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San Diego, California 2006

Kazhdan-Lusztig immanants and products of matrix minors, II
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Abstract. We show that for each permutation w containing no decreasing subsequence of length k, the
Kazhdan-Lusztig immanant Immw(x) vanishes on all matrices having k equal columns. We also construct
new and simple inequalities satisfied by the minors of totally nonnegative matrices.

Résumé. Nous démontrons que pour chaque permutation w qui ne contient aucune sous-suite décroissante
de longeur k, l’immanant de Kazhdan-Lusztig Immw(x) s’annule sur toutes les matrices avec k colonnes
identiques. Nous introduisons par ailleurs des inégalités simples et nouvelles satisfaites par les mineurs des
matrices complètement non-negatives.

1. Introduction and Preliminaries

The Kazhdan-Lusztig basis {C′
w(q) | w ∈ Sn} of the Hecke algebra Hn(q), originally introduced in

[10], has seen several applications in combinatorics and positivity. In [14] Rhoades and Skandera define the
Kazhdan-Lusztig immanants via the Kazhdan-Lusztig basis and obtain various positivity results concerning
linear combinations of products of matrix minors. Lam, Postnikov, and Pylyavskyy, in turn, use these results
in [11] to resolve several conjectures in Schur positivity. In this paper, we further develop algebraic properties
of the Kazhdan-Lusztig immanants and apply these immanants to obtain additional positivity results.

Fix n ∈ N and let x = (xij)1≤i,j≤n be a matrix of n2 variables. For a pair of subsets I, J ⊆ [n], with
|I| = |J |, define the (I, J)-minor of x, denoted ∆I,J(x), to be the determinant of the submatrix of x indexed
by rows in I and columns in J . We adopt the convention that the empty minor ∆∅,∅(x) is equal to 1. An
n × n matrix A is said to be totally nonnegative (TNN) if every minor of A is a nonnegative real number.
A polynomial p(x) in n2 variables is called totally nonnegative if whenever A = (ai,j)1≤i,j≤n is a totally
nonnegative matrix, p(A) =

def
p(a1,1, . . . , an,n) is a nonnegative real number. [2], [3], [9], [13], [12], [19] give

a graph theoretic characterization of totally nonnegative matrices which is used by Rhoades and Skandera
in [15] and [14] to construct several examples of totally nonnegative polynomials.

Let H denote the infinite array (hj−i)i,j≥1, where hi denotes the complete homogeneous symmetric
function of degree i. (see, for example, [18]) Here we use the convention that hi = 0 whenever i < 0. A
polynomial p(x) in n2 variables is called Schur nonnegative (SNN) if whenever K is an n × n submatrix
of H , the symmetric function p(K) is a nonnegative linear combination of Schur functions. By the Jacobi
identity, the determinant is a trivial example of a SNN polynomial.

For i ∈ [n− 1], let si denote the adjacent transposition in Sn which is written (i, i+1) in cycle notation.
For a fixed w ∈ Sn, call an expression si1 · · · si`

representing w reduced if ` is minimal. In this case, define
the length of w, denoted `(w), to be `.

For q a formal indeterminate, define the Hecke algebra Hn(q) to be the C[q1/2, q−1/2]-algebra with
generators Ts1

, . . . , Tsn−1
subject to the relations

T 2
si

= (q − 1)Tsi
+ q, for i = 1, . . . , n − 1,

Tsi
Tsj

Tsi
= Tsj

Tsi
Tsj

, if |i − j| = 1,

Tsi
Tsj

= Tsj
Tsi

, if |i − j| ≥ 2.
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For w ∈ Sn, define the Hecke algebra element Tw by

Tw = Tsi1
· · ·Tsi`

,

where si1 · · · si`
is any reduced expression for w. Specializing at q = 1, the map Tsi

7→ si induces an
isomorphism between Hn(1) and the symmetric group algebra C[Sn].

The elements {C′
v(q) | v ∈ Sn} of the Kazhdan-Lusztig basis of Hn(q) have the form

(1.1) C′
v(q) =

∑

w≤v

Pw,v(q)q
−`(v)/2Tw,

where

{Pw,v(q) |w, v ∈ Sn}

are polynomials in N[q] called the Kazhdan-Lusztig polynomials. We recall a couple of elementary properties
of the Kazhdan-Lusztig polynomials.

Lemma 1.1. For w, v ∈ Sn, Pw,v(q) ≡ 0 if and only if w � v, where ≤ is (strong) Bruhat ordering.
Also, Pw,w(q) ≡ 1.

A polynomial p(x) in n2 variables is called an immanant if it belongs to the C-linear span of {x1,w(1) · · ·xn,w(n) | w ∈
Sn}. Following [14], for w ∈ Sn, define the w-Kazhdan-Lusztig immanant by

(1.2) Immw(x) =
def

∑

v∈Sn

(−1)`(w)−`(v)Pw0v,w0w(1)x1,v(1) · · ·xn,v(n),

where wo denotes the long element of Sn, written n(n − 1) . . . 1 in one-line notation. Specializing at w = 1,
we have that Imm1(x) = det(x).

It follows from Lemma 1.1 that the expression (−1)`(w)−`(v)Pw0v,w0w(1) is nonzero if and only if w ≤ v
in the Bruhat order and that Pw0w,w0w(1) = 1. Therefore, the set {Immw(x) | w ∈ Sn} forms a basis for the
vector space of immanants. The Kazhdan-Lusztig immanants are both TNN and SNN and various examples
of TNN and SNN polynomials can be constructed by studying the cone generated by the Kazhdan-Lusztig
immanants [14]. Moreover, when w is 321-avoiding, the Kazhdan-Lusztig immanant Immw(x) is satisfies a
natural generalization of Lindström’s Lemma [15].

2. Main

For 1 ≤ k ≤ n, let Γn,k denote the subset of C[x1,1, . . . , xn,n] consisting of all products of the form
∆I1,J1

(x) · · ·∆Ik,Jk
(x), where I1, J1, . . . , Ik, Jk ⊆ [n], I1 ] · · · ] Ik = J1 ] · · · ] Jk = [n], and |Ij | = |Jj | for all

j ∈ [k]. Here ] denotes disjoint union. Elements of Γn,k are sometimes called complementary products of
minors. In [15], Kazhdan-Lusztig immanants are used to find that the dimension of span(Γn,2) is equal to
the nth Catalan number Cn. In this paper we shall relate the dimension of span(Γn,k) to pattern avoidence
in Sn for arbitrary k.

For k ∈ N, let Sn,k denote the set of permutations in Sn which do not have a decreasing subsequence of
length k + 1. For example, in one-line notation, S3,2 = {123, 213, 132, 312, 231}. Notice that Sn,k = Sn for
all k ≥ n. We start by examining the image of Sn,k under the Robinson-Schensted correspondence.

Let ≤LR be the preorder on Sn defined in [10] and let s[1,k] be the longest element in the subgroup of
Sn generated by s1, . . . , sk−1.

Lemma 2.1. Suppose v 6∈ Sn,k−1. Then we have v ≤LR s[1,k].

Proof. Given any permutation w, define the pair of tableaux (P ′(w), Q′(w)) to be the image of w
under the Robinson-Schensted column insertion correspondence. Let λ′(w) be the shape of these tableaux.

A well-known property of the Robinson-Schensted correspondence implies that λ′(v) ≥ λ′(s[1,k]) in the
dominance order. This dominance relation in turn is known to be equivalent to the partial order on Kazhdan-
Lusztig cells induced by the preorder ≤LR. Thus in the preorder ≤LR, every permutation in the cell of v
precedes every permutation in the cell of s[1,k]. (See [1], [6, Sec. 1], [8, Appendix].) �

Proposition 2.2. Suppose A ∈ Matn(C) has k equal rows and let v ∈ Sn,k−1. Then, Immv(A) = 0.

This result generalizes Proposition 3.14 of Rhoades and Skandera [15], which together with [14] implies
that Proposition 2.2 holds when k = 2.
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Proof. Define the element [A] of C[Sn] by

[A] =
∑

w∈Sn

a1,w(1) · · ·an,w(n)w.

Let i1 < · · · < ik be the indices of k rows in A which are equal and let U be the subgroup of Sn which fixes
all indices not contained in the set {i1, . . . , ik}. Then

∑

u∈U

u

factors as wz[1,k]w
′ for some elements w, w′ of Sn. It follows that [A] factors as

[A] =

(

∑

u∈U

u

)

f(A)

= (wz[1,k]w
′)f(A)

for some group algebra element f(A).
Let I be the two-sided ideal of C[Sn] spanned by {C′

u(1) |u ≤LR s[1,k]} and let θ : C[Sn] → C[Sn]/I be
the canonical homomorphism. Clearly we have θ([A]) = 0.

On the other hand, we have

θ([A]) = θ

(

∑

w∈Sn

Immw(A)C′
w(1)

)

=
∑

w∈Sn

Immw(A)θ(C′
w(1)).

Since θ(C′
w(1)) = 0 for all permutations w ≤LR s[1,k], we have

0 =
∑

w

Immw(A)θ(C′
w(1)),

where the sum is over all permutations w 6≤LR s[1,k], i.e., those permutations having no decreasing sub-
sequence of length k. Since the elements θ(C′

w(1)) in this sum are linearly independent, we must have
Immw(A) = 0 for each permutation w having no decreasing subsequence of length k. �

Proposition 2.3. Suppose ∆I1,J1
(x) · · ·∆Ik,Jk

(x) ∈ Γn,k. Then, there exist dw ∈ C such that ∆I1,J1
(x) · · ·∆Ik,Jk

(x) =
∑

w∈Sn,k
dwImmw(x).

Proof. The Kazhdan-Lusztig immanants form a basis for the vector space of immanants, so we may
write

(2.1) ∆I1,J1
(x) · · ·∆Ik,Jk

(x) =
∑

w∈Sn

dwImmw(x),

for some dw ∈ C. If k ≥ n the claim is trivial, so we assume that k < n. We show that dw = 0 whenever
w /∈ Sn,k.

Suppose that C ∈ Matn(C) has k + 1 equal rows. Then, by the pigeonhole principle, there exist two
equal rows of C indexed by integers lying in one of I1, . . . , Ik. Hence, ∆I1,J1

(C) · · ·∆Ik,Jk
(C) = 0.

Now let B = (bij) ∈ Matn(C) be defined by bij = 1 for all i and j. By Proposition 2.2, since k <
n we have that Immw(B) = 0 for every w 6= wo. Also, Immwo

(B) = 1. By the above paragraph,
∆I1,J1

(B) · · ·∆Ik,Jk
(B) = 0. Therefore, applying both sides of (2.1) to B, we get that dwo

= 0.
For l ∈ N, define Tn,l to be the set difference Sn,l rSn,l−1. Suppose that k < m < n and suppose that for

all p satisfying m < p ≤ n we have that dw = 0 for every w ∈ Tn,p. Give the elements of Tn,m a total order
which is an extension of their Bruhat ordering and write Tn,m = {w1 < w2 < · · · < wh}. Let t ∈ [h] and
suppose by induction that dw = 0 for w ∈ {wt+1, . . . , wh}. Since wt ∈ Tn,m, there exist i1 < i2 < · · · < im
such that wt(i1) > wt(i2) > · · · > wt(im). Let D ∈ Matn(C) be the matrix obtained by replacing the rows
i1, . . . , im in the permutation matrix for wt by rows of 1’s. By Proposition 2.2, Immw(D) = 0 for every
w ∈ Sn,m−1. By (1.1) we also have that Immw(D) = 0 for every w � wt in the Bruhat order. Since k < m,
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we have that ∆I1,J1
(D) · · ·∆Ik,Jk

(D) = 0. Thus, applying both sides of (2.1) to D, we get that dwt
= 0 and

the Proposition follows by induction.
�

If k = 2 in Proposition 2.3, results in [15] and [14] imply that the dw must be nonnegative. For k
arbitrary, Skandera [16] has given an elementary proof that whenever w avoids the patterns 3412 and 4231,
(i.e., when the Schubert variety Γw corresponding to w is smooth), the coefficient dw is also nonnegative.
Using deeper properties of the dual canonical basis of OSLnC, it is possible to show that the coefficients dw

are nonnegative for general k and w.

Proposition 2.4. dim(spanC(Γn,k)) = |Sn,k|.

Specializing at k = 2, Sn,2 is the set of 321-avoiding permutations, so we have that |Sn,2| = Cn, the nth

Catalan number. Thus, this result is a generalization of Proposition 4.7 of [15].

Proof. By Proposition 2.3 we have that dim(spanC(Γn,k)) ≤ |Sn,k|.
For each collection of sets I1, J1, . . . , Ik, Jk ⊆ [n] with [n] = I1 ] · · · ] Ik = J1 ] · · · ] Jk and |Ij | = |Jj |

for each j ∈ k, let min(I1, J1, . . . , Ik, Jk) denote the unique minimal permutation in the Bruhat order which
maps Ii into Ji for each i ∈ [k]. For example, if we set n = 6, I1 = {1, 3, 6}, I2 = {2, 4}, I3 = {5}, J1 =
{3, 4, 6}, J2 = {1, 5}, J3 = {2}, we have that min(I1, J1, I2, J2, I3, J3) = 314526 in one-line notation.

For ∆I1,J1
(x) · · ·∆Ik,Jk

(x) ∈ Γn,k it is easy to see that there exist dw ∈ C such that

∆I1,J1
(x) · · ·∆Ik,Jk

(x) =
∑

w≥min(I1,J1,...,Ik,Jk)

dwx1,w(1) · · ·xn,w(n),

where dmin(I1,J1,...,Ik,Jk) = 1. In light of this, it suffices to show that for every permutation w ∈ Sn,k, there
exists a collection of sets I1, J1, . . . , Ik, Jk ⊆ [n] such that [n] = I1 ] · · · ] Ik = J1 ] · · · ] Jk and |Ij | = |Jj |
for each j ∈ k and w = min(I1, J1, . . . , Ik, Jk). For then, we have that dim(spanC(Γn,k)) ≥ |Sn,k|.

Let w ∈ Sn,k. Define a partial order on the set P = {(i, w(i))|i ∈ [n]} by setting (i, w(i)) < (j, w(j))
if i < j and w(i) < w(j). Now {(i1, w(i1)), . . . , (im, w(im))} ⊆ P with i1 < · · · < im is an antichain in
P if and only if (w(i1), . . . , w(im)) is an decreasing subsequence of w. Hence, width(P ) < k + 1 (see [17]
for definitions). By Dilworth’s Theorem, there exist k disjoint (possibly empty) chains C1, . . . , Ck which
partition P . Now, for each j ∈ [k], write Cj = {(i1, w(i1)), . . . , (imj

, w(imj
)}, with i1 < · · · < imj

. Since
Cj is a chain in P , (w(i1), . . . , w(imj

)) is an increasing subsequence of w. Define Ij = {i1, . . . imj
} and

Jj = {w(i1), . . . w(imj
)}. It is now easy to check that w = min(I1, J1, . . . , Ik, Jk) and we are done.

�

The numbers |Sn,k| were studied by Gessel [7] who found an expression involving Bessel functions
for the generating function

∑

n≥1 |Sn,k|t
n. The authors do not know of a simple form of the polynomial

∑n
k=1 |Sn,k|t

k.

Corollary 2.5. Suppose that I1 ] I2 = J1 ] J2 = [n], |I1| = |J1| = n1, |I2| = |J2| = n2, w1 ∈ Sn1,k1
,

and w2 ∈ Sn2,k2
. For i = 1, 2 let xi be the submatrix of x with row set Ii and column set Ji. Then, there

exist dv ∈ C such that Immw1
(x1)Immw2

(x2) =
∑

v dvImmv(x), where the sum is over v in Sn,k1+k2
.

Specializing at w1 = w2 = 1, we have that the coefficients dv in the Corollary are in fact nonnegative
real numbers. (see [15], [14]) Again, one may use the properties of the dual canonical basis of OSLnC to
show that {dw |w ∈ Sn} are nonnegative real numbers.

Proof. For i = 1, 2, by Propositions 2.3 and 2.4 there exist pi,j(xi) ∈ Γni,ki
and dj ∈ C such that

Immwi
(x) =

∑

j djpi,j(xi). Since x1 and x2 are complementary submatrices of x, for any p1(x1) ∈ Γn1,k1
and

p2(x2) ∈ Γn2,k2
, the product p1(x1)p2(x2) is contained in Γn,k1+k2

. So, the product Immw1
(x1)Immw2

(x2)
is a linear combination of elements in Γn,k1+k2

. The result now follows from Proposition 2.3.
�

Taken together, Propositions 2.3 and 2.4 imply that for w ∈ Sn,k, there exist pi(x) ∈ Γn,k and di ∈ C
such that Immw(x) =

∑m
i=1 dipi(x). Results in [15] and [14] show that, for k = 2, we may in fact assume

that the pi(x) are contained in a subset of Γn,2 which is in a natural bijective correspondence with the set
of Dyck paths of length 2n. It would be interesting to see if an analogous result holds for general k.
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We now investigate when polynomials in span(Γn,k) are TNN or SNN. For any integers n and k satisfying
1 ≤ k ≤ n, define the poset Pn,k on Γn,k by
∆I1,J1

(x) · · ·∆Ik,Jk
(x) ≤ ∆I′

1
,J′

1
(x) · · ·∆I′

k
,J′

k
(x) if and only if the difference

∆I′

1
,J′

1
(x) · · ·∆I′

k
,J′

k
(x)−∆I1,J1

(x) · · ·∆Ik,Jk
(x) is TNN. In [15] the authors develop necessary and sufficient

combinatorial conditions for polynomials p(x) ∈ span(Γn,2) to be TNN. For all positive integers n, Pn,2

has a unique maximal element given by ∆I,I(x)∆J,J (x), where I = {1, 3, 5, . . .} and J = {2, 4, 6, . . .}.
Also, the determinant ∆[n],[n](x)∆∅,∅(x) is always a minimal element of Pn,2. In [14] the authors show
that the combinatorial tests in [15] constitute sufficient conditions for polynomial in span(Γn,2) to be SNN.
Therefore, whenever ∆I,J(x)∆I′,J′(x) ≤ ∆K,L(x)∆K′,L′(x) in Pn,2 we also have that ∆K,L(x)∆K′,L′(x) −
∆I,J(x)∆I′,J′(x) is SNN. It is unknown whether the converse of the last sentence is true.

In [4], [5], and [14] the positivity properties of differences of the form x1,w(1) · · ·xn,w(n)−x1,u(1) · · ·xn,u(n)

for w, u ∈ Sn are studied. The authors prove the following about the subposet Pn,n consisting of products
of n nonempty minors.

Theorem 2.6. Let w, u ∈ Sn. Then, the following statements are equivalent.
1. w ≤ u in the Bruhat order.
2. The difference x1,w(1) · · ·xn,w(n) − x1,u(1) · · ·xn,u(n) is TNN.
3. The difference x1,w(1) · · ·xn,w(n) − x1,u(1) · · ·xn,u(n) is SNN.
4. Whenever the difference x1,w(1) · · ·xn,w(n) − x1,u(1) · · ·xn,u(n) is applied to a Jacobi-Trudi matrix, the

result is a nonnegative linear combination of monomial symmetric functions.
5. The difference x1,w(1) · · ·xn,w(n) − x1,u(1) · · ·xn,u(n) is a nonnegative linear combination of Kazhdan-

Lusztig immanants.

With the above results as motivation, we show that Pn,k has a unique maximal element for arbitrary k
and that certain comparable elements in Pn,k have differences which are SNN as well as TNN.

Lemma 2.7. Let (I1, . . . , Ip) and (I ′1, . . . , I
′
p) be seqences of sets satisfying

I1 ] · · · ] Ip = I ′1 ] · · · ] I ′p,
|Ii| = |I ′i| for all i.

Fix indices k < ` and define increasing sequences (α1, . . . , αp) and (α′
1, . . . , α

′
p) by

Ik ∪ I` = {α1, . . . , αp},

I ′k ∪ I ′` = {α′
1, . . . , α

′
p}.

Define the sequences of sets (J1, . . . , Jp) and (J ′
1, . . . , J

′
p) by

Ji =











{α1, α3, . . . , } if i = k,

{α2, α4, . . . , } if i = `,

Ii otherwise.

J ′
i =











{α′
1, α

′
3, . . . , } if i = k,

{α′
2, α

′
4, . . . , } if i = `,

I ′i otherwise.

Then the immanant

∆J1,J′

1
(x) · · ·∆Jp,J′

p
(x) − ∆I1,I′

1
(x) · · ·∆Ip,I′

p
(x)

is totally nonnegative and Schur nonnegative.

Proof. This difference is

∆J1,J′

1
(x) · · ·∆Jp,J′

p
(x)

∆Jk,J′

k
(x)∆J`,J′

`
(x)

(∆Jk,J′

k
(x)∆J`,J′

`
(x) − ∆Ik,I′

k
(x)∆I` ,I′

`
(x)),

which is totally nonnegative and Schur nonnegative by [15, Prop. 4.6] and [14, Thm. 5.2]. �

Our next result implies that the poset Pn,k has a maximal element for any n and k.
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Theorem 2.8. Let (I1, . . . , Ip) and (I ′1, . . . , I
′
p) be two sequences of sets satisfying

I1 ] · · · ] Ip = I ′1 ] · · · ] I ′p = [n],

|I1| = |I ′i | for all i

and define sets J1, . . . , Jp by
Ji = {i ∈ [n] | i ≡ j mod p}.

Then the immanant
∆J1,J1

(x) · · ·∆Jp,Jp
(x) − ∆I1,I′

1
(x) · · ·∆Ip,I′

p
(x)

is totally nonnegative and Schur nonnegative.

Proof. Applying several iterations of Lemma 2.7 to the sets I1, . . . , Ip, I
′
1, . . . I

′
p, we obtain the desired

result. �

Corollary 2.9. Let k < ` and define the sequences of sets (I1, . . . , Ik) and (J1, . . . , J`) by

Ij = {i ∈ [n] | i ≡ j mod k},

Jj = {i ∈ [n] | i ≡ j mod `}.

Then the immanant
∆J1,J1

(x) · · ·∆Jp,Jp
(x) − ∆I1,I′

1
(x) · · ·∆Ip,I′

p
(x)

is totally nonnegative and Schur nonnegative.

Not much is known about the posets Pn,k in general. Obviously we have that Pn,1 ⊂ Pn,2 ⊂ · · · ⊂ Pn,n.
By Theorem 2.6 Pn,n contains a subposet isomorphic to (the dual of) the Bruhat order on Sn. Also, it is
possible to show that any element of span(Γ3,3) is TNN or SNN if and only if it may be expressed as a
nonnegative linear combination of Kazhdan-Lusztig immanants. In particular, this allows one to construct
the poset P3,3 and see that it coincides with the analogous poset constructed by considering SNN differences.
It would be interesting to see what Pn,k looks like in general.
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