbers.

Lemma 2.5. The asymmetric Delannoy numbers satisfy the recursion formula

d̃m,n = d̃0,0 +

m∑

i=0

n−1∑

j=0

d̃i,j for all m, n ≥ 0.

Here the second sum is empty if n = 0.



G. Hetyei

As a consequence any entry in Table 1 may be obtained by adding 1 to the sum of the entries in the
preceding columns, up to the row of the selected entry.

Corollary 2.6. The asymmetric Delannoy numbers satisfy the recursion formula

d̃m,n = 2 · d̃m,n−1 + d̃m−1,n − d̃m−1,n−1.

3. Jacobi posets and balanced joins

The blue steps of a valid 2-colored path introduced in Proposition 2.1 form increasing chains in a partially
ordered set. In this section we investigate this partial order.

Definition 3.1. Given any integer β and n ≥ max(0,−β), we call the Jacobi poset P β
n of type β and

rank n + 1 the following graded poset.

(i) For each q ∈ {1, . . . , n}, P β
n has n + β + 1 elements of rank q, they are labeled (0, q), (1, q), . . . ,

(n + β, q).

(ii) Given (p, q) and (p′, q′) in P β
n \ {0̂, 1̂} we set (p, q) < (p′, q′) iff. p ≤ p′ and q < q′.

(We also require 0̂ to be the minimum element and 1̂ to be the maximum element.)

We may think of the elements of P β
n \ {0̂, 1̂} as the endpoints of all possible blue (0, 1) steps when we

enumerate all valid 2-colored lattice paths from (0, 0) to (n + β, n). We have (p, q) < (p′, q′) if and only of
if there is a valid 2-colored lattice path containing both (p, q − 1) − (p, q) and (p′, q′ − 1) − (p′, q′) as blue
steps, such that the first blue step precedes the second in the path. Fig. 2 represents the Jacobi poset P−3

5 ,
which may be associated to enumerating the valid 2-colored lattice paths from (0, 0) to (2, 5). In the picture
of the poset we marked the elements corresponding to the blue edges with empty circles. Given any valid

0̂

1̂

(2, 5)(2, 5)

(0, 0)

(0, 1)

Figure 2. The Jacobi poset P−3
5 and the partial chain encoding the lattice path in Fig.1

2-colored path from (0, 0) to (n + β, n), the set of its blue edges correspond to a partial chain in P β
n \ {0̂, 1̂}

and, conversely, any partial chain of P β
n \ {0̂, 1̂} encodes a set of blue edges that may be uniquely completed

to a valid 2-colored path by adding the appropriate red edges.
Obviously, the face numbers of the order complex of P β

n \ {0̂, 1̂} satisfy

(3.1) fj−1

(
4
(
P β

n \ {0̂, 1̂}
))

=

(
n

j

)(
n + β + j

j

)
.

As a consequence of this equality and (2.4) we obtain that

(3.2)

n∑

j=0

fj−1

(
4
(
P β

n \ {0̂, 1̂}
))

·

(
x − 1

2

)j

= P (0,β)(x) for β ≥ 0.

Note that, for negative values of β, (3.2) still holds in the extended sense of Remark 2.4. As another

consequence of (3.2), the asymmetric Delannoy number d̃m,n equals the number of all partial chains (including

the empty chain) in the Jacobi poset Pm−n
n \ {0̂, 1̂}. This fact is also “visually obvious” in terms of the

enumeration problem presented in Proposition 2.1, since any valid 2-colored lattice path may be uniquely
reconstructed from its blue steps. This visualization inspires the following definition.
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Definition 3.2. Let 41 and 42 be pure balanced simplicial complexes of the same dimension. Let us
fix a pair of colorings λ = (λ1, λ2) such that λi colors the vertices of 4i (i = 1, 2) in a balanced way, and
the set of colors is the same in both colorings. We call the simplicial complex

41 ∗λ 42 := {σ ∪ τ : σ ∈ 41, τ ∈ 42, λ1(σ) ∩ λ2(τ) = ∅}

the balanced join of 41 and 42 with respect to λ.

Example 3.3. Let 41 and 42 be both (n−1)-dimensional simplices. These have essentially one balanced
coloring and, independently of the choice of λ = (λ1, λ2), the free join 41∗λ42 is isomorphic to the boundary
complex of an n-dimensional cross-polytope.

Using the notion of the balanced join we may express the relation between the asymmetric Delannoy
numbers and Jacobi posets as follows.

Theorem 3.4. Given m, n ≥ 0, let λ1 be the coloring of the order complex of Pm−n
n \ {0̂, 1̂} induced by

the rank function, and let λ2 be any balanced coloring of an (n−1)-dimensional simplex 4n−1 with the color

set {1, 2, . . . , n}, Then, for λ = (λ1, λ2), the asymmetric Delannoy number d̃m,n is the number of facets in

the balanced join 4
(
Pm−n

n \ {0̂, 1̂}
)
∗λ 4n−1.

In fact, Theorem 3.4 may be generalized to any graded poset P of rank n + 1 as follows.

Theorem 3.5. Given any graded poset P of rank n + 1, let λ1 be the coloring of the order complex
of P \ {0̂, 1̂} induced by the rank function, and let λ2 be any balanced coloring of an (n − 1)-dimensional
simplex 4n−1 with the color set {1, 2, . . . , n}, Then, for λ = (λ1, λ2), the number of facets in the balanced

join 4
(
P \ {0̂, 1̂}

)
∗λ 4n−1 equals the total number of partial chains in P \ {0̂, 1̂}.

Theorem 3.5 is an immediate consequence of the fact that 4n−1 must have precisely one vertex of each

color, thus any partial chain from P \ {0̂, 1̂} may be uniquely complemented to a facet of 4
(
P \ {0̂, 1̂}

)
∗λ

4n−1 by inserting exactly those vertices of the simplex which are colored by the ranks missed by the partial
chain. Theorem 3.4 is then a consequence of Theorem 3.5, Lemma 2.2 and equation (3.1).

4. Properties of the balanced join operation

In this section we take a closer look at the balanced join operation introduced at the end of the previous
section. Let us point out first that the operation does depend on the colorings chosen.

Example 4.1. Consider the “star graph” 4 shown in Fig. 3. This is a 1-dimensional simplicial complex

v2

u

v3

v1

Figure 3. A “star graph” that may be colored in essentially one way

which has essentially one balanced coloring with 2 colors: v1, v2, and v3 must have the same color, and u

must have the other color. Yet, when we fix the set {1, 2} to be the set of our colors, we have 2 options to
chose the color of u (the rest of the coloring is then uniquely determined). Thus in a balanced join 4 ∗λ 4
we may choose λ = (λ1, λ2) in such a way that λ1 6= λ2, or we may use the same coloring twice. If λ1 = λ2

then the complex 4 ∗λ 4 has 1 · 3 + 3 · 1 = 6 edges, while in the case λ1 6= λ2 the complex 4 ∗λ 4 has
1 · 1 + 3 · 3 = 10 edges.

However, the observation made in Example 3.3 may be generalized as follows. Given any balanced
simplicial complex 4 of dimension (n − 1), and a balanced coloring λ1 of it, the balanced join 4 ∗λ 4n−1

with an (n− 1)-simplex 4n−1 obviously does not depend on the choice of the its coloring λ2. Moreover, we
have the following fact:
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Theorem 4.2. The flag h-vector of the balanced join 4 ∗λ 4n−1 of a balanced (n − 1)-dimensional
simplicial complex with an (n − 1)-simplex 4n−1 satisfies

hS

(
4 ∗λ 4n−1

)
= fS (4)

for any subset S of the colors used.

Proof. We may assume that the set of colors is {1, 2, . . . , n}. Any face of 4 ∗λ 4n−1 of color S is a
disjoint union σ ∪ τ with σ ∈ 4, τ ∈ 4n−1. The set T := λ1(σ) must be a subset of S, and λ2(τ) must be
equal to S \ T . There is precisely one τ ∈ 4n−1 with this property, hence we obtain

fS

(
4 ∗λ 4n−1

)
=
∑

T⊆S

fT (4) .

The statement now follows by the sieve formula. �

The proof of Theorem 4.2 is almost trivial, but the statement provides an interesting “constructive
reason” for a situation that occurs in Theorem 1.3. The proof of Theorem 1.3 is algebraic, and it is usually
hard to find a balanced simplicial complex combinatorially whose flag f -vector is the flag h-vector of the
given Cohen-Macaulay balanced simplicial complex. An example of a combinatorial explanation in the
special case of order complexes of certain distributive lattices is given by Skandera [12, Theorem 3.2]. The
above construction is fairly “rigid”, but it yields also examples of balanced simplicial complexes without the
Cohen-Macaulay property. On the other hand, the balanced join preserves the Cohen-Macaulay property if
we apply it to Cohen-Macaulay complexes.

Theorem 4.3. Assume that 41 and 42 are balanced Cohen-Macaulay complexes of dimension (n− 1),
and that their colorings λ1 and λ2 use the same set of colors {1, 2, . . . , n}. Then the balanced join 41 ∗λ 42

is also a Cohen-Macaulay simplicial complex.

Proof. We prove the Cohen-Macaulay property by induction on the size of 41 ∪ 42, using Reisner’s
Theorem (Theorem 1.2 in the Preliminaries). For that purpose, consider the link of any face τ1 ∪ τ2 where
τ1 ∈ 41, τ2 ∈ 42 and λ1(τ1) ∩ λ2(τ2) = ∅. The faces of lk41∗λ42

(τ1 ∪ τ2) are precisely the faces of the form
σ1 ∪σ2 where σi ∈ lk4i

(τi) for i = 1, 2, and the sets of colors λ1(σ1), λ2(σ2), λ1(τ1), and λ2(τ2) are pairwise
disjoint. Using this description it is easy to deduce

lk41∗λ42
(τ1 ∪ τ2) = lk41

(τ1){1,...,n}\λ2(τ2) ∗λ lk42
(τ2){1,...,n}\λ1(τ1).

Here the simplicial complexes lk41
(τ1){1,...,n}\λ2(τ2) and lk42

(τ2){1,...,n}\λ1(τ1) are both balanced and the
appropriate restrictions of λ1 resp. λ2 color both with the same color set {1, . . . , n} \ (λ1(τ1) ∪ λ2(τ2)). By
Reisner’s theorem, the link of every face in a Cohen-Macaulay complex is Cohen-Macaulay. According to
Stanley’s theorem [15, Chapter III, Theorem 4.5], every rank-selected subcomplex of a balanced Cohen-
Macaulay complex is Cohen-Macaulay. Thus, whenever at least one of τ1 and τ2 is not the empty set, we
may apply our induction hypothesis to the balanced join of lk41

(τ1){1,...,n}\λ2(τ2) and lk42
(τ2){1,...,n}\λ1(τ1).

We are left to prove Reisner’s criterion for the reduced homology groups of the oriented chain complex
associated to 41∗λ42. Assume by way of contradiction that there exist an i < n−1 and a linear combination
c =

∑
j,k αj,k · [σj ∪ τk] ∈ Ci(41 ∗λ 42) that belongs to Ker(∂i) but not to Im(∂i+1). Here we may assume

that each σj belongs to 41, each τk belongs to 42, and that no two of these sets are the same. Furthermore,
we agree that in the oriented simplices we always list the elements of the face from 41 before the elements of
the face from 42, hence “putting square brackets around a union of such faces” will not cause any confusion.
Finally, for each fixed j at least one scalar αj,k is not zero (otherwise σj is superfluous) and for each fixed
k at least one αj,k is not zero (otherwise τk is superfluous). Assume that our counterexample is smallest in
the sense that the maximum of |τk| is as small as possible.

W.l.o.g. we may assume that τ1 is of maximum size and thus it not contained in any other τk. Applying
∂i to c yields a linear combination of oriented simplices, whose underlying simplices are of the form σj∪τ1\{u}
where u ∈ σj ∪ τ1. Consider among these oriented simplices the ones whose underlying simplex contains τ1.
Because of the maximality of τ1, none of these may arise by removing some element from a σj ∪ τk with
k 6= 1. Hence the projection of ∂i(c) onto the vector space generated by the oriented simplices containing

τ1 may be obtained from ∂i−|τ1|

(∑
j αj,1 · [σj ]

)
∈ Ci−|τ1|−1(41) by sending each [σ′] ∈ Ci−|τ1|−1(41) into

[σ′ ∪ τ1] ∈ Ci−1(41 ∗λ 42). Since ∂i(c) = 0, we obtain that
∑

j αj,1 · [σj ] ∈ Ker(∂i−|τ1|) in the oriented
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chain complex associated to 41. Here i − |τ1| ≤ i < n − 1, hence applying Reisner’s criterion to 41 yields∑
j αj,1 · [σj ] ∈ Im(∂i+1−|τ1|). Assume

∑

j

αj,1 · [σj ] = ∂i+1−|τ1|

(
∑

t

βt · [σ
′
t]

)

holds in C(41), and consider

c′ =
∑

t

βt · [σ
′
t ∪ τ1] ∈ Ci+1 (41 ∗λ 42) .

Subtracting ∂i+1(c
′) from c removes all terms of the form αj,1 · [σj ∪ τ1] and introduces only new terms

of the form α · [σ′ ∪ τ ′], where σ′ ∈ 41, τ ′ ∈ 42, and τ ′ is a proper subset of τ1. Hence we reduced the
number of τk’s of maximum size in our counterexample. Repeating the same argument finitely many times
we arrive at a counterexample in which the maximum size of all τk’s is smaller than in the original one.
We obtain a contradiction unless there is only one τk in c, namely τ1 = ∅. However, for elements of the
form

∑
j,1 αj,1[σj ∪ ∅] where σj ∈ 41, the effect of the boundary map is described with the same formulas

in the oriented chain complex associated to 41 and in the oriented chain complex associated to 41 ∗λ 42.
Applying Reisner’s theorem to 41 yields a contradiction. �

5. Jacobi posets and balanced Cohen-Macaulay complexes

Theorem 4.3 is applicable to 4
(
Pm−n

n \ {0̂, 1̂}
)
∗λ 4n−1 because of the following statement.

Proposition 5.1. The order complex 4(P β
n \ {0̂, 1̂}) associated to the Jacobi poset P β

n is Cohen-
Macaulay.

Proof. Let us label each cover relation (p, q) ≺ (p′, q + 1) with n + β − p′ and each cover relation

0̂ ≺ (p, 1) with n + β − p. Finally, let us label each cover relation (p, n) ≺ 1̂ with 0.
The resulting labeling is an EL-labeling, as defined by Björner and Wachs [4, Definition 2.1] (these

labelings were first introduced in [3]). (We omit the proof that we get an EL-labeling, for brevity’s sake.)
If a graded poset has an EL-labeling then its order complex is shellable by the result of Björner and

Wachs [4, Proposition 2.3]. Shellable simplicial complexes are Cohen-Macaulay, see Stanley [15, Chapter
III, Theorem 2.5]. �

Since 4(P β
n \ {0̂, 1̂}) is Cohen-Macaulay and balanced, we may apply Theorem 1.3 to observe that

its flag h-vector is the flag f -vector of some balanced simplicial complex. For a reader familiar with EL-
labelings it is not difficult to construct such a simplicial complex, by inspecting the “descent sets” arising
in the proof of Proposition 5.1. To ease the burden of the reader who is not familiar with EL-labelings,
we provide an explicit description of such a balanced simplicial complex, and we verify the equality of the
appropriate invariants by explicitly computing them. The simplicial complex to be constructed arises as the
order complex of a partially ordered set.

Definition 5.1. Given two partially ordered sets P and Q, we define their strict direct product P ./ Q

as the set P × Q ordered by the relation (p, q) < (p′, q′) if p < p′ and q < q′.

./ =

1

2

3

4

5

1 2

(1, 1)

(1, 5) (2, 5)

(2, 1)

Figure 4. The strict direct product C1 ./ C4
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Fig. 4 represents the strict direct product of a chain C1 of length 1 with a chain C4 of length 4. We
obtain a partially ordered set that is not graded. However, the following statement is obviously true in
general.

Lemma 5.2. Given any pair of posets (P, Q), every admissible coloring of 4(P ) may be extended to an
admissible coloring to 4(P ./ Q) by coloring each (p, q) ∈ P × Q with the color of its first coordinate. The
analogous statement is true for the second coordinates.

Here we call a coloring admissible if the vertices of any face are colored with all different colors. For
example, the order complex of the poset shown in Fig. 4 may be colored with 2 colors, by extending the
coloring of the chain C1, or with 5 colors, by extending the coloring of the chain C5. Using the notion of
the direct product, the flag h-vector of the order complex associated to a Jacobi poset may be described as
follows.

Proposition 5.2. The flag h-vector of 4(P β
n \ {0̂, 1̂}), colored by the rank function, equals the flag

f -vector of 4(Cn+β−1 ./ Cn−1), with respect to the coloring induced by the rank function of the second
coordinate.

Proof. For any S ⊆ {1, . . . , n}, choosing a facet of 4(P β
n \ {0̂, 1̂})S is equivalent to choosing an |S|-

element multiset on {0, 1, . . . , n + β}. Hence we have

(5.1) fS

(
4(P β

n \ {0̂, 1̂})
)

=

(
n + β + |S|

|S|

)
.

Using the identity (
n + β + s

s

)
=

s∑

t=0

(
s

t

)
·

(
n + β

t

)

it is easy to deduce that the flag h-vector of 4(P β
n \ {0̂, 1̂}) must satisfy

(5.2) hS

(
4(P β

n \ {0̂, 1̂})
)

=

(
n + β

|S|

)
.

Introducing ρ for the rank function ρ : Cn−1 → {1, . . . n} (note that the least element has rank one!), consider
4(Cn+β−1 ./ Cn−1) with the coloring λ(p, q) = ρ(q). For any S ⊆ {1, 2, . . . , n}, choosing a saturated chain
in 4(Cn+β−1 ./ Cn−1)S involves fixing the second coordinates, and choosing an |S|-element subset of a set
with n + β elements. Hence we have

(5.3) fS (Cn+β−1 ./ Cn−1) =

(
n + β

|S|

)

as stated. �

It should be noted that the strict direct product associated by Proposition 5.2 to P−3
5 (shown in Fig. 2)

is C1 ./ C4 (shown in Fig. 4). To summarize our findings: we obtained that the asymmetric Delannoy

number d̃m,n counts the facets of the balanced Cohen-Macaulay complex 4
(
Pm−n

n \ {0̂, 1̂}
)
∗λ 4n−1. The

flag h-vector of this complex is the flag f -vector of the order complex 4(P β
n \ {0̂, 1̂}). This complex is

still balanced and Cohen-Macaulay, and its flag h-vector equals the flag f -vector of the colored complex
described in Proposition 5.2. No further similar reduction is possible, since the order complex of the strict
direct product of two chains is usually not Cohen-Macaulay. For example, the order complex of C1 ./ C4,
shown in Fig. 4, is not even connected. The number of colors used also exceeds the size of the largest face.
Thus, it appears, this is how far we may get using Theorem 1.3 in reducing the question of enumerating flags
in the simplicial complex associated to the asymmetric Delannoy numbers.

6. The right-strict direct product of posets

The connection between the Jacobi posets and the strict direct product of two chains exposed in Propo-
sition 5.2 suggests considering the following definition.

Definition 6.1. Given two partially ordered sets (P, Q) we define their right-strict direct product P oQ

to be the set P × Q partially ordered by the relation (p, q) < (p′, q′) if p ≤ p′ and q < q′.
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The definition of the right-strict direct product is “halfway between” the usual definition of the direct
product of posets and the strict direct product. Our interest is motivated by the following observation.

Proposition 6.1. The partially ordered set P β
n \ {0̂, 1̂} is isomorphic to Cn+β o Cn−1.

The statement is an immediate consequence of the definitions. The fact that we obtain a graded poset
(with the 0̂ and the 1̂ removed) may be generalized as follows.

Proposition 6.2. Assume P is an arbitrary poset and Q is a graded poset of rank n + 1. Then
P o (Q \ {0̂, 1̂}) may be turned into a graded poset of rank n+1 by adding a unique minimum element 0̂ and

a unique maximum element 1̂. The rank function may be taken to be the rank function of Q applied to the
second coordinate.

The question naturally arises: how far can Proposition 5.1 be generalized, under what circumstances
can we guarantee that a right-strict direct product of posets has a Cohen-Macaulay order complex?

Conjecture 6.2. If P is a poset with a Cohen-Macaulay order complex and Q is a graded Cohen-
Macaulay poset then P o (Q \ {0̂, 1̂}) ∪ {0̂, 1̂} is a graded Cohen-Macaulay poset.

This Conjecture, inspired by Proposition 5.1, is also supported by the following.

Theorem 6.3. Assume that P is any poset whose order complex has a non-negative h-vector and that
Q is a graded posets with a non-negative flag h-vector. Then the flag h-vector of the graded poset P o (Q \
{0̂, 1̂}) ∪ {0̂, 1̂} is non-negative.

Proof. Assume that the rank of Q is n + 1 and that the dimension of 4(P ) is (d − 1). Then, by

Proposition 6.2, the rank of Q̃ := P o (Q\{0̂, 1̂})∪{0̂, 1̂} is also n+1. For any S ⊆ {1, . . . , n}, the saturated

chains in Q̃S are all sets of the form {(p1, q1), . . . , (p|S|, q|S|)}, where q1 < · · · < q|S| is a saturated chain in
QS and p1 ≤ · · · ≤ p|S| is any multichain in P . Thus we obtain

fS(Q̃) = fS(Q)

min(d,|S|)∑

j=1

fj−1(P )

(
j + |S| − j − 1

|S| − j

)
= fS(Q)

min(d,|S|)∑

j=1

fj−1(P )

(
|S| − 1

|S| − j

)
for S 6= ∅.

Here, by abuse of notation, we write fj−1(P ) as a shorthand for fj−1(4(P )). After some straightforward
manipulation, which we omit for brevity’s sake, we may rewrite these equations as

(6.1) hS(Q̃) =
∑

T⊆S

hT (Q)

min(d,|R|)∑

i=0

hi(P )

(
d + |T | − i − 1

|S| − i

)

expressing the hS(Q̃)’s as non-negative combinations of products of the (flag) h-entries of the original posets.
�

7. Concluding remarks

There are two seemingly plausible generalizations that will not work.

Remark 7.1. It is not possible to generalize the definition of Jacobi posets in such a way that the
polynomial on the left hand side of (3.2) became P (α,β)(x) for some nonzero α. For any graded poset P of
rank n + 1, substituting x = 1 into

n∑

j=0

fj−1

(
4
(
P \ {0̂, 1̂}

))
·

(
x − 1

2

)j

yields 1, while P (α,β)(1) =
(
n+α

α

)
(see Chihara [5, Chapter V, (2.9)]) is 1 if and only if α = 0.

Remark 7.2. Sequences of symmetric orthogonal polynomials represented in the form

φP (x) :=

n∑

j=0

fj−1

(
4
(
P \ {0̂, 1̂}

))
·

(
x − 1

2

)j

associated to certain Eulerian graded posets P appear in the paper [9] of the present author. A polynomial p(x)
of degree n is symmetric if it satisfies Pn(x) = (−1)nPn(−x). A graded partially ordered set P is Eulerian
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if it satisfies
∑

x≤z≤y(−1)ρ(x,z) = 0 for all [x, y] ⊆ P of rank at least 1. If a graded poset P is Eulerian then

φP (x) is symmetric. A symmetric Jacobi polynomial P
(α,β)
n (x) satisfies α = β. In fact, by P

(α,β)
n (−x) =

(−1)n · P
(β,α)
n (−x) (see Chihara [5, Chapter V, (2.8)]), it must satisfy P

(α,β)
n (x) = P

(β,α)
n (x), so α = β

follows from P (α,β)(1) =
(
n+α

α

)
cited in Remark 7.1. By Remark 7.1 we may represent a Jacobi polynomial

P
(α,β)
n (x) as φP (x) associated to some poset P only if α = 0. Therefore the only Jacobi polynomials that

could be represented as φP (x) for some Eulerian graded poset P are the Legendre polynomials. It is not

difficult to construct such posets for P
(0,0)
n (x) for n ≤ 2. However, for higher values of n we would need

graded Eulerian poset of rank n + 1 with fn−1 =
(
2n
n

)
saturated chains, which is not an integer multiple of

2bn/2c for n ≥ 3. This makes constructing Eulerian “Legendre posets” of rank higher than 3 impossible, since
the number of saturated chains of an Eulerian poset of rank n + 1 is

f{1,...,n} = 2bn/2c · f2·Z∩{1,...,n}.

This follows from the fact that, in an Eulerian poset, every interval of rank 2 has 4 elements.

The two areas, where the most interesting generalizations seem to be found, are the following. The
right-strict direct product, introduced in Section 6, deserves further study. If Conjecture 6.2 turns out to be
too hard or false, the proof of Proposition 5.1 may be a hint that preservation of EL-shellability (or a similar
property) could be or should be shown instead. The other challenge is to find an algebraic generalization
of Theorem 4.3. When 4 is balanced and colored with n-colors, its face ring is Z

n-graded. The balanced
join operation takes the tensor product of two Z

n-graded rings and factors it by all terms of the form u⊗ v,
where u and v are homogeneous terms of the same multi-degree. It is natural to ask whether such a factor
of the tensor product of two Z

n-graded Cohen-Macaulay modules would always have the Cohen Macaulay
property.
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