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ABSTRACT. For any partition A let w(\) denote the four parameter weight
w(\) = ai>1[A2i—1/21 50> [Xaio1/2] [2i>1[A2i/2] 32551 [ A2i /2] ,

and let £(\) be the length of A\. We show that the generating function 3 w())z¢(®), where the sum runs
over all ordinary (resp. strict) partitions with parts each < N, can be expressed by the Al-Salam-Chihara
polynomials. As a corollary we prove G.E. Andrews’ result by specializing some parameters and C. Boulet’s
results when N — +co . In the last section we study the weighted sum 3 w(A)z¢) Py (z) where Py (z) is
Schur’s P-function and the sum runs over all strict partitions.

RESUME.
Pour toute partition A on définit w(A) comme la fonction poids de quatre paramétres
w(\) = a2zt A2io1/21p3 051 haim1/2] (i1 Th2i/2] 35112 /2] ,

et désigne £(\) la longueur de A. On démontre que la fonction génératrice 3" w(A\)z¢(N) | ot la somme porte
sur toutes les partitions ordinaires (resp. strictes) avec chaque part < N, peut s’exprimer par les polynémes
d’Al-Salam-Chihara. Comme corollaire on en déduit un résultat de G.E. Andrews en spécialisant certain
parametres et ceux de C. Boulet quand N — 4o00. Dans la derniére section on étudie la somme pondérée
S w(N)2{) Py (z) ol Py (x) est la P-fonction de Schur et la somme porte sur toutes les partitions strictes.

1. Introduction

Let A be an integer partition and )\ its conjugate. Let O()\) denote the number of odd parts of A and
|A| the sum of its parts. R. Stanley ([13]) has shown that if ¢(n) denotes the number of partitions A of n for
which O(X) = O()) (mod4), then

1
t(n) = 5 (p(n) + f(n),
where p(n) is the total number of partitions of n, and

S n_ (1+¢*)
2 S =11 = m iy

i>1

In [1] G.E. Andrews has computed the generating function of ordinary partitions A with parts each less than
or equal to N, with respect to the weight 20Ny )glAl We should note that in [12] A. Sills has given a
combinatorial proof of this result, and in [14] A. Yee has generalized this result to the generating function
of ordinary partitions of parts< N and length < M.

As a generalization of this weight, we consider the following four parameter weight. Let a, b, ¢ and d be
commuting indeterminates. Define the following weight functions w(\) on the set of all partitions,

(1.1) w(\) = a2iz1 22172130051 [h2im1/2] (32551 [A2i /2] dz:ile.AZi/?J’
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Schur’s Q-functions, Pfaffians, minor summation formula of Pfaffians.
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where [x] (resp. |z]) stands for the smallest (resp. largest) integer greater (resp. less) than or equal to
x for a given real number x. For example, if A = (5,4,4, 1) then w(A) is the product of the entries in the
following diagram for A.

c d c d
a b a b
c

In [3] C. Boulet has obtained results on the generating functions for the weights w(\) when A runs over all
ordinary partitions and when A runs over all strict partitions

In this paper we consider a refinement of these results, i.e., the generating functions for the weights
w(N) 2N where £()) is the length of A, when X runs over all ordinary partitions with parts each < N and
when A\ runs over all strict partitions with parts each < IV, and show that they are related to the basic
hypergeometric series, i.e. the Al-Salam-Chihara polynomials (see Theorem 3.4 and Theorem 4.3).

In the last section we show the weighted sum Zw(u)z““)Pp(m) of Schur’s P-functions P,(x) (when

z = 2, this equals the weighted sum ) w(p)Qu(x) of Schur’s @Q-functions @, (x)) can be expressed by a
Pfaffian where p runs over all strict partitions (with parts each < N).

2. Preliminaries

A g-shifted factorial is defined by
(a;q)():]_, (a7q)n:(1—a)(l—aq)(l—aqnfl), ’I’L:1,2,....

We also define (a;¢)oo = [[heo(1 — aq®). Since products of g-shifted factorials occur very often, to simplify
them we shall use the compact notations

(ala sy Oms Q)n = (Cll; Q)n ce (am; Q)na

(ala cee aam;Q)oo = (al;Q)oo T (am;Q)oo-

We define an ,1¢, basic hypergeometric series by

oo
a1,02,. 5 Qry1 B Z (a1,a2,...,ar11;Q)n o,
r+1¢r 4,2 | = Z.

bla"-;br n—0 (qabla"'vbf’;q)n
The Al-Salam-Chihara polynomial @, (z) = Qn(z; a, B|q) is, by definition,
, _ (aBig)n g " ou,au”t
Qn(xaaaﬂ|Q) - an 3¢2 046,0 14,4 )

_ g ", Bu! _
= (au;q)nu~" 201 <a—1q—”+1u_1; g 'qu ),
—-n

_ q ", o -
= (Bu";q)nu" 261 <ﬁ1q"+1u; 0.6 qu 1>,

where z = %"71 (see [6] p.80). This is a specialization of the Askey-Wilson polynomials (see [2]), and
satisfies the three-term recurrence relation
(2.1) 22Q(2) = Qua1 () + (@ + £)q" Qu (@) + (1 — ¢")(1 — aBq" ") Qu-1(2),

with Q_1(z) =0, Qo(z) = 1.
We also consider a more general recurrence relation:

(2.2) 22Qn () = Qni1(2) + (a+ B)tg"Qn(z) + (1 = tg")(1 — tafg" ") Qn-1(),
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which we call the associated Al-Salam-Chihara recurrence relation. Put

~ n t~tg, put _

(2.3 @) = s uaon (4 et
~ tq; @)n(tafB; q)n tg"t o qu

2.4 (2) . ( .

( ) Qn (x) Uu (tﬂuq, q)n Q(bl tﬂq”“‘lu y g, au |,

where z = wtu' Ip [5], Ismail and Rahman have presented two linearly independent solutions of the
associated Askey-Wilson recurrence equation (see also [4]). By specializing the parameters, we conclude

that @53) (z) and @512 ) (z) are two linearly independent solutions of the associated Al-Salam-Chihara equation
(2.2) (see [4, p.203]). Here, we use this fact and omit the proof. The series (2.3) and (2.4) are convergent if
we assume |u| < 1 and |q| < o] < 1 (see [4, p.204]).

Let

(2:5) W = QP (@)@, (1) — @ ()P ()
denote the Casorati determinant of the equation (2.2). Then we obtain

u™t (taw, Bu; q)oo
(o, tBug; q) oo

(2.6) Wy =

In the following sections we need to find a polynomial solution of the recurrence equation (2.2) which satisfies
a given initial condition, say Qo(x) = Qo and Q1(z) = Q1. Since QWY () and Qg)(x) are linearly independent
solutions of (2.2), this @, (x) can be written as a linear combination of these functions, say

@n() = C1 QY (2) + C2 QP ().

If we substitute the initial condition @0(33) = Qo and @1(x) = (@, into this equation and solve the linear
equation, then we conclude that

5 ul(ow, thug; @)oo [f 5 5 500 5
) = T P 1) - 0T} Q)
(2.7) {20 (@) - 012" (@)} 0P ()]
and
(2.8) lim u"Q (z) = u(tfug, au; ¢)oo {é1@(2)(x) _ Qoé@) (x)}
' n—oo " (4% @) 0 ' '

3. Strict Partitions

A partition p is strict if all its parts are distinct. One represents the associated shifted diagram of i as a
diagram in which the ith row from the top has been shifted to the right by 7 places so that the first column
becomes a diagonal. A strict partition can be written uniquely in the form g = (p1, ..., p2,) where n is an
non-negative integer and p1 > po > -+ > pay, > 0. The length ¢(u) is, by definition, the number of nonzero
parts of . We define the weight function w(u) exactly the same as in (1.1). For example, if u = (8,5, 3),
then £(u) = 3, w(p) = abc3d? and its shifted diagram is as follows.

Let

(3.1) Uy =Un(a,b,cd;z) Zw )24
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where the sum is over all strict partitions p such that each part of p is less than or equal to N. For example,
we have

Vo =1,

U, =1+4az,

Uy =1+ a(l +b)z + abcz?,

U3 =1+ a(l +b+ab)z + abe(l + a + ad)2® 4 a®bed2®.

In fact, the only strict partition such that £(x) = 0 is @, the strict partitions p such that £(u) = 1 and p; < 3
are the following three:

[¢] [afb] [a]bla],

the strict partitions p such that £(u) = 2 and gy < 3 are the following three:

[a]b [a]b]a] la]b]a
c c cld

e e )

and the strict partition p such that £(u) = 3 and gy < 3 is the following one:

[a]5
C

[2]a]=

The sum of the weights of these strict partitions is equal to ¥3. In this section we always assume |al, |0, |¢|, |d|
1. One of the main results of this section is that the even index terms and the odd index terms of ¥y re-
spectively satisfy the associated Al-Salam-Chihara recurrence relation:

A

THEOREM 3.1. Set ¢ = abed. Let Uy = Up(a,b,c,d;2) be as in (3.1) and put Xy = ¥Yon and
YN = \IJQN+1. Then XN and YN satisfy

Xy ={1+ab+a(l+bc)z’¢"} Xy

(3.2) —ab(l - 2%q")(1 — aczq" ) Xn_1,
Y1 = {1+ ab+ abe(1 + ad)z%¢V } Yy
(3.3) —ab(1 - 2%¢V)(1 — aczq") Yy 1,

where Xo =1, Yy =1+az, X; =1+ a(l +b)z + abcz? and
Y1 =1+ a(l+b+ab)z + abe(l + a + ad)z? + a>bedz®.

Especially, if we put X% = (ab)~* Xy and Y} = (ab)~* Yy, then X/ and Y} satisfy

{(ab)% + (ab)fé } Xn=XNi1— azb2 (1+be)z2¢N XNy

(34) + (1= 2%¢") (1 - acz®¢" Xy,
{(ab)% + (ab)~? } Y =Yy — a2bbe(l + ad)z2gN Y

(3.5) + (1= 22¢M) (1 — a®bPd2* N Y)Yy,

where X, =1, Y] =1+az, X, = (ab)"2 4+ a2b~2(1 + b)z + (ab)2cz? and
Y! = (ab)"2 +azb 2 (1+b+ab)z+a2b2c(l+a+ ad)z? + a2b? cdz®.

One concludes that, when |a|, |b],|c|, |d| < 1, the solutions of (3.2) and (3.3) are expressed by the linear
combinations of (2.3) and (2.4) as follows.

THEOREM 3.2. Assume |al, |b], ||, |d| < 1 and set ¢ = abed. Let ¥ = U (a,b, ¢, d;z) be as in (3.1).
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(i) Put Xy = Wan. Then we have

(_G‘Z2Q7 _aba Q)oo
XNy =
(—a,—abcz?; @)oo

“N,-2 _p-1
X < (s¥ X1 — 555 Xo)(—abez?; q)n 20 ¢ b g, —c !
0 1 0 ) N 291 —(abC)71q7N+12572’ q, q
2 2. N+1,2 _ 1
X X v (q2%,acz?q)n V122 —c 7l
(3.6) +(r{ Xo —rg X1)(ab) Cag N 201 ( _agN+iz O —abc) } ;
where

—2 -1
X z 7_b -1
To = y 4, —¢C )
=201 (ot e)
2 —1
2°q,—¢ q
Sé( = 2¢1 < 3 4, —Cle> ’

_aqu

—2 1 —1
X _ 2 z7%q ", b . -1

o= (1 + abcz )2¢1 < —(abc)*lz*2 y 4, —¢C q) ’

ab(1 — 2%q)(1 — acz?) s 23, —clq 4. —abe
1+ az?q 21 —az2q2 7 '
(ii) Put Yy = Wany1. Then we have

sy =

—a®bedz?q, —abc; q) oo

(
Y =
N (—a?bed, —abcz?;q) 0o

N2
y y 2. q 275 —acd 1
X {(SO 1/1 — 51 %)(—QbCZ 7q)N 2¢1 <_ abc)*lq*NJrlz*W q,—¢C Q>

(
2 QbCQdZQ'q)N qN+1z2 _C—lq
3.7 YY_ YY bN(ana ) ) . —ab
( ) + (Tl 0 To 1)(a ) (_agbcquQ; q)N 2¢1 —CL2deqN+IZ27 q, —abc )

where
—2
y z27%, —acd 1
To = 4, —C ’
) (.

1,2
q '27% —ac _
= (14 abcz®) 2 (—(abc)lz2; q,—c lq) :

2 -1
Y g, —¢c °q
so =201 (_agbcdzgq; 4 —abc) ;

vy ab(l—2%q)(1 — a®bc?dz?) 22¢%,—cq 4. —abe
1+ a2bcdz2q 2PN\ _a2bedz2g2 T '

If we take the limit N — oo in (3.6) and (3.7), then by using (2.8), we obtain the following generalization
of Boulet’s result (see Corollary 3.6).

COROLLARY 3.3. Assume |al, |b], |c|,|d| < 1 and set ¢ = abed. Let 53X, s¥, X;, Y; (i = 0,1) be as in the
above theorem. Then we have

—abe, —az%q; q) s
5wl = SR (6, X,

(—abc, —a?bedz?q; @) oo
(3.8) = @D (s§ Y1 — 57 Yo),

m

where the sum runs over all strict partitions.

Especially, by substituting z = 1 into (3.6) and (3.7), we conclude that the solutions of the recurrence
relations (3.4) and (3.5) with the above initial condition are exactly the Al-Salam-Chihara polynomials:

THEOREM 3.4. Put u = Vab, x = %“_1 and ¢ = abed. Let Uy (a,b,c,d;z) be as in (3.1).
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(i) The polynomial Wop(a,b,c,d;1) is given by
\IJQN(av ba & d? 1) = (a’b)%QN(x7 _a%bécv _a%b7% |q)a

qu’ —C
(3.9) = (—a;q)n 201 (—a—lq—N“; 4 —bQ> ~

(ii) The polynomial Wany1(a,b,c,d;1) is given by
Uona(a.b,edi 1) = (1+a)(ab) * Qn(w: ~a2bie, —abedlg)
,—cC

-N
q
(3.10) = (—a;¢)N+1261 <—a—1q—N; 4 —b> ~

If we substitute a = zyq, b = 2~ 'yq, ¢ = zy 'q and d = 271y~ !¢ into Theorem 3.4, then we immediately
obtain the following corollary, which is a strict version of Andrews’ result.

COROLLARY 3.5.

N
/ N _ 9
(3.11) > ZOWyOugik =Z[ } (—2yg;0"); (2 6 4" v (yg)* =,
p strict partitions 7=0 J q*
n1<2N
and
NN
(3.12) Y Wy = [ . } (—2ya; 4" 1 (—2y ' a ) n—j(ya) " %,
p strict partitions 7=0 J q4
p1<2N+1
where

(1-¢/)(1-¢'=1)(1—q) ’

|:N:| B (1—l1N)(1—qN_1)"'(1—4N_j+1) for 0 Sj < N’
J 14 0, if j <0and j > N.

If we put N — oo in Corollary 3.4, then we immediately obtain the following corollary (cf. Corollary 2
of [3]). We can also prove this corollary by setting z — 1 in (3.8).

COROLLARY 3.6. (Boulet) Let ¢ = abed, then

(3.13) Zw(u) _ (—a; q) oo (—abe; Q)oo7

- (ab; q)so

where the sum runs over all strict partitions pu.

4. Ordinary Partitions

First we present a generalization of Andrews’ result in [1]. Let us consider

(4.1) Oy =dn(ab,e,d;z) = Y w(N)zW,
MAgN
where the sum runs over all partitions A such that each part of A is less than or equal to N. For example,
the first few terms can be computed directly as follows:
Py =1,
14 az
1 —acz?’
1+ a(l +b)z + abcz?
(1 —acz?)(1 — gz22) ’
1+ a(l +b+ ab)z + abe(1 + a + ad)z? + a3bedz3
(b3 = )
(1 = 22ac)(1 — 22q)(1 — 22acq)
where ¢ = abed as before. If one compares these with the first few terms of ¥,,, one can easily guess the
following theorem holds:

o) =

dy =
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THEOREM 4.1. Let N be a non-negative integer, and let & = ®n(a,b, ¢, d; z) be as in (4.1). Then we
have

\IJN(av ba C, d? Z)
(22¢; @) | ny2) (22ac; @) Ny

(4.2) Dy(a,b,c,d;z) =
where Uy = Uy (a,b,c,d; z) is the generating function defined in (3.1). Note that ¥y is explicitly given in
terms of basic hypergeometric functions in Theorem 3.2.

First of all, as an immediate corollary of Theorem 4.1 and Corollary 3.3, we obtain the following gener-
alization of Boulet’s result.

COROLLARY 4.2. Assume |a|, |b],|c|,|d| < 1 and set ¢ = abed. Let s¥, s¥, X;, ¥; (i = 0,1) be as in
Theorem 3.2. Then we have

—abe, —az?q; q)
4. A || _ ( aoe, s 4 ) oo XX _ XX
(4.3) ;w( )z (ab, acz?, 22¢; q) oo (50 X1 = 57 Xo)

where the sum runs over all partitions A.

Theorem 4.1 and Theorem 3.4 also give the following corollary:

1 1
COROLLARY 4.3. Put z = M and ¢ = abed. Let @y = Py(a,b, ¢, d; z) be as in (4.1).
(i) The generating function ®on(a,b,c,d; 1) is given by
(ab)%QN(x; —azbze, —azb zq)
(¢:9)n(ac;q)n
(—a;q)n ( g N, —c )
4.4 = GIN cq,—bq ).
(4 (¢:9)n(ac; @) N 201 —a1g-N BT
(ii) The generating function ®on(a,b,c,d; 1) is given by
(14 a)(ab) = Qn(z; —azbic, —a2bicd|q)

(¢;9)n(ac; @) N+1
N

_ (—a;q)N11 ( qg,—c )
4.5) = Gonaconn 22 \—amtg-vi 070

@QN(G,, b, C, d; 1) =

(I)QN-‘rl(av ba c, d? 1) =

As before we immediately deduce the following corollary from Corollary 4.3. Let Sy (n,r, s) denote the
number of partitions 7 of n where each part of 7 is < N, O(xw) = r, O(7') = s. Then we have the result of
Andrews [1, Theorem 1].

COROLLARY 4.4. (Andrews)

N B .
=0 [ﬂq4 (—2ya: %) (—2y @ 4" n—j (ya)* N =

(4.6) Z Son(n,r,8)q"2"y" = 4. 4 2.4. o4 ’
Wit (g% ) n(2%¢% ¢ N
and
N _ _ .
>0 [ZJVL; (—2ya; a*)je1(—2y a3 ¢*) v (ya)* " %
(47) SQN+1(7L,7’, S)qnzrys =
néo (¢*;q")n (2%¢% ¢*) v

COROLLARY 4.5. (Boulet) Let ¢ = abed, then

(48) Z w()\) _ (_a;q)oo(_a’bc; Q)oo

(¢ @)oo (ab; @)oo (a5 @)oo

A partitions
Here the sum runs over all partitions A (cf. [3, Theorem 1]).

First we show the following recurrence equations hold.
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PROPOSITION 4.6. Let @5 = ®n(a,b,c,d; z) be as before and g = abed. Then the following recurrences
hold for any positive integer N.

(4.9) (1 —22¢")Poy = (1 +0)Pan_1 — bPan_o,
(410) (]. - Zgach)q)gNJrl = (1 + a)<I>2N —a®on_1.

5. A weighted sum of Schur’s P-functions

We use the notation X = X,, = (21,...,x,) for the finite set of variables 1, ..., 2,. In [8], one of the
authors used a Paffian expression of Zw()\)s A(X) to prove Stanley’s open problem, where the sum runs

A
over all partitions A and s)(X) stands for the Schur function with respect to a partition A. The aim of
this section is to give some determinantial formulas for the weighted sum " w(u)2*") P, (z) where P, (z) is
Schur’s P-function.
Let A,, denote the skew-symmetric matrix

<xi n mj)
i+ %5 /1< i<n

and for each strict partition g = (u1,..., ) of length | < n, let I';, denote the n x I matrix (xé“) Let

(A, T.J
A#(xl,...,$7z) - <_JlTu Ol )
which is a skew-symmetric matrix of (n+!) rows and columns. Define Pf,(x1,...,z,) tobe Pf A, (z1,...,z,)

if n + 1 is even, and to be Pf A,(x1,...,2,,0) if n 41 is odd. By Ex.13, p.267, [11], Schur’s P-function
P,(x1,...,2y) is defined to be

Pf,(z1,...,2n)
Ply(z1,...,2n)"
where it is well-known that Pfy(v1,...,20) = [[1cicjcn i;ij Meanwhile, by (8.7), p.253, [11], Schur’s

Q-function Q,,(z1,...,x,) is defined to be 2“V P, (zy,..., x,).
In this section, we consider a weighted sum of Schur’s P-functions and Q-functions, i.e.

SN(a,b,C,d;X,ﬂ) = Z W(M)Pu(xla"wxn)a

M
n1<N

nN(aa b7 c, d7 Xn) = Z W(M)Qu(xla ey xn)a
3
n1<N

where the sums run over all strict partitions g such that each part of p is less than or equal to V. More
generally, we can unify these problems to finding the following sum:

(5.1) (nv(a,be,dy 2 Xp) = Z w(p) 2" WP, (21, ..., 20),

111%1\’
where the sum runs over all strict partitions p such that each part of y is less than or equal to N. One of
the main results of this section is that (x(a, b, ¢, d; z; X,,) can be expressed by a Pfaffian. Further, let us put

(5:2) Cla.b e, di 2 X) = lim Cn(aybye,ds 2 Xn) = ) w(p)2 W Pu(Xa),
o
where the sum runs over all strict partitions. We also write

E(a,b,¢,d; Xn) = ((a,b, 0,5 1 X)) = Y w(p) Pu(X,),
o
where the sum runs over all strict partitions. Then we have the following theorem:

THEOREM 5.1. Let n be a positive integer. Then

Pf(vij)1<icjcn / Plo(Xn)  if nis even,

5.3 ;bv 7da ?X” = 1 i
(5.3) C(a,b,c,d; z; Xn) {Pf(%j)o<i<j<n /Pfy(X,) if nis odd,
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where
o
(5.4) Yij = Db ugjz + v 22
1T Tty J J

with

dot % +bx? 1 — aba?
(5.5) “ xj +bx? 11— abx?

. U5 = )

(1 —abz?)(1 — abx?)
bers s dot z; +azx? 1—a(b+d)z? — abdx3
56 abetiy ae xj + ax? 1—a(b+ d)x? - abdx?
(5:6) Yis = (1 — abx?)(1 — abx3)(1 — abedx?x?) ’

if 1 <4,j <n,and
az;(1+ bx;)
57 iAo VA
(5:7) 10 + 1- abm?
if1<j<n.
Especially, when z = 1, we have

Pt Pfy(X,) ifni
(58) g(a, b’ c, d’ Xn) — (Z )1<1<]<n / @( ) 1I n 18 even,
Pf (Vij)o<icjcn / Plo(Xn) i nis odd,
where
14+ax op -
’ if i =0,
(5.9) Foj = § T with
e tUy Hl<i<j<n
det (Fi T be; 1 —0b(a+ )z} — abex}
(510) R ade zj+bx? 1—bla+ c)r? — aber?
) Ty =

(1 = abx?)(1 — abx?)(1 — abedx;x?)

We can generalize this result in the following theorem (Theorem 5.2) using the generalized Vandermonde

determinant used in [9]. Let n be an non-negative integer, and let X = (x1,...,22,), Y = (y1,---,Y2n),
A= (ai,...,a2,) and B = (bl, . bgn) be 2n-tuples of variables. Let V™(X,Y, A) denote the 2n x n matrix
whose (4, ])th entry is al f “lfor 1 <i<2n,1<j<n,andlet U"(X,Y; A, B) denote the 2n x 2n
matrix (V"(X,Y,4) V(X )) . For instance if n = 2 then U?(X,Y; A4, B) is

aizr ayr bizr by
asry azyz bawa  bayo
asrs asys bsxs bsys
asxy  agys baxs bays
Hereafter we use the following notation for n-tuples X = (21, -+ ,z,) and Y = (y1,- - ,yn) of variables:
X+Y =@ 4y, - Tn+yn), X Y=(@191, - Tnln),

and, for integers k and [,
k k k kvl k1 k,l
X' =(2f,...,2.), X"Y'=(2fyi,. .,z u5)

Let 1 denote the n-tuple (1,...,1). For any subset I = {i1,...,i,} € ("), let X; denote the r-tuple
(xil, SR ,xir).

THEOREM 5.2. Let g = abcd. If n is an even integer then we have

n/2 | |— 2 )arq(r) x; +xj
tttcai) =30 3 gt T

=0 re () ijel (i — 25)(1 — gz Zj

i<j
(5.11) x det U™(X2, 14 qX7, X7 +bX?,1 —bla+c)X? — abcX?}).
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If n is an odd integer, then we have

n (n—1)/2 |I|*(T+1) . (T)
1+ az,, (-1) 2 )g"g\2 T + T;
g(aa ba c, d; Xn) =
'mZ:1 1- ame Z (;\{m}) HiEI(l - abm%) g Tm — T4
xT; +x; -
(5.12) X H .G _quc ) ~det UT(X2,14+¢X7, X7 +bX73 1 —ba+c) X7 — abeX?}).
L<]

(5.13) x

THEOREM 5.3. Let ¢ = abed. If n is an even integer, then ((a, b, ¢, d; z; X,,) is equal to

an” S (~)"= ) (abe) g [, 1 zi + 7
2 V(1 — 022
—0 1e() Hie[(l — abay) nier (zi —2;)(1 — qu; mj)

x det V"(X?14+¢X7, X7 +aX?1—a(b+d)X? — abdX?})

n/2 I a"b e
+ZZ2T‘ 1 Z Z ‘ ‘ () b 1 1 ( ){1+b(xk—|—xl)+abkal}nzepxz

k<l Hiel( - abmi)
re(3h) &

[Tiser (wi +25) - det VI 1 (X3, 14+ ¢X}, Xp +aX?,1—a(b+d) X7 — abdX},)

1<J

[Tiser (z — ;) (1 — gzia?) ’

1<J

where I' = I'\ {k,[}.

(1]
[2]
3]
[4]

[5]
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