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ABsTrRACT. We consider lattice walks in the plane starting at the origin, remaining in the first quadrant
i,7 > 0 and made of West, South and North-East steps. There are nice formulas for the number of such
walks. But, although several proofs of these formulas have been proposed over the years, none of them pro-
vides a combinatorial explanation. We give such an explanation. Beside these walks, we enumerate loopless
triangulations of the sphere bijectively. Our proofs rely on bijections between walks and triangulations with
a distinguished spanning tree. As a by-product, we also enumerate an important class of spanning trees on
cubic maps.

REsumME. On considére les chemins planaires partant de ’origine, restant dans le quart de plan ¢,j > 0 et faits
de pas Ouest, Sud et Nord-Est. Il existe de jolies formules énumératives pour ces chemins. Mais, alors que
plusieurs démonstrations ont été proposées pour ces formules par le passé, aucune ne fournit d’explication
combinatoire. Nous donnons une telle explication. En sus de ces chemins, nous énumérons bijectivement les
triangulations sans boucle de la sphére. Nos preuves reposent sur des bijections entre des chemins et des
triangulations munies d’un arbre couvrant. Dans le méme temps, nous énumeérons une famille importante
d’arbres couvrants sur les cartes cubiques.

1. Introduction

We consider lattice walks in the plane starting from the origin (0,0), remaining in the first quadrant
1,7 > 0 and made of three kind of steps: West, South and North-East. These walks were first studied
by Germain Kreweras [4] and inherited his name. A Kreweras walk ending at the origin is represented in
Figure 1.

F1GURE 1. The Kreweras walk cbceebbeaaaaabb.

These walks have remarkable enumerative properties. Kreweras proved in 1965 that the number of walks
of length 3n ending at the origin is:

(L b= T )

The original proof of this result is complicated and somewhat unsatisfactory. It was performed by guessing
the number of walks of size n ending at point (7, j). The conjectured formulas were then checked using the
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recurrence relations between these numbers. The checking part involved several hypergeometric identities
which were later simplified by Niederhausen [6]. In 1986, Gessel gave a different proof in which the guess-
ing part was reduced [3]. More recently, Bousquet-Mélou proposed a constructive proof (that is, without
guessing) of these results and some extensions [1]. Still, the simple looking formula (1.1) remained without a
direct combinatorial explanation. The problem of finding a combinatorial explanation was raised by Stanley
in [9]. One of our goals in this paper is to provide such an explanation.

Formula (1.1) for the number of Kreweras walks is to be compared to another formula proved the same
year. In 1965, Mullin, following the seminal steps of Tutte, proved via a generating function approach [5]
that the number of loopless triangulations of size n (see below for precise definitions) is

(1.2) fn = m <3: )

A bijective proof of Formula (1.2) was outlined by Schaeffer in his Ph.D thesis [7]. See also [8] for a more
general construction concerning non-separable triangulations of a k-gon. We will give an alternative bijective
proof for the number of loopless triangulations. Technically speaking, we will work instead on cubic maps
without isthmus which are the dual of loopless triangulations.

2. How the proofs work

We begin with an account of this paper’s content in order to underline the (slightly unusual) logic
structure of our proofs.

e In Section 3, we recall some definitions on rooted planar maps. Then, we define a special class of spanning
trees called depth trees. Depth trees are closely related to the trees that can be obtained by a depth first
search algorithm.

e In Section 4, we describe a bijection ® between Kreweras walks ending at the origin and cubic maps
without isthmus covered by a depth tree. As an immediate enumerative corollary, we obtain the relation

kn = dna

between the number k,, of Kreweras walks of size n ending at the origin and the number d,, of cubic maps
without isthmus of size n covered by a depth tree.

e In Section 5, we extend the mapping ® to a larger class of walks called extended Kreweras walks. These
walks (made of West, South and North-East steps) start from the origin (0,0) and remain in the half-plane
i+ 7 > 0. An extended Kreweras walk ending on the second diagonal (i.e. the line i + j = 0) is represented
in Figure 2.
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FIGURE 2. An extended Kreweras walk ending on the second diagonal

Unlike the Kreweras walks, the extended Kreweras walks are easy to count. A simple application of the cycle
lemma (see Section 5.3 of [10]) allows one to prove that the number of extended Kreweras walks of length
3n ending on the second diagonal is
4m 3n
en = .
2n+1\ n
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Then, we prove that the mapping ¢ can be generalized into a bijection between extended Kreweras
walks ending on the second diagonal and cubic maps without isthmus of size n covered by a depth tree with
a marked edge not in the tree. Since any cubic map of size n has exactly n + 1 edges not in the spanning
tree, we obtain

en = (n+ 1)d,.
As a result, we get

4m 3n
I = = <n+1><2n+1>(n)’

and recover Equation (1.1).

e In Section 6, we enumerate depth trees on cubic maps. We prove that the number of such trees for a cubic
map of size n is 2". This result implies that the number of cubic maps of size n is

dn 2m 3n
th = — = —————— :
2n (n+1D2n+ 1)\ n
Thus, we obtain a combinatorial proof of Formula (1.2).

e In Section 7, we extend the mapping ® to Kreweras walks ending at (¢,0) and discuss some open problems.

3. Definitions and notations

3.1. Kreweras walks. In the following, Kreweras walks are considered as words on the alphabet
{a,b,c}. The letter a (resp. b, ¢) corresponds to a West (resp. South, North-East) step. For instance, the
walk in Figure 1 is cbcecbbeaaaaabb. The length of a word w is denoted by |w| and the number of occurrences
of a given letter o is denoted by |w|,. Kreweras walks are the words w on the alphabet {a, b, ¢} such that
any prefix w’ of w satisfies

(3.1) [w'|y <|w'|. and  |w'|p, < W] .
Kreweras walks ending at the origin satisfy the additional constraint
(3.2) wle = |wly = |wle.

These conditions can be interpreted as a ballot problem with three candidates. This is why Kreweras walks
sometimes appear under this formulation in the literature [6].

Similarly, the extended Kreweras walks (i.e. the walks remaining in the half-plane ¢ + j > 0) are the
words w on {a,b, ¢} such that any prefix w’ of w satisfies

(3.3) W'l + W'y < 2w,
and walks ending on the second diagonal satisfy the additional constraint
(3.4) (wla + wly = 2|wle.

Note that the length of any walk ending on the second diagonal is a multiple of 3. The size of such a
walk of length 3n is n. Note also that a walk ending at point (7,0) has a length of the form | = 3n + 2i where
n is a non-negative integer. A Kreweras walk of length | = 3n + 2i ending at (¢,0) has size n.

3.2. Cubic maps. We recall some definitions about planar maps. A planar map, or map for short, is
an embedding of a connected planar graph in the sphere without intersecting edges, defined up to orientation
preserving homeomorphisms of the sphere. Loops and multiple edges are allowed. The faces are the connected
components of the complement of the graph. Each edge has two half-edges, each incident to one of the
endpoints. A map is rooted if one of its half-edges is distinguished as the root. The endpoint of the root is
the root-vertex. Graphically, the root is indicated by an arrow pointing on the root-vertex (see Figure 3).
All the maps considered in this paper are rooted and we shall not further precise it.

Our constructions lead us to consider legs, that is, half-edges that are not part of a complete edge. A
growing map is a map together with some legs, one of them being distinguished as the head. We require the
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FI1GURE 3. A rooted map.

legs to be all in the same face called head-face. The endpoint of the head is the head-vertex. Graphically,
the head is indicated by an arrow pointing away from the head-vertexz. The root of a growing map can be
a leg or a regular half-edge. For instance, the growing map in Figure 4 has 2 legs beside the head, and its
root is not a leg.

FIGURE 4. A growing map.

A map (or growing map) is cubic if any vertex has degree 3. It is k-near-cubic if the root-vertex has
degree k and any other vertex has degree 3. For instance, the map in Figure 3 is 2-near-cubic and the growing
map in Figure 4 is cubic. Observe that cubic maps are in bijection with 2-near-cubic maps not reduced to a
loop by the mapping illustrated in Figure 5.

FIGURE 5. Bijection between cubic maps and 2-near-cubic maps.

We will be interested in non-separable k-near-cubic maps. A map is separable if the edge set can be
partitioned into two non-empty parts such that exactly one vertex is incident to some edges in both parts.
It is non-separable otherwise. In particular, a non-separable map has no loop nor isthmus (i.e. edge whose
deletion disconnect the map). For cubic maps and 2-near-cubic maps it is equivalent to be non-separable or
without isthmus.

The incidence relation between vertices and edges in cubic maps shows that the number of edges is always a
multiple of 3. More generally, if M is a k-near-cubic map with e edges and v vertices, the incidence relation
reads: 3(v — 1) + k = 2e. Equivalently, 3(v — k + 1) = 2(e — 2k + 3). It can be shown that v — k + 1 is
non-negative. Hence, the number of edges has the form e = 3n + 2k — 3 where n is a non-negative integer.
We say that a k-near-cubic map has size n if it has e = 3n + 2k — 3 edges (and v = 2n + k — 1 vertices). In
particular, the mapping of Figure 5 is a bijection between cubic maps of size n (3n+3 edges) and 2-near-cubic
maps of size n + 1 (3n + 4 edges).

The cubic maps without isthmus form an important class of maps because their duals are the loopless
triangulations. Recall that the dual M* of a map M is the map obtained by putting a vertex of M* in each
face of M and an edge of M* across each edge of M.
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3.3. Depth trees. A tree is a connected graph without cycle. A subgraph T of a connected graph G is
a spanning tree if it is a tree containing every vertex of G. An edge of G is said to be internal if it is in the
spanning tree T' and external otherwise. For any pair of vertices u, v in G, there is a unique path between
u and v in the spanning tree 7. We call it the T-path between v and v.
A map (or growing map) M with a distinguished spanning tree T will be denoted by Mz. Graphically, we
shall indicate the spanning tree by thick lines as in Figure 6. A vertex u of My is an ancestor of another
vertex v if it is on the T-path between the root-vertex and v. In this case, v is a descendant of u. Two
vertices are comparable if one is the ancestor of the other. For instance, in Figure 6, the vertices u; and vy
are comparable whereas us and vy are not. A depth tree is a spanning tree such that any external edge joins
comparable vertices. Moreover, we require the edge containing the root to be external. In Figure 6, the tree
on the left side is a depth tree but the tree on the right side is not a depth tree since the edge (uq, v2) breaks
the rule. Finally, a depth-map is a map with a distinguished depth tree.

= I~

FIGURE 6. A depth tree (left) and a non-depth tree (right).

4. A bijection between Kreweras walks and cubic depth-maps

We define a bijection ® between Kreweras walks ending at the origin and 2-near-cubic depth-maps (i.e.
2-near-cubic maps with a distinguished depth tree) without isthmus. The general principle of this bijection
is to read the walk from right to left and interpret each letter as an operation for constructing the map and
the tree. We illustrated this step-by-step construction in Figure 8. The intermediary steps are tree-growing
maps, that is, growing maps together with a distinguished depth tree (indicated by thick lines).

e We start with the tree-growing map MY consisting of one vertex and two legs. One of the legs is the root,
the other is the head (see Figure 7). The spanning tree is reduced to the vertex which is both the root-vertex
and the head-vertex.

e We apply successively certain elementary mappings ¢., ©p, @ (Definition 4.1) corresponding to the letters
a, b, ¢ of the Kreweras walk read from right to left.

e When the whole walk is read, we close the tree-growing map, that is, we glue the head and the root
together as was done in Figure 9.

FIGURE 7. The tree-growing map M.

Let us enter in the details and define the bijection ®. Consider a growing map M. We make a tour of
the head-face if we follow its border in counterclockwise direction (i.e. the border of the head-face stays on
our left-hand side) starting from the head (see Figure 10). This journey induces a linear order on the legs of
M. We shall talk about the first and last legs of M. Moreover, if the root is a leg, we call left (resp. right)
the legs encountered before (resp. after) the root during the tour of the head-face. For instance, the growing
map of Figure 10 has one left leg and two right legs.

We define three mappings ¢, ©p, @ On tree-growing maps.
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FIGURE 8. Successive applications of the mappings ¢,, vp, . for the walk cbecabbaa.
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FI1GURE 9. Closing the map.

head

first leg st 1
ast leg

root

FIGURE 10. Making the tour of the head-face.

DEFINITION 4.1. Let My be a tree-growing map (the map is M and the distinguished tree is T').

e The mappings ¢, and ¢, are represented in Figure 11. The tree-growing map My, = ¢,(My) (resp.
wp(Mr7)) is obtained from My by replacing the head by an edge e together with a new vertex v incident
with the new head and another leg at its left (resp. right). The tree T’ is obtained from T by adding the
edge e and the vertex v.

e The tree-growing map o.(Mr) is only defined if the first and last legs exist (that is, if the head-face
contains some legs beside the head) and have distinct and comparable endpoints. We call these legs s and ¢
with the convention that the endpoint of s is an ancestor of the endpoint of t.

In this case, the tree-growing map M/} = ¢.(Mr) is obtained from My by gluing together the head and the
leg s while the leg ¢ becomes the new head (see Figure 12). The spanning tree T' is unchanged.

e For a word w = ajasz ... ay on the alphabet {a,b, c}, we denote by ¢,, the mapping v,, © @a, 00 g, .
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FI1GURE 11. The mappings ¢, and @p.

FIGURE 12. The mapping @..

We are now ready to define the mapping ¢ on Kreweras walks ending at the origin.

DEFINITION 4.2. Let w be a Kreweras walk ending at the origin. The image of w by the mapping ®
is the map with a distinguished spanning tree obtained by gluing together the root and the head of the
tree-growing map ., (M%).

The mapping ® has been applied to the walk cbecabbaa in Figure 8 and 9. One has to prove that this
mapping is well defined. We omit the proof in this extended abstract. However, we highlight one of the key
properties: for any suffix v’ of w, the tree-growing map ¢, (M%) has |w'|, — |w'|. left legs and |w'|, — |0’
right legs. (These quantities are non-negative by Equations (3.1) and (3.2).)

We now state the main result of this section.

THEOREM 4.3. The mapping ¥ is a bijection between Kreweras walks of size n (length 3n) ending at the
origin and 2-near-cubic depth-maps without isthmus of size n (3n + 1 edges).

COROLLARY 4.4. The number k,, of Kreweras walks of size n is equal to the number d,, of 2-near-cubic
depth-maps without isthmus of size n.

Observe that d,, is also the number of cubic depth-maps of size n — 1 without isthmus since the bijection
between cubic maps and 2-near-cubic maps represented in Figure 5 can be trivially turned into a bijection
between cubic depth-maps and 2-near-cubic depth-maps.

We omit the proof of Theorem 4.3. The general idea is to define the inverse mapping ¥. This mapping
destructs the tree-growing map that ® constructs and recover the walk. Looking at Figure 8 from bottom-
to-top and right-to-left we see how ¥ works.

5. Enumeration of Kreweras walks

Recall that extended Kreweras walks are the walks starting from the origin and remaining in the half-
plane i +j > 0. An extended Kreweras walk ending on the second diagonal (i.e. the line i + j = 0) is
represented in Figure 2. The counting of extended Kreweras walks reduces to finding the number of 1-
dimensional walks with steps +2, and -1 starting at 0 and remaining non-negative. This number is easily
found by applying the cycle lemma (see Section 5.3 of [10]). We obtain the following result:
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PROPOSITION 5.1. There are

4m 3n
5.1 n -
(5-1) ‘ 2n+1 (n)

extended Kreweras walks of size n ending on the second diagonal.

We now extend the mapping ® (Definition 4.2) into an injective mapping ®’ on extended Kreweras
walks ending on the second diagonal. The mapping ®’ returns a map with a distinguished spanning tree
and a marked external edge. In what follows, a map with a distinguished spanning tree is said marked if an
external edge is marked.

DEFINITION 5.2. Let w be an extended Kreweras walk ending on the second diagonal. The image of
w by the mapping ®’ is the map with a distinguished spanning tree obtained from the tree-growing map
ow(M?2) by gluing together the head and the unique remaining leg. The (external) edge obtained by gluing
these legs is marked.

We applied the mapping @’ to the extended Kreweras walks cabccaaaa in Figure 13. The marked edge

is dashed.
e fi Yi/ &@
L@L@L@dose ‘

FIGURE 13. The bijection ®’ on the walk cabccaaaa.

Observe that the mappings ® and ®’ coincide on Kreweras walks ending at the origin. In this case, the
marked edge is the edge containing the root.

We now state the main result of this section.

THEOREM 5.3. The mapping @' is a bijection between extended Kreweras walks of size n ending on the
second diagonal and marked 2-near-cubic depth-maps of size n without isthmus.

We will not prove Theorem 5.3 but we do explore its consequences. We know from Corollary 4.4 that the
number d,, of 2-near-cubic depth-maps without isthmus of size n is equal to the number k,, of Kreweras walks
of size n ending at the origin. Consider a 2-near-cubic map M of size n (3n+ 1 edges, 2n + 1 vertices). Since
a spanning tree T has 2n edges, there are n + 1 external edges. Therefore, there are (n + 1)d,, = (n + 1)k,
marked 2-near-cubic depth-map without isthmus. By Theorem 5.3, this is also the number e,, of extended
Kreweras walks of size n ending on the second diagonal. We know the number e,, explicitly by Proposition

5.1. Hence, we obtain (n + 1)k, = e, = 2:11 (37:‘) This result deserves to be stated as a theorem.

47’L

THEO 4. Th kp = ————
HEOREM 5 ere are CESC ES)

(3n> Kreweras walks of size n (length 3n) ending at
n

the origin.



BIJECTIVE COUNTING OF KREWERAS WALKS AND LOOPLESS TRIANGULATIONS

6. Enumerating depth trees and cubic maps

In the previous section, we exhibited a bijection &' between extended Kreweras walks ending on the
second diagonal and marked 2-near-cubic depth-maps without isthmus. As a corollary we obtained the
number of 2-near-cubic depth-maps without isthmus of size n: d,, W&m(g‘f) In this section, we
prove that any 2-near-cubic map of size n has 2" depth trees (Corollary 6.5). This implies that the number

2n

of 2-near-cubic maps of size n without isthmus is ¢, = g—g = m(?’;‘). Given the bijection between

2-near-cubic maps and cubic maps (see Figure 5), we obtain the following theorem.
211
n+1)2n+1)

By duality, ¢, is also the number of loopless triangulations with 3n edges. Hence, we recover Equation
(1.2) announced in the introduction.

3
THEOREM 6.1. There are ¢,, = < n) cubic maps without isthmus having 3n edges.
n

The rest of this section is devoted to the counting of depth trees on cubic maps and, more generally,
on cubic (potentially non-planar) graphs. We first give an alternative characterization of depth trees. This
characterization is based on the depth-first search (DFS) algorithm (see Section 23.3 of [2]). We consider
the DFS algorithm as an algorithm for constructing a spanning tree 7" of a graph.

We consider a graph G with a distinguished vertex vy. In the definition of the DFS algorithm (see
below), the subgraph T remains a tree. The vertex vy is considered as the root-vertex of the tree. Hence,
any vertex in T distinct from vy has a father in T'.

DEFINITION 6.2. Depth-first search (DFS) algorithm.

Initialization: The current vertex is vy and the tree T is reduced to vg.

Core: While the current vertex v is adjacent to a vertex not in T or is distinct from vy we do:

If there are some edges linking the current vertex v to a vertex not in 7', we choose one of them e
at random. We add e and its other endpoint v’ to the tree T. The vertex v’ becomes the current
vertex.

Else, we backtrack, that is, we set the current vertex to be the father of v in T'.

End: We return the tree 7.

It is well known that the DFS algorithm returns a spanning tree. It is also known [2] that the two
following properties are equivalent for a spanning tree T of a graph G having a distinguished vertex vg:
(i) Any external edge joins comparable vertices.
(ii) The tree T' can be obtained by a DFS algorithm on the graph G starting from vy.

Before stating the main result of this section, we need an easy preliminary lemma.

LEMMA 6.3. Let G be a connected graph with a distinguished vertex vy whose deletion does not discon-
nect the graph. Then, any spanning tree T satisfying conditions (i)—(it) has at exactly one edge incident to vg.

THEOREM 6.4. Let G be a loopless connected graph with a distinguished vertex vy whose deletion does
not disconnect the graph. Let ¢ be an edge incident to vo. If G is a k-near-cubic graph (vo has degree k and
the other vertices have degree 3) of size n (3n + 2k — 3 edges), then the number of trees containing e and
satisfying conditions (i) — (i) is 2".

Given that the depth trees are the spanning trees satisfying conditions (i) — (i7) and not containing the
root, the following corollary is immediate.

COROLLARY 6.5. For any 2-near-cubic map without isthmus of size n (3n+ 1 edges), there are 2" depth
trees.

The proof of Theorem 6.4 relies on the intuition that exactly n real binary choices have to be made
during the execution of a DFS algorithm on a k-near-cubic map of size n. However, making this intuition
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into a proof requires some work and we shall not do it here.

Remark: Theorem 6.4 shows that any k-near-cubic loopless graph of size n has k2™ trees satisfying the
conditions (i) — (7).

7. Extensions and open problems

7.1. Random generation of triangulations. We introduced the family of extended Kreweras walks
ending on the second diagonal. The random generation of such walks of length 3n (with uniform distribution)
reduces to the random generation of 1-dimensional walks of length 3n with steps +2, -1 starting and ending
at 0 and remaining non-negative. The random generation of these walks is known to be feasible in linear time.
(One just needs to generate (with uniform distribution) a word of length 3n+ 1 containing n ’+2’ and 2n+1
-1’ and to apply the cycle lemma.) Given an extended Kreweras walk w ending on the second diagonal,
the construction of the 2-near-cubic depth-map ®’(w) can be performed in linear time. Therefore, we have
a linear time algorithm for the random generation (with uniform distribution) of 2-near-cubic depth-maps
with a marked edge. For any 2-near-cubic map there are 2" depth trees and then (n + 1) possible marked
edges. Therefore, if we drop the distinguished edge and the depth tree at the end of the process, we obtain
a uniform distribution on 2-near-cubic maps without isthmus. This allows us to generate uniformly cubic
maps without isthmus or, dually, loopless triangulations in linear time.

7.2. Kreweras walks ending at (i,0) and (i + 2)-near-cubic maps. The Kreweras walks ending
at (4,0) are the words w on the alphabet {a,b,c} with |w|, + ¢ = |w|p, = |w|. such that any suffix v’ of w
satisfies |w'|, + i > |w'|. and |[w']p > |W']c.
There is a very nice formula [4] counting Kreweras walks of size n (length 3n + 2¢) ending at (,0):

(7.1) Fni = (nHinl()Q(Z;; i)% +1) (2;) (Z)m;: 2i>'

There is also a similar formula [5] for non-separable (i 4+ 2)-near-cubic maps of size n (3n + 2i + 1 edges):

(72) T inl(f(g: 41-)22' 1) (2:) (?m: %)'

In this subsection, we show that the bijection ® (Definition 4.2) can be extended to walks ending at
(4,0). This gives a bijective correspondence explaining why &, ; = 2" ¢, ;.
Consider the tree-growing map M reduced to a vertex, a root, a head and i left legs (Figure 14). We
define the image of a Kreweras walk w ending at (i,0) as the map obtained by closing ¢, (M}). We get the
following extension of Theorem 4.3.

FIGURE 14. The tree-growing map M when i = 3.

THEOREM 7.1. The mapping ¥ is a bijection between Kreweras walks of size n (length 3n+2i) ending at
(i,0) and non-separable (i + 2)-near-cubic maps of size n (3n+ 2i+ 1 edges) with a depth tree that contains
the edge following the root in counterclockwise order around the root-verter.

By Theorem 6.4, there are 2" such trees. Consequently, we obtain the following corollary:

COROLLARY 7.2. The number k,; of Kreweras walks of size n ending at (i,0) and the number c¢; of
non-separable (i + 2)-near-cubic maps of size n are related by the equation ky; = 2"c, ;.
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One can define the counterpart of extended Kreweras walks in the case of walks ending at (i,0). These
are the words obtained when one chooses an external edge (in a non-separable (i + 2)-near-cubic depth-map
such that the edge following the root is in the tree) and applies the mapping ¥’ which is the inverse of ¢'.
We have no simple characterization of this set of words. However, it would be interesting to find a bijective

4"(2i+1 2¢\ (3n + 2i
proof that this set has size L ,Z nhe . We were not able to solve this problem yet.
2n+2i+1)\ ¢ n
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