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Area of Catalan Paths on a Checkerboard
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Abstract. It is known that the area of all Catalan paths of length n is equal to 4n−
`

2n+1

n

´

, which coincides
with the number of inversions of all 321-avoiding permutations of length n + 1. In this paper, a bijection
between the two sets is established. Meanwhile, a number of interesting bijective results that pave the way
to the required bijection are presented.

Résumé. Le fait que la somme des surfaces des chemins Catalan de longueur n est égale à 4n −
`

2n+1

n

´

, ce
qui est aussi le nombre d’inversions dans toutes les permutations de longueur n + 1 qui évitent le motif 321,
est bien connu. Nous présentons dans cet article une bijection entre ces deux ensembles. Pour ce faire, nous

établissons plusieurs résultats bijectifs intermédiaires intéressants.

1. Introduction

Among many other combinatorial structures, the nth Catalan number cn = 1
n+1

(
2n
n

)
enumerates the

number of lattice paths, called Catalan paths of length n, in the plane Z×Z from (0, 0) to (n, n) using north
steps (0, 1) and east steps (1, 0) that never pass below the line y = x. Let Cn denote the set of Catalan
paths of length n. A Catalan path is said to be elevated if it remains strictly above the line y = x except at
the start and end points. The area of a Catalan path is defined to be the number of triangles of the region
enclosed by the path and the line y = x. For example, the area of the path shown in Figure 1 is 13. In [8],
Merlini et al. derived that the area an of all Catalan paths of length n is an = 4n −

(
2n+1

n

)
, which is also

equal to
∑n

k=1 4n−kck as shown in [15]. Shapiro et al. proved that the area of all elevated Catalan paths
of length n is 4n−1 [11]. There is other literature concerning the area and moments of Catalan paths (e.g.,
[3, 6, 9]).

A permutation σ = σ1 · · ·σn of {1, . . . , n}, where σi = σ(i), is called a 321-avoiding permutation of

length n if there are no integers i < j < k such that σi > σj > σk (i.e., every decreasing subsequence is of
length at most two). Let Sn(321) denote the set of 321-avoiding permutations of length n. A pair (σi, σj) is
called an inversion of σ if i < j and σi > σj . What catches our attention is that, as reported by Deutsch in
[13, A008549], the number sequence {an}n≥0 = {0, 1, 6, 29, 130, 562, . . .} counts the number of inversions of
all 321-avoiding permutations of length n + 1. The main purpose of this paper is to establish a bijection Πn

between the set of triangles under all Catalan paths of length n and the set of inversions of all 321-avoiding
permutations of length n + 1. The bijection is composed of two major stages (see Theorems 1.1 and 1.2).

To resolve this problem, we color the unit squares in the plane Z×Z in black and white like a checkerboard.
A unit square B is colored black if the upper left corner (i, j) of B satisfies the condition that i + j is odd,
and white otherwise. For example, there are 1 black square and 3 white squares under the path shown in
Figure 1. An intriguing observation is that the number of white squares under all Catalan paths of length
n + 1 is also equal to an (see Theorem 2.1). As the first stage of Πn, the following bijection is one of the
major results in this paper.

Theorem 1.1. There is a bijection between the set of triangles under all Catalan paths of length n and

the set of white squares under all Catalan paths of length n + 1.
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Figure 1. A Catalan path of length 5.

For the second stage of Πn, we employ a variant of parallelogram polyominoes to establish the following
bijection Ψn : Cn → Sn(321), which is different from the one given by Billy et al. [2, page 361].

Theorem 1.2. There is a bijection Ψn between the set Cn of Catalan paths of length n and the set

Sn(321) of 321-avoiding permutations of length n such that there is a one-to-one correspondence between the

white squares under a path π ∈ Cn and the inversions of Ψn(π) ∈ Sn(321).

We organize this paper as follows. Regarding the plane as a checkerboard, we enumerate the black and
white squares under Catalan paths in Section 2. The proofs of Theorems 1.1 and 1.2 are given in Sections
3 and 4, respectively. Finally, some enumerative results for variants of parallelogram polyominoes are given
in Section 5.

2. Area of Catalan paths on a checkerboard

In this section, we shall enumerate the black and white squares under all Catalan paths of length n by
the method of generating functions. The generating function C = C(z) =

∑
n≥0 cnzn for Catalan numbers

{cn}n≥0 satisfies the equation C = 1 + zC2. Another useful fact is [zn]Ct = t
2n+t

(
2n+t

n

)
, which is known as

the ballot number [4, p. 21]. Let N and E denote a north step and an east step, respectively. A block of a
Catalan path is a section of the form NµE, where N is a north step leaving the line y = x, E is the first east
step returning to the line y = x afterward, and µ is a Catalan path of certain length (possibly empty). A
peak (resp. valley) of a path is formed by a consecutive NE (resp. EN) pair.

Theorem 2.1. For n ≥ 2, the following results hold.

(i) The number of white squares under all Catalan paths of length n is 4n−1 −
(
2n−1
n−1

)
.

(ii) The number of black squares under all Catalan paths of length n is 4n−1 −
(

2n
n−1

)
.

(iii) The number of white squares under all elevated Catalan paths of length n is 4n−2.

Proof. Let fn,k (resp. gn,k) denote the number of paths π ∈ Cn with k white squares (resp. black
squares) under π. Define the generating functions F (t, z) =

∑
n,k≥0 fn,ktkzn, and G(t, z) =

∑
n,k≥0 gn,ktkzn.

Taking partial derivative with respect to t and then setting t = 1, we have
(

∂F (t,z)
∂t

)

t=1
=

∑
n≥0

(∑
k≥0 kfn,k

)
zn

and
(

∂G(t,z)
∂t

)

t=1
=

∑
n≥0

(∑
k≥0 kgn,k

)
zn, which are the generating functions for the numbers in (i) and

(ii), respectively.
A non-trivial path π ∈ Cn has a factorization π = NµEν, where E is the first east step that returns to the

line y = x, and µ and ν are Catalan paths of certain lengths (possibly empty). Since, in the elevated path
NµE, the black squares under µ become white and vice versa, we observe that the number of white squares
under the first block NµE of π is equal to the sum of the number of black squares under µ and the length
of µ. Moreover, the number of black squares under the first block NµE of π is equal to the number of white
squares under µ. Hence F (t, z) and G(t, z) satisfy the following equations.

(2.1)






F (t, z) = 1 + zG(t, tz)F (t, z),

G(t, z) = 1 + zF (t, z)G(t, z).
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Let F ′ =
(

∂F (t,z)
∂t

)

t=1
and G′ =

(
∂G(t,z)

∂t

)

t=1
. Taking partial derivative with respect to t, setting t = 1, and

taking into account that F (1, z) = G(1, z) = C(z), we have

(2.2)






F ′ = z((G′ + C′z)C + F ′C),

G′ = z(F ′C + G′C).

Since C = 1 + zC2, 1 − zC = 1
C

and C′ = C2 + 2zCC′. Solving (2.2) with C = 1−
√

1−4z
2z

, we have

F ′ =
z2C′

1 − 2zC
=

1 − 2z −
√

1 − 4z

2(1 − 4z)
, and G′ = F ′ − z2CC′ = F ′ − z

2
(C′ − C2).

It follows that

[zn]F ′ =
1

2
[zn]

1

1 − 4z
− [zn−1]

1

1 − 4z
− 1

2
[zn]

1√
1 − 4z

= 4n−1 −
(

2n − 1

n − 1

)
,

and

[zn]G′ = [zn]F ′ − 1

2
[zn−1]C′ +

1

2
[zn−1]C2 = 4n−1 −

(
2n

n − 1

)
.

Hence (i) and (ii) follow.
Let hn,k denote the number of elevated Catalan paths τ of length n with k white squares under τ ,

and let H(t, z) =
∑

n,k≥0 hn,ktkzn. We observe that H(t, z) satisfies the equation H(t, z) = zG(t, tz).

Let H ′ =
(

∂H(t,z)
∂t

)

t=1
. By the same method as above, we have H ′ = z(G′ + C′z). Hence [zn]H ′ =

[zn−1]G′ + [zn−2]C′ = 4n−2, and (iii) follows. �

Similarly, the area of a Catalan path is partitioned into regions of the four types: white up-triangles,
white down-triangles, black up-triangles, and black down-triangles. For example, the area of the path in
Figure 1 consists of 3 white up-triangles, 3 white down-triangles, 6 black up-triangles, and 1 black down-
triangle. The following corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2. Among the area of all Catalan paths of length n, there are

(i) 4n−1 −
(
2n−1
n−1

)
white up-triangles,

(ii) 4n−1 −
(
2n−1
n−1

)
white down-triangles,

(iii) 4n−1 black up-triangles, and

(iv) 4n−1 −
(

2n
n−1

)
black down-triangles.

Proof. It is clear that (i) and (ii) are equivalent to Theorem 2.1(i), and that (iv) is equivalent to
Theorem 2.1(ii). Note that the number of black up-triangles under a path π ∈ Cn is equal to the number of
white squares under the elevated path NπE ∈ Cn+1. Hence (iii) follows from Theorem 2.1(iii). �

Remarks: In [1, page 6], Barcucci et al. derived that the generating function for the number of inversions

of all 321-avoiding permutations of length n is 1−2z−
√

1−4z
2(1−4z) . Corollary 2.2(iii) has appeared in [15, Theorem

A], which is obtained by making use of an enumerative result on parallelogram polyominoes in [11].

3. Proof of Theorem 1.1

Let Tn denote the set of ordered pairs (A, π), where π ∈ Cn and A is a triangle under π, and let Wn+1

denote the set of ordered pairs (B, τ), where τ ∈ Cn+1 and B is a white square under τ . In this section, we
shall establish a bijection Φn : Tn → Wn+1. Let Tn be partitioned into the following four subsets.

T1(n) = {(A, π) ∈ Tn| A is a black up-triangle under π},
T2(n) = {(A, π) ∈ Tn| A is a white up-triangle under π},
T3(n) = {(A, π) ∈ Tn| A is a white down-triangle under π},
T4(n) = {(A, π) ∈ Tn| A is a black down-triangle under π}.
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For any (A, π) ∈ T1(n) ∪ T2(n) (i.e., A is an up-triangle), A is said to be at position (i, j) if the upper left
corner of A is (i, j), and A is said to be on the line L : x+ y = i + j. For each up-triangle A, the top triangle

of A is the up-triangle Â to the northwest of A at the intersection of π and L.
On the other hand, for any (B, τ) ∈ Wn+1, B is said to be at position (i, j) if the upper left corner of

B is (i, j), and B is said to be on the line L : x + y = i + j (note that i + j is even). For each white square

B, the top box of B is the white square B̂ to the northwest of B at the intersection of τ and L. Moreover,

we say that B̂ is falling if the top edge of B̂ coincides with an east step of τ , and rising otherwise. For any
(B, τ) ∈ Wn+1, B is called a downhill square (resp. uphill square) of τ if the top box of B is falling (resp.
rising). Let Wn+1 be partitioned into the following four subsets.

W1(n + 1) = {(B, τ) ∈ Wn+1| B is a downhill square in the first block of τ},
W2(n + 1) = {(B, τ) ∈ Wn+1| the first block β of τ is of length 1, i.e., β = NE},
W3(n + 1) = {(B, τ) ∈ Wn+1| B is an uphill square in the first block of τ},
W4(n + 1) = {(B, τ) ∈ Wn+1| the first block β of τ is of length > 1, and B is not in β}.

For each i (1 ≤ i ≤ 4), we shall establish a bijection Φn,i : Ti(n) → Wi(n + 1) (see Propositions 3.1-3.4).
Then Φn is established by the refinement Φn|Ti(n) = Φn,i, for 1 ≤ i ≤ 4, and hence Theorem 1.1 is proved.

Proposition 3.1. There is a bijection Φn,1 between T1(n) and W1(n + 1).

Proof. Given a pair (A, π) ∈ T1(n), say A is at (i, j), we have i+ j = 2h−1, for some h (h ≥ 1). Let Â

be the top triangle of A. We factorize π as π = µν, where µ goes from the origin to the upper left corner of Â,
and ν is the remaining part of π. Define a mapping Φn,1 that carries (A, π) into Φn,1((A, π)) = (B, τ), where
τ = NµEν ∈ Cn+1 (i.e., with a north step N attached to the beginning and an east step E inserted between

µ and ν) and B is the white square at (i, j + 1). Note that the top box B̂ of B is at the end point of µ, and

that E is the top edge of B̂. Hence B̂ is a falling box and B is downhill. Hence Φn,1((A, π)) ∈ W1(n + 1).

To find Φ−1
n,1, given a pair (B, τ) ∈ W1(n + 1), say B is at (i, j), we have i + j = 2h′, for some h′.

Since B is a downhill square, the top box B̂ of B is a falling box. We factorize τ as τ = NµEν, where N is

the first step of τ , E is the top edge of B̂, µ is the section between N and E, and ν is the remaining part
of τ . Since B is in the first block of τ , µ remains above the line y = x + 1 and hence µν ∈ Cn. Hence
Φ−1

n,1((B, τ)) = (A, π) ∈ T1(n), where π = µν and A is the black up-triangle at (i, j − 1). �

For example, on the left of Figure 2 is a pair (A, π) ∈ T1(9), where A is at (2, 5). The top triangle Â of

A in π is at (1, 6). Note that A is the second up-triangle on the line x + y = 7 from Â. The corresponding

pair Φ9,1((A, π)) = (B, τ) ∈ W1(10) is shown on the right of Figure 2, where B is at (2, 6) and B̂ is at (1, 7).

Note that B is the second square on the line x + y = 8 from B̂.

E

A

N

A
V

B
B

Figure 2. A pair (A, π) ∈ T1(9) and the corresponding pair Φ9,1((A, π)) = (B, τ) ∈ W1(10).

Proposition 3.2. There is a bijection Φn,2 between T2(n) and W2(n + 1).

Proof. Given a pair (A, π) ∈ T2(n), say A is at (i, j), we have i + j = 2h, for some h (h ≥ 1). Define
a mapping Φn,2 : T2(n) → W2(n + 1) that carries (A, π) into Φn,2((A, π)) = (B, τ) ∈ W2(n + 1), where

τ = NEπ ∈ Cn+1 and B is the white square at (i + 1, j + 1). It is easy to find Φ−1
n,2 by a reverse process. �



CATALAN PATHS ON A CHECKERBOARD

For example, on the left of Figure 3 is a pair (A, π) ∈ T2(9), where A is at (4, 6). The corresponding
pair Φ9,2((A, π)) = (B, τ) ∈ W2(10) is shown on the right of Figure 3, where B is at (5, 7).

N

E

B
BA

V
A

Figure 3. A pair (A, π) ∈ T2(9) and the corresponding pair Φ9,2((A, π)) = (B, τ) ∈ W2(10).

Proposition 3.3. There is a bijection Φn,3 between T3(n) and W3(n + 1).

Proof. Given a pair (V, π) ∈ T3(n), say the lower right corner of V is (i, j), we have i + j = 2h, for
some h (h ≥ 1). Let A be the white up-triangle at (i − 1, j + 1). Clearly, (A, π) ∈ T2(n). We shall use the
mapping Φn,2 given in Proposition 3.2 as an intermediate stage to establish Φn,3.

Let Φn,2((A, π)) = (B, τ) ∈ W2(n + 1). Then B is at (i, j + 2). Let B̂ be the top box of B in τ , and let

B be the kth square on the line L : x + y = i + j + 2 from B̂, for some k. We factorize τ as τ = NEµβν,
where NE is the first block of τ , β is the block containing B, µ is the section between the first block and
β, and ν is the remaining part of τ . Moreover, β is further factorized as β = αγ, where α goes from the

beginning of β to the upper left corner of B̂, and γ is the remaining part of β. Let pα denote the end point

of α. Define a mapping Φn,3 that carries (V, π) into Φn,3((V, π)) = (C, ω), where ω = αNµEγν, Ĉ is the top

box at pα in ω, and C is the kth square from Ĉ. Since α is followed by a north step, Ĉ is a rising box and
C is uphill. Moreover, C is in the first block αNµEγ of ω. Hence Φn,3((V, π)) ∈ W3(n + 1).

To find Φ−1
n,3, given a pair (C, ω) ∈ W3(n+1), say C is at (i, j), we have i+j = 2h′, for some h′. Let Ĉ be

the top box of C in ω, say Ĉ is at (i′, j′), and let C be the k′th square on the line x+ y = 2h′ from Ĉ. First,
we factorize ω as ω = βν, where β is the first block of ω, and ν is the remaining part of ω. Since C is an uphill

square in β, Ĉ is a rising box and β has a factorization β = αNµEγ, where α goes from the origin to the

upper left corner of Ĉ, E is the first step after Ĉ that returns to the line y = x+j′−i′, and γ is the remaining

part of β. Let pα denote the end point of α. Locate the pair (B, τ), where τ = NEµαγν, B̂ is the top box

at pα in τ , and B is the k′th square from B̂. Since the first block of τ is of length 1, (B, τ) ∈ W2(n + 1).
Let Φ−1

n,2((B, τ)) = (A, π) ∈ T2(n). Then we retrieve the required pair Φ−1
n,3((C, ω)) = (V, π) ∈ T3(n) from

(A, π), where V is the white down-triangle that shares an edge with A. �

For example, given the pair (V, π) ∈ T3(9) shown on the left of Figure 3, where the lower right corner
of V is (5, 5). Let A be the white up-triangle at (4, 6). The intermediate pair Φ9,2((A, π)) = (B, τ) is shown
on the left of Figure 4. Factorize τ as τ = NEµβν, where N = 1, E = 2, µ = (3, . . . , 8), β = (9, . . . , 18), and
ν = (19, 20). Moreover, β is further factorized as β = αγ, where α = (9, 10, 11, 12) and γ = (13, . . . , 18). The
corresponding pair Φ9,3((V, π)) = (C, ω) ∈ W3(10) is shown on the right of Figure 4, where ω = αNµEγν,
and C is at (1, 3).

Proposition 3.4. There is a bijection Φn,4 between T4(n) and W4(n + 1).

Proof. Given a pair (V, π) ∈ T4(n), say the lower right corner of V is (i, j), we have i + j = 2h + 1,
for some h (h ≥ 1). Let A be the up-triangle at (i − 1, j + 1). Clearly, (A, π) ∈ T1(n). We shall use the
mapping Φn,1 given in Proposition 3.1 as an intermediate stage to establish Φn,4. Let Φn,1((A, π)) = (B, τ) ∈
W1(n + 1). Then B is at (i − 1, j + 2). Let B̂ be the top box of B in τ , and let B be the kth square on the

line L : x + y = i + j + 1 from B̂, for some k. Since B is at (i − 1, j + 2) and j > i, B is above the line
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1
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Figure 4. The pairs Φ9,2((A, π)) = (B, τ) ∈ W2(10) and Φ9,3((V, π)) = (C, ω) ∈ W3(10) that are
associated with the pairs (A, π) ∈ T2(9) and (V, π) ∈ T3(9) shown on the left of Figure 3.

y = x + 2. First, we factorize τ as τ = βν, where β is the first block of τ and ν is the remaining part of τ .

Next, β is further factorized as β = NNµ1µ2, where µ1 goes from (0, 2) to the first step after B̂ that returns
to the line L2 : y = x + 2, and µ2 is the remaining part of β. Form a new path β′ = NNµ2µ1 from β by
switching µ1 and µ2. Note that NNµ2 is the first block of β′, and that B is in µ1. Moreover, the section µ1

of β′ might have a valley on the line L1 : y = x − 1 (in front of B̂). There are two cases.
Case I. µ1 has no valley on the line L1. We define a mapping Φn,4 that carries (V, π) into Φn,4((V, π)) =

(C, ω), where ω = β′ν = NNµ2µ1ν, and C is the white square B in µ1. Since the first block NNµ2 is of
length at least 2, Φn,4((V, π)) ∈ W4(n + 1). It is worth mentioning that C is a downhill square since B is
downhill in µ1.

Case II. µ1 has at least one valley on the line L1. Then we factorize µ1 as µ1 = λENαγ, where EN

is the last valley on the line L1, α goes from the end point of N to the upper left corner of B̂, and γ is
the remaining part of µ1. Let pα be the end point of α. The mapping Φn,4 is then defined by carrying

(V, π) into Φn,4((V, π)) = (C, ω), where ω = NNµ2αNλEγν, Ĉ is the top box at pα in ω, and C is the kth

square from Ĉ. Since the first block NNµ2 of ω is of length at least 2 and since C is not in the first block,

Φn,4((V, π)) ∈ W4(n + 1). Note that, since α is followed by a north step, Ĉ is a rising box and C is uphill.

To find Φ−1
n,4, given a pair (C, ω) ∈ W4(n +1), say C is at (i, j), for some i ≥ 2, j ≥ 4. First, we factorize

ω as ω = NNµ2βν, where NNµ2 is the first block of ω, β is the section that ends with the block containing
C, and ν is the remaining part of ω. There are two cases.

Case i. C is a downhill square. We locate the pair (B, τ), where τ = NNβµ2ν, and B is the square C

in β. We observe that B is a downhill square in the first block NNβµ2 of ω. Hence (B, τ) ∈ W1(n + 1).

Case ii. C is an uphill square. The top box Ĉ of C in β is a rising box, say Ĉ is at (i′, j′). Let C be the

k′th square on the line x + y = i + j from Ĉ. We further factorize β as β = αµ1Eγ, where α goes from the

beginning of β to the upper left corner of Ĉ, E is the first east step that goes from the line y = x + j′ − i′ to

the line y = x + j′ − i′ − 1, and γ is the remaining part of β. Let pα denote the end point of α. Since Ĉ is
a rising box, µ1 starts with a north step. Factorize µ1 as µ1 = NλE, and let µ′

1 = λEN. We locate the pair

(B, τ), where τ = NNµ′
1αEγµ2ν, B̂ is the top box at pα in τ , and B is the k′th square from B̂. Since α is

followed by an east step, B̂ is a falling box and B is a downhill square in the first block NNµ′
1αEγµ2 of τ .

Hence (B, τ) ∈ W1(n + 1).
For both cases, let Φ−1

n,1((B, τ)) = (A, π) ∈ T1(n). Then we retrieve the required pair Φ−1
n,4((C, ω)) =

(V, π) ∈ T4(n) from (A, π), where V is the black down-triangle that shares an edge with A. �

For example, given the pair (V, π) ∈ T4(9) shown on the left of Figure 2, where the lower right corner
of V is (3, 4). Let A be the up-triangle at (2, 5). The intermediate pair Φ9,1((A, π)) = (B, τ) ∈ W1(10) is
shown on the left of Figure 5. First, factorize τ = βν, where β = (1, . . . , 18) and ν = (19, 20). Next, β

is further factorized as β = N1N2µ1µ2, where N1 = 1, N2 = 2, µ1 = (3, . . . , 14) and µ2 = (15, 16, 17, 18).
Let β′ = N1N2µ2µ1. On the right of Figure 5 is the path β′ν. We observe that N1N2µ2 is the first
block of β′, and that µ1 has no valley on the line L1 : y = x − 1. Hence we have the corresponding pair
Φ9,4((V, π)) = (C, ω) ∈ W4(10), where ω = β′ν = N1N2µ2µ1ν and C is at (5, 7).
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Figure 5. The pairs Φ9,1((A, π)) = (B, τ) ∈ W1(10) and Φ9,4((V, π)) = (C, ω) ∈ W4(10) that are
associated with the pairs (A, π) ∈ T1(9) and (V, π) ∈ T4(9) shown on the left of Figure 2.

For the latter case, consider the pair (V, π) ∈ T4(11) shown on the left of Figure 6, where the lower right
corner of V is (7, 8). Let A be the up-triangle at (6, 9). The intermediate pair Φ11,1((A, π)) = (B, τ) ∈ W1(12)
is shown on the right of Figure 6. First, τ is factorized as τ = βν, where β = (1, . . . , 22) and ν = (23, 24).
Next, β is factorized as β = N1N2µ1µ2, where µ1 = (3, . . . , 18) and µ2 = (19, 20, 21, 22). Let β′ = N1N2µ2µ1.
On the left of Figure 7 is the path β′ν. We observe that N1N2µ2 is the first block of β′, and that µ1

has two valleys on the line L1 : y = x − 1. Hence µ1 is further factorized as µ1 = λE3N3αγ, where
E3 = 11 and N3 = 12 form the last valley on the line L1 of µ1, λ = (3, . . . , 10), α = (13, 14, 15, 16), and
γ = (17, 18). With N3 moved in front of λ, we have N3λE3 = (12, 3, 4, . . . , 11). The corresponding pair
Φ11,4((V, π)) = (C, ω) ∈ W4(12) is shown on the right of Figure 7, where ω = N1N2µ2αN3λE3γν and C is at
(4, 6).
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Figure 6. A pair (V, π) ∈ T4(11) and the corresponding pair Φ11,1((A, π)) = (B, τ) ∈ W1(12).

4. Proof of Theorem 1.2

In this section, making use of a variant of parallelogram polyominoes, we shall prove Theorem 1.2 in two
stages (see Propositions 4.1 and 4.3).

A shortened polyomino is formed by a pair (P, Q) of paths using north steps (0, 1) and east steps (1, 0)
that start from the origin, end in a common point, and satisfy the following conditions

(H1) P never goes below Q, and
(H2) there are no north steps of P and Q overlapped.

The perimeter of a polyomino is twice of the length of its paths, and its area is the number of unit squares
enclosed. As another occurrence of Catalan numbers, it is known that the number of shortened polyominoes
of perimeter 2n is cn (see [7, Section 5]). The shortened polyominoes of perimeter 6 are shown in Figure 8.
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Figure 7. The intermediate path β′ν and the corresponding pair Φ11,4((V, π)) = (C, ω) ∈ W4(12).

Making use of a similar argument to the one in [15, Theorem A], we prove the following proposition. Here,
the end point of a step is said to be at level h if it is on the line y = x + h, for some integer h.

Figure 8. The shortened polyominoes with perimeter 6.

Proposition 4.1. There is a bijection Ωn between the set Cn of Catalan paths of length n and the set

Hn of shortened polyominoes of perimeter 2n such that there is a one-to-one correspondence between the

white squares under a path ω ∈ Cn and the squares in Ωn(ω) ∈ Hn.

Proof. Given a path ω ∈ Cn, let P (resp. Q) be the path formed by the even steps (resp. odd steps) of
ω, and let Q∗ be the path obtained from Q by interchanging north steps and east steps. Define a mapping
Ωn by carrying ω into Ωn(ω) = (P, Q∗). Let P = p1 · · · pn and Q∗ = q1 · · · qn. Clearly, P and Q∗ have
the same number of north steps (as well as east steps), and P always remains above Q∗ since the distance
between the end points of pi and qi (1 ≤ i ≤ n) is one half of the level of the end point of pi in ω. Moreover,
whenever two steps in (P, Q∗) overlap, they are east steps since their corresponding steps in ω form a peak
at level 1. Hence Ωn(ω) ∈ Hn. To find Ω−1

n , it is simply to reverse the procedure.
We observe that each white square under ω is on the line x + y = 2h, for some h (1 ≤ h ≤ n − 1), and

that the number of white squares under ω on the line x + y = 2h is equal to the number of squares on the
line x + y = h in Ωn(ω). Hence there is a one-to-one correspondence between the set of white squares under
ω and the set of squares in Ωn(ω) such that the kth square on the line x + y = 2h from its top box under ω

corresponds to the kth square on the line x + y = h (from upper left to lower right) in Ωn(ω). �

We remark that the actual distance between the end points of pi and qi in (P, Q∗) has a factor
√

2, but
we omit it.

For example, given the pair (C, ω) ∈ W10 shown on the right of Figure 5. The shortened polyomino
Ω10(ω) = (P, Q∗) is shown on the left of Figure 9, where P = NNEENNENEE consists of the even steps of ω

and Q∗ = ENNEEENNNE is obtained from the odd steps Q = NEENNNEEEN of ω by interchanging north
steps and east steps. The white square C under ω is carried into the square D in Ω10(ω).

Let us turn to the second half of the proof of Theorem 1.2. Let Sn be the set of permutations of
[n] := {1, . . . , n}. We write σ = σ1 · · ·σn ∈ Sn, where σi = σ(i). For a σ ∈ Sn, an excedance (resp. weak

excedance) of σ is an integer i ∈ [n − 1] such that σi > i (resp. σi ≥ i). Here the element σi is called
an excedance letter (resp. weak excedance letter). Non-weak excedances and non-weak excedance letters are
defined in the obvious way, in terms of i and σi, such that σi < i. Let E(σ) be the set of excedances of σ,
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and let inv(σ) be the number of inversions of σ. The following characterization of 321-avoiding permutations
was given by R. Simion [12, Lemma 5.6] (see also [10, Proposition 2.3]).

Lemma 4.2. A permutation σ is 321-avoiding if and only if

inv(σ) =
∑

k∈E(σ)

(σk − k).

Proposition 4.3. There is a bijection Υn between the set Hn of shortened polyominoes of perimeter 2n

and the set Sn(321) of 321-avoiding permutations of length n such that there is a one-to-one correspondence

between the squares in a polyomino (P, Q) ∈ Hn and the inversions of Υn((P, Q)) ∈ Sn(321).

Proof. Given a shortened polyomino (P, Q) ∈ Hn, let P = p1 · · · pn and Q = q1 · · · qn. Let the
steps p1, . . . , pn of P be labeled from 1 to n. For each i (1 ≤ i ≤ n), we assign the ith step qi of Q the
label zi of the opposite step across the polyomino. The mapping Υn is defined by carrying (P, Q) into
Υn((P, Q)) = z1 · · · zn. Since the labels of the north steps (resp. east steps) of Q are increasing, every
decreasing subsequence of Υn((P, Q)) is of length at most two. Hence Υn((P, Q)) ∈ Sn(321).

To find Υ−1
n , we shall retrieve a shortened polyomino Υ−1

n (σ) for any σ = σ1 · · ·σn ∈ Sn(321). Let
{j1, . . . , jt} be the set of weak excedances of σ (i.e., σ(ji) ≥ ji, for 1 ≤ i ≤ t). For each i (1 ≤ i ≤ t), put
an east step Ei at height y = σ(ji) − i as the top of the ith column of Υ−1

n (σ). The upper path of Υ−1
n (σ)

goes from (0, 0) to the end point of Et containing E1, . . . , Et. On the other hand, for each i (1 ≤ i ≤ t), put
an east step E

′
i at height y = ji − i as the bottom of the ith column of Υ−1

n (σ). The lower path of Υ−1
n (σ)

goes from (0, 0) to the end point of Et containing E
′
1, . . . , E

′
t. Since σ(ji) ≥ ji ≥ i (1 ≤ i ≤ t), Υ−1

n (σ) ∈ Hn

is well-defined.
Note that there are σ(ji) − ji squares in the ith column of Υ−1

n (σ), and that, by Lemma 4.2, inv(σ) =∑t

i=1(σ(ji)−ji). Hence the number of inversions of σ is equal to the number of squares in Υ−1
n (σ). Moreover,

the columns (resp. rows) of Υ−1
n (σ) are labeled with weak excedance letters (resp. non-weak excedance

letters) increasingly. Since each square D in Υ−1
n (σ) is the intersection of the column with label σi and

the row with label σj , for some excedance i and non-weak excedance j, there is one-to-one correspondence
between the squares in Υ−1

n (σ) and the inversions of σ such that D is carried into the inversion (σi, σj). �

For example, in Figure 9, the labeling of the shortened polyomino (P, Q∗) on the left is shown in the
center. The corresponding permutation σ = Υ10((P, Q∗)) = 312479568a (a = 10) can be obtained from the
labeling of the lower path Q∗. Note that the square D in (P, Q∗) is carried into the inversion (σ6, σ7) = (9, 5)
of Υ10((P, Q∗)). To show Υ−1

10 (σ), note that the weak excedances of σ are {1, 4, 5, 6, 10}, i.e., σ1 = 3, σ4 = 4,

σ5 = 7, σ6 = 9, and σ10 = 10. The east steps on the upper path and lower path of Υ−1
10 (σ) are shown on the

right of Figure 9.
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Figure 9. The shortened polyomino Ω10(ω) associated with the path ω ∈ C10 in Figure 5, and its labeling.

By the composition Ψn = Υn ◦Ωn, Theorem 1.2 is proved. Hence, by Theorems 1.1 and 1.2, we establish
the required bijection between the area of all Catalan paths of length n and the inversions of all 321-avoiding
permutations of length n + 1.
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5. Some enumerative results for parallelogram polyominoes

In the previous section, we introduced a variant of parallelogram polyominoes, called shortened poly-
ominoes. A parallelogram polyomino is a pair of non-intersecting paths that starts from the origin and ends
in a common point. A shrunk polyomino is a pair of paths that start from the origin and end in a common
point such that one path never goes below the other. In fact, a shortened polyomino of perimeter 2n can be
obtained from a parallelogram polyomino (P, Q) of perimeter 2n + 2 by deleting the initial (north) step of
the upper path P and deleting the final (north) step of the lower path Q. Moreover, a shrunk polyomino of
perimeter 2n − 2 can be obtained from a shortened polyomino (P ′, Q′) of perimeter 2n by further deleting
the final (east) step of the upper path P ′ and deleting the first (east) step of the lower path Q′. Figure 10
shows polyominoes of the three types for the case of n = 3. Refer also to [14, Exercise 6.19(l)(m)].

Figure 10. The polyominoes of three kinds for the case n = 3.

A bijection Ω′
n between Catalan paths of length n and parallelogram polyominoes of perimeter 2n + 2

can be obtained from the bijection Ωn in Proposition 4.1 as follows. Given a path ω ∈ Cn, let (P, Q∗) =
Ωn(ω) ∈ Hn be the corresponding shortened polyomino. The bijection Ω′

n is defined by Ω′
n(ω) = (NP, Q∗

N),
which is obtained from Ωn(ω) with a north step attached to the beginning of the upper path and a north
step attached to the end of the lower path. We remark that this bijection is different from the one given by
Delest and Viennot in [5, Section 4] and the one given by Reifegerste in [10, Theorem 3.10]. The following
proposition is also an immediate consequence of the bijection Ωn.

Proposition 5.1. There is a bijection Θn between the set Cn of Catalan paths of length n and the set

Rn of shrunk polyominoes of perimeter 2n − 2 such that there is a one-to-one correspondence between the

black squares under a path π ∈ Cn and the squares in Θn(π) ∈ Rn.

Proof. Given a path π ∈ Cn, consider the shortened polyomino Ωn(π) = (P, Q∗) under the mapping
Ωn in Proposition 4.1. Let P = p1 · · · pn and Q∗ = q1 · · · qn. There is an immediate bijection Θn : Cn → Rn

that carries π into Θn(π) = (P ′, Q∗′) ∈ Rn, where P ′ = p1 · · · pn−1 and Q∗′ = q2 · · · qn. Moreover, the
number of black squares under π on the line x+ y = 2h+1, (1 ≤ h ≤ n− 2) is equal to the distance between
the end points of ph and qh+1 in (P ′, Q∗′). Hence there is a one-to-one correspondence between the black
squares under π and the squares in Θn(π). �

The following bijective result can be obtained by the same argument as in the proof of Proposition 4.1,
which appeared implicitly in [15, Theorem A].

Proposition 5.2. There is a bijection Λn between the set En of elevated Catalan paths of length n+1 and

the set Pn of parallelogram polyominoes of perimeter 2n + 2 such that there is a one-to-one correspondence

between the white squares under a path π ∈ En and the squares in Λn(π) ∈ Pn.

By Theorem 2.1 and Propositions 4.1, 5.1, and 5.2, we deduce the enumerative results on the area of
the various polyominoes.

Theorem 5.3. For n ≥ 2, the following results hold.

(i) The area of all shortened polyominoes of perimeter 2n is 4n−1 −
(
2n−1
n−1

)
.
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(ii) The area of all shrunk polyominoes of perimeter 2n − 2 is 4n−1 −
(

2n
n−1

)
.

(iii) The area of all parallelogram polyominoes of perimeter 2n + 2 is 4n−1.

A 2-Motzkin path of length n is a lattice path from (0, 0) to (n, 0) that never goes below the x-axis, using
up steps (1, 1), down steps (1,−1), and level steps (1, 0), where the level steps can be either of two kinds:
straight and wavy. The area of a 2-Motzkin path is defined to be the sum of the heights of the end points
of all steps. By a simple substitution, there is a bijection between the set Mn of 2-Motzkin paths of length
n and the set Rn+1 of shrunk polyominoes of perimeter 2n. Given a τ ∈ Mn, for each i (1 ≤ i ≤ n), we
associate the ith step ti of τ with a pair (pi, qi) of steps, where

(pi, qi) =






(N, E) if ti is an up step
(E, N) if ti is a down step
(N, N) if ti is a straight level step
(E, E) if ti is a wavy level step.

The corresponding shrunk polyomino of τ is the pair (P, Q) of paths, where P = p1 · · · pn and Q = q1 · · · qn.
It is straightforward to verify that the height of the end point of ti in τ is equal to the distance between pi

and qi in (P, Q). By Theorem 5.3(ii), we have the following result.

Corollary 5.4. The area of all 2-Motzkin paths of length n is 4n −
(
2n+2

n

)
.
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