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ABSTRACT. Let A be a commutative Noetherian ring, and let R = A[X] be the polynomial ring in an infinite
collection X of indeterminates over A. Let Gx be the symmetric group of X. The group &Gx acts on R in
a natural way, and this in turn gives R the structure of a left module over the group ring R[Sx]. We prove
that all ideals of R invariant under the action of Gx are finitely generated as R[Gx]-modules. The proof
involves introducing a certain partial order on monomials and showing that it is a well-quasi-ordering. We
also consider the concept of an invariant chain of ideals for finite-dimensional polynomial rings and relate it
to the finite generation result mentioned above. Finally, a motivating question from chemistry is presented,
with the above framework providing a suitable context in which to study it.

RESUME. Soit A un anneau Noetherien commutatif, et R = A[X] 'anneau des polynomes en une infinité
d’indéterminées X sur A. Soit Sx le groupe symétrique de X. Le groupe Sx agit sur R de maniére naturelle,
ce qui donne & R la structure d’un module gauche sur I'anneau R[Sx]. Nous prouvons que tous les idéaux
de R invariants sous l'action de Gx sont finitement engendrés comme R[&x]-modules. La démonstration
utilise le fait qu’un certain ordre partiel sur les monomes est un quasi-ordre. Nous utilisons aussi le concept
de cha”ine invariante des idéaux pour les anneaux de polynémes de dimension finie, que nous relions au
résultat de génération finie mentionné plus haut. Finalement, nous présentons une motivation pour notre
travail issue de la chimie.

1. Introduction

A pervasive theme in invariant theory is that of finite generation. A fundamental example is a theorem
of Hilbert stating that the invariant subrings of finite-dimensional polynomial algebras over finite groups
are finitely generated [5, Corollary 1.5]. In this article, we study invariant ideals of infinite-dimensional
polynomial rings. Of course, when the number of indeterminates is finite, Hilbert’s basis theorem tells us
that any ideal (invariant or not) is finitely generated.

Our setup is as follows. Let X be an infinite collection of indeterminates, and let Gx be the group of
permutations of X. Fix a commutative Noetherian ring A and let R = A[X] be the polynomial ring in the
indeterminates X. The group &x acts naturally on R: if 0 € Sx and f € A[zy,...,x,] where z; € X, then

of(x1,x2,...,2,) = f(ox1,029,...,02,) € R.

This in turn gives R the structure of a left module over the (non-commutative) group ring R[S x]. An ideal
I C R is called invariant under Gx (or simply invariant) if

Sxl:={of:0€6x,fel}C1I

Notice that invariant ideals are simply the R[S x]-submodules of R. We may now state our main result.
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THEOREM 1.1. Ewery ideal of R = A[X] invariant under Gx is finitely generated as an R[S x]-module.
(Stated more succinctly, R is a Noetherian R[G x]-module.)

For the purposes of this work, we will use the following notation. Let B be a ring and let G be a subset
of a B-module M. Then (f : f € G)p will denote the B-submodule of M generated by elements of G.

EXAMPLE 1.2. Suppose that X = {z1,22,...}. The invariant ideal I = (z1,z2,...)r is clearly not
finitely generated over R, however, it does have the compact representation I = (21) gs -

The outline of this paper is as follows. In Section 2, we define a partial order on monomials and show
that it can be used to obtain a well-quasi-ordering of the monomials in R. Section 3 then goes on to detail our
proof of Theorem 1.1, using the main result of Section 2 in a fundamental way. In the penultimate section,
we discuss a relationship between invariant ideals of R and chains of increasing ideals in finite-dimensional
polynomial rings. The notions introduced there provide a suitable framework for studying a problem arising
from chemistry, the subject of the final section of this article.

2. The Symmetric Cancellation Ordering

We begin this section by briefly recalling some basic order-theoretic notions. We also discuss some
fundamental results due to Higman and Nash-Williams and some of their consequences. We define the
ordering mentioned in the section heading, and give a sufficient condition for it to be a well-quasi-ordering;
this is needed in the proof of Theorem 1.1.

2.1. Preliminaries. A quasi-ordering on a set S is a binary relation < on S which is reflexive and
transitive. A quasi-ordered set is a pair (S, <) consisting of a set S and a quasi-ordering < on S. When there
is no confusion, we will omit < from the notation, and simply call S a quasi-ordered set. If in addition the
relation < is anti-symmetric (s <t At < s = s =1, for all s,t € §), then < is called an ordering (sometimes
also called a partial ordering) on the set S. The trivial ordering on S is given by s < ¢t <= s = ¢ for all
s,t € S. A quasi-ordering < on a set S induces an ordering on the set S/~ = {s/~: s € S} of equivalence
classes of the equivalence relation s ~t <= s <t A t <son S. If s and ¢ are elements of a quasi-ordered
set, we write as usual s < t also as t > s, and we write s <t if s <t and t £ s.

A map ¢: S — T between quasi-ordered sets S and T is called increasing if s <t = ¢(s) < p(t) for
all s,t € S, and strictly increasing if s <t = @(s) < p(t) for all s,t € S. We also say that ¢: S — T is a
quasi-embedding if p(s) < p(t) = s <tforall s,t € S.

An antichain of S is a subset A C S such that s £ t and t € s for all s % ¢ in A. A final segment of
a quasi-ordered set (5, <) is a subset F' C S which is closed upwards: s <t A s € F =t € F, for all
s,t € S. We can view the set F(S) of final segments of S as an ordered set, with the ordering given by
reverse inclusion. Given a subset M of S, the set {t €S :ds e M with s < t} is a final segment of S, the
final segment generated by M. An initial segment of S is a subset of S whose complement is a final segment.
An initial segment I of S is proper if I # S. For a € S we denote by S<¢ the initial segment consisting of
all s € S with s < a.

A quasi-ordered set S is said to be well-founded if there is no infinite strictly decreasing sequence
$1 > S92 > --- in S, and well-quasi-ordered if in addition every antichain of S is finite. The following
characterization of well-quasi-orderings is classical (see, for example, [8]). An infinite sequence sy, $3,... in
S is called good if s; < s; for some indices ¢ < j, and bad otherwise.

PROPOSITION 2.1. The following are equivalent, for a quasi-ordered set S':

(1) S is well-quasi-ordered.

(2) FEvery infinite sequence in S is good.

(3) FEvery infinite sequence in S contains an infinite increasing subsequence.

(4) Any final segment of S is finitely generated.

5) ( (9), 7) is well-founded (i.e., the ascending chain condition holds for final segments of S). O

(

Let (S,<g) and (7, <r) be quasi-ordered sets. If there exists an increasing surjection S — T and S
is well-quasi-ordered, then T' is well-quasi-ordered, and if there exists a quasi-embedding S — T and T is
well-quasi-ordered, then so is S. Moreover, the cartesian product S x T' can be turned into a quasi-orderd
set by using the cartesian product of <g and <p:

(s,t) < (s',t) &= s<gsAt<pt, for s,s' € S, t,t' €T.



FINITE GENERATION OF SYMMETRIC IDEALS

Using Proposition 2.1 we see that the cartesian product of two well-quasi-ordered sets is again well-quasi-
ordered.

Of course, a total ordering < is well-quasi-ordered if and only if it is well-founded; in this case < is called
a well-ordering. Every well-ordered set is isomorphic to a unique ordinal number, called its order type. The
order type of N={0,1,2,...} with its usual ordering is w.

2.2. A lemma of Higman. Given a set X, we let X* denote the set of all finite sequences of elements
of X (including the empty sequence). We may think of the elements of X* as non-commutative words
1+ Ty with letters xq, ..., 2, coming from the alphabet X. With the concatenation of such words as
operation, X* is the free monoid generated by X. A quasi-ordering < on X yields a quasi-ordering <y (the
Higman quasi-ordering) on X* as follows:

there exists a strictly increasing function
i < Yo(i) forall 1 <i<m.

If <is an ordering on X, then <y is an ordering on X*. The following fact was shown by Higman [6] (with
an ingenious proof due to Nash-Williams [12]):

LEMMA 2.2. If < is a well-quasi-ordering on X, then <y is a well-quasi-ordering on X*. U

It follows that if < is a well-quasi-ordering on X, then the quasi-ordering <* on X* defined by

there exists an injective function
L1 T <EYL Y = e: {1,...,m} — {1,...,n} such
that x; <y, ) foralll1<i<m

is also a well-quasi-ordering. (Since <* extends <y.)

We also let X© be the set of commutative words in the alphabet X, that is, the free commutative
monoid generated by X (with identity element denoted by 1). We sometimes also refer to the elements of
X° as monomials (in the set of indeterminates X). We have a natural surjective monoid homomorphism
m: X* — X° given by simply “making the indeterminates commute” (i.e., interpreting a non-commutative
word from X* as a commutative word in X°). Unlike <y, the quasi-ordering <* is compatible with 7 in
the sense that v <* w = v/ <* W' for all v,v,w,w € X* with n(v) = n(v') and m(w) = w(w'). Hence
m(v) <° m(w) <= v <* w defines a quasi-ordering <® on X° = 7(X*) making 7 an increasing map. The
quasi-ordering <¢ extends the divisibility relation in the monoid X°:

vlw <= uv=w for some u € X°.

If we take for < the trivial ordering on X, then <° corresponds exactly to divisibility in X°, and this
ordering is a well-quasi-ordering if and only if X is finite. In general we have, as an immediate consequence
of Higman’s lemma (since 7 is a surjection):

COROLLARY 2.3. If < is a well-quasi-ordering on the set X, then <° is a well-quasi-ordering on X°¢. O

2.3. A theorem of Nash-Williams. Given a totally ordered set S and a quasi-ordered set X, we
denote by Fin(S, X) the set of all functions f: I — X, where I is a proper initial segment of S, whose range
f(I) is finite. We define a quasi-ordering <y on Fin(S, X) as follows: for f: I — X and g: J — X from
Fin(S, X) put

F< ) there exists a strictly increasing function ¢: I — J
Sy = such that f(i) < g(p()) for all i € I.

We may think of an element of Fin(S, X) as a sequence of elements of X indexed by indices in some proper
intial segment of S. So for S = N with its usual ordering, we can identify elements of Fin(N, X) with words
in X*, and then <y for Fin(N, X) agrees with <y on X* as defined above. We will have occasion to use a
far-reaching generalization of Lemma 2.2:

THEOREM 2.4. If X is well-quasi-ordered and S is well-ordered, then Fin(S, X) is well-quasi-ordered. O

This theorem was proved by Nash-Williams [13]; special cases were shown earlier in [4, 11, 14].
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2.4. Term orderings. A term ordering of X° is a well-ordering < of X° such that
(1) 1 <z forall z € X, and
(2) v<w=zv<zwforallv,w e X®and z € X.
Every ordering < of X satisfying (1) and (2) extends the ordering <°® obtained from the restriction of < to
X. In particular, < extends the divisibility ordering on X°. By the corollary above, a total ordering < of
X° which satisfies (1) and (2) is a term ordering if and only if its restriction to X is a well-ordering.

ExaMPLE 2.5. Let < be a total ordering of X. We define the induced lezicographic ordering <jex of
monomials as follows: given v,w € X° we can write v = z{* -+ - 2% and w = xlil . mf{L with z1 < -+ <z,
in X and all a;,b; € N; then

UV<lex W <= (an,...,01) < (bn,...,b1) lexicographically (from the left).

The ordering <jey is total and satisfies (1), (2); hence if the ordering < of X is a well-ordering, then <oy is
a term ordering of X°.

REMARK 2.6. Let < be a total ordering of X. For w € X°, w # 1, we let
|w| ;== max {z € X : z|w} (with respect to <).

We also put |1| := —oo where we set —oo < « for all z € X. One of the perks of using the lexicographic
ordering as a term ordering on X° is that if v and w are monomials with v <jex w, then |v| < |w|. Below,
we often use this observation.

The previous example shows that for every set X there exists a term ordering of X°, since every set can
be well-ordered by the Axiom of Choice. In fact, every set X can be equipped with a well-ordering every
proper initial segment of which has strictly smaller cardinality than X; in other words, the order type of this
ordering (a certain ordinal number) is a cardinal number. We shall call such an ordering of X a cardinal
well-ordering of X.

LEMMA 2.7. Let X be a set equipped with a cardinal well-ordering, and let I be a proper initial segment
of X. Then every injective function I — X can be extended to a permutation of X.

PROOF. Since this is clear if X is finite, suppose that X is infinite. Let ¢: I — X be injective. Since
I has cardinality |I| < |X| and X is infinite, we have |X| = max {|X \ I|,|I|} = |X \ I|. Similarly, since
lp(D)] = |I| < |X|, we also have | X \ p(I)| = |X|. Hence there exists a bijection ¢: X \ I — X \ p(I).
Combining ¢ and v yields a permutation of X as desired. |

2.5. A new ordering of monomials. Let G be a permutation group on a set X, that is, a group G
together with a faithful action (0,z) — ox: G x X — X of G on X. The action of G on X extends in a
natural way to a faithful action of G on X°: cw =oxy---ox, foroc € G, w=x1 - -z, € X°. Given a term
ordering < of X°, we define a new relation on X° as follows:

DEFINITION 2.8. (The symmetric cancellation ordering corresponding to G and <.)

v < w and there exist ¢ € G and a monomial
V=W = { u € X° such that w = uov and for all v/ < v,
we have uov’ < w.
REMARK 2.9. Every term ordering < is linear: v < w <= wv < ww for all monomials u,v,w. Hence
the condition above may be rewritten as: v < w and there exists o € G such that ocv|w and ov’ < gv for all
v’ <w. (We say that “o witnesses v < w.”)

EXAMPLE 2.10. Let X = {z1,22,...} be a countably infinite set of indeterminates, ordered such that
1 < 29 < ---, and let < = <jox be the corresponding lexicographic ordering of X°. Let also G be the group
of permutations of {1,2,3,...}, acting on X via ox; = x,(;). As an example of the relation =<, consider the
following chain:
x% = a:lx% < a::{’xgarg

To verify the first inequality, notice that z125 = z;0(2?), in which o is the transposition (12). If v/ =
it xln < 2? with aj,...,a, € N, a,, > 0, then it follows that n = 1 and a; < 2. In particular,

z10v" = z125" < 2123, For the second relationship, we have that z3z2% = 237(2123), in which 7 is the
cycle (123). Additionally, if v/ = z{* - 2% < z12% with ay,...,a, € N, a, > 0, then n < 2, and if n = 2,

then either az = 1 or ag = 2, a; < 1. In each case we get z3mv’ = 2325 25> < ziwoad.
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Although Definition 2.8 appears technical, we will soon present a nice interpretation of it that involves
leading term cancellation of polynomials. First we verify that it is indeed an ordering.

LEMMA 2.11. The relation < is an ordering on monomials.

PROOF. First notice that w = w since we may take u = 1 and o = the identity permutation. Next,
suppose that u < v < w. Then there exist permutations ¢, 7 in G and monomials w1, us in X such that
v = uiou, w = ugTv. In particular, w = us(7uy)(rou). Additionally, if v < u, then ujov’ < v, so that
usT(ur0v’) < w. Tt follows that us(7ui)(7ov’) < w. This shows transitivity; anti-symmetry of < follows
from anti-symmetry of <. |

We offer a useful interpretation of this ordering (which motivates its name). We fix a commutative ring
A and let R = A[X] be the ring of polynomials with coefficients from A in the collection of commuting
indeterminates X. Its elements may be written uniquely in the form

f= Zaww

wexX®

where a,, € A for all w € X°, and all but finitely many a,, are zero. We say that a monomial w occurs in f
if a,, # 0. Given a non-zero f € R we define lm(f), the leading monomial of f (with respect to our choice
of term ordering <) to be the largest monomial w (with respect to <) which occurs in f. If w = Im(f), then
ay, is the leading coefficient of f, denoted by lc(f), and a,w is the leading term of f, denoted by 1t(f). By
convention, we set Im(0) = 1c¢(0) = 1t(0) = 0. We let R[G] be the group ring of G over R (with multiplication
given by fo-gm = fg(or) for f,g € R, 0,7 € G), and we view R as a left R[G]-module in the natural way.

LEMMA 2.12. Let f € R, f # 0, and u,w € X°. Suppose that ¢ € G witnesses Im(f) < w, and let
u € X° with uolm(f) = w. Then lm(uof) = uolm(f).

PRrOOF. Put v = lm(f). Every monomial occurring in uof has the form uov’, where v’ occurs in f.
Hence v’ < v, and since o witnesses v < w, this yields uov’ < w. O

Suppose that A is a field, let v < w be in X® and let f, g be two polynomials in R with leading

monomials v, w, respectively. Then, from the definition and the lemma above, there exists a ¢ € G and a
term cu (c € A\ {0}, u € X°) such that all monomials occurring in

h=g—cuof

are strictly smaller (with respect to <) than w. For readers familiar with the theory of Grébner bases,
the polynomial h can be viewed as a kind of symmetric version of the S-polynomial (see, for instance, [5,
Chapter 15]).

EXAMPLE 2.13. In the situation of Example 2.10 above, let f = 2123+ x2+27 and g = x3zoz3+23+2]23.
Set o = (123), and observe that

3 4 2 3 3,2
g—xj0f =xjxs + x5 — xjT3 — T T5
has a smaller leading monomial than g.

We are mostly interested in the case where our term ordering on X° is <joy, and G = G x. Under these
assumptions we have:

LEMMA 2.14. Let v,w € X with v X w. Then for every o € Gx witnessing v = w we have U(XSM) C
X=lwl Moreover, if the order type of (X, <) is < w, then we can choose such o with the additional property
that o(z) =z for all x > |w|.

PRrROOF. To see the first claim, suppose for a contradiction that ox > |w| for some z € X, z < |v|. We
have ov|w, so if z|v, then oz|w, contradicting oz > |w|. In particular z < |v|, which yields z <jex v and
thus oz <jex 00 <jex W, again contradicting ox > |w|. Now suppose that the order type of X is < w, and let
o witness v < w. Then |v| < |w|, and 0 X=I* can be extended to a permutation ¢’ of the finite set X =I*I.
We further extend o’ to a permutation of X by setting o’(z) = « for all # > |w|. One checks easily that ¢’
still witnesses v < w. OJ
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2.6. Lovely orderings. We say that a term ordering < of X° is lovely for G if the corresponding
symmetric cancellation ordering < on X is a well-quasi-ordering. If < is lovely for a subgroup of G, then
< is lovely for G.

EXAMPLE 2.15. The symmetric cancellation ordering corresponding to G = {1} and a given term
ordering < of X° is just
v=w <= v<w A vw.
Hence a term ordering of X© is lovely for G = {1} if and only if divisibility in X° has no infinite antichains;
that is, exactly if X is finite.

This terminology is inspired by the following definition from [3] (which in turn goes back to an idea in
[2]):
DEFINITION 2.16. Given an ordering < of X, consider the following ordering of X:

x < y and there exists o € G such that cx =y

C R
=Y { and for all 2’ < z, we have ox’ < y.

A well-ordering < of X is called nice (for G) if C is a well-quasi-ordering.

In [2] one finds various examples of nice orderings, and in [3] it is shown that if X admits a nice ordering
with respect to G, then for every field F', the free F-module F.X with basis X is Noetherian as a module
over F[G]. It is clear that the restriction to X of a lovely ordering of X° is nice. However, there do exist
permutation groups (G, X) for which X admits a nice ordering, but X° does not admit a lovely ordering;
see Example 3.4 and Proposition 5.2 below.

EXAMPLE 2.17. Suppose that X is countable. Then every well-ordering of X of order type w is nice for
Gx. To see this, we may assume that X = N with its usual ordering. It is then easy to see that if z <y in
N, then 2 C y, witnessed by any extension ¢ of the strictly increasing map n +— n +vy — z: NS* — N to a
permutation of N.

The following crucial fact (generalizing the last example) is needed for our proof of Theorem 1.1:

THEOREM 2.18. The lexicographic ordering of X° corresponding to a cardinal well-ordering of a set X
is lovely for the full symmetric group &x of X.

For the proof, let as above Fin(X,N) be the set of all sequences in N indexed by elements in some
proper initial segment of X which have finite range, quasi-ordered by <y. For a monomial w # 1 we define
w*: X<l 5 N by

w”(z) := max{a € N: z%|w}.
Then clearly w* € Fin(X,N), in fact, w*(z) = 0 for all but finitely many = € X <!l We also let 1* := the
empty sequence () — N (the unique smallest element of Fin(X,N)). We now quasi-order X° x Fin(X,N) by
the cartesian product of the ordering <jex on X° and the quasi-ordering <y on Fin(X,N). By Corollary 2.3,
Theorem 2.4, and the remark following Proposition 2.1, X° x Fin(X,N) is well-quasi-ordered. Therefore, in
order to finish the proof of Theorem 2.18, it suffices to show:

LEMMA 2.19. The map
w (w,w): X° — X° x Fin(X,N)
is a quasi-embedding with respect to the symmetric cancellation ordering on X° and the quasi-ordering on
X° x Fin(X,N).

PROOF. Suppose that v, w are monomials with v <jex w and v* <y w*; we need to show that v < w.
For this we may assume that v,w # 1. So there exists a strictly increasing function op: X =1Vl — X=Ivl guch
that

(2.1) v*(z) < w*(p(z)) for all x € X with z < |v].

By Lemma 2.7 there exists ¢ € &y such that o X"l = pX=I*I. Then clearly ovjw by (2.1). Now let
v <jex v; we claim that ov’ <jex ov. Again we may assume v’ # 1. Then |[v'| < |v|, hence we may write

’ b
'U:xllll...xzn’ U:xll...xsz



FINITE GENERATION OF SYMMETRIC IDEALS

with 21 <--- <z, <|v| in X and a;,b; € N. Put y; := p(21),...,yn = @(2s). Theny; <--- <y, and

!/ __ a1 QAn _ bl bn
a-fU_yl yn7 O.U_yl"'ynv

and therefore ov’ <jex ov as required. O

2.7. The case of countable X. In Section 4 we will apply Theorem 2.18 in the case where X is
countable. Then the order type of X is at most w, and in the proof of the theorem given above we only
need to appeal to a special instance (Higman’s Lemma) of Theorem 2.4. We finish this section by giving a
self-contained proof of this important special case of Theorem 2.18, avoiding Theorem 2.4. Let &x) denote
the subgroup of &x consisting of all ¢ € &x with the property that o(x) = z for all but finitely many
letters z € X.

THEOREM 2.20. The lexicographic ordering of X© corresponding to a cardinal well-ordering of a countable
set X is lovely for &x).

Let X be countable and let < be a cardinal well-ordering of X. FEnumerate the elements of X as
x1 < xy < ---. We assume that X is infinite; this is not a restriction, since by Lemma 2.14 we have:

LEMMA 2.21. If the lexicographic ordering of X is lovely for & x, then for anyn and X, := {x1,..., 2},
the lexicographic ordering of (X,,)¢ is lovely for Sx,, . O

We begin with some preliminary lemmas. Here, < is the symmetric cancellation ordering corresponding
to G(x) and <jex. We identifty &(x) and G := Sy in the natural way, and for every n we regard &,,, the
group of permutations of {1,2,...,n}, as a subgroup of G; then &,, < &,,4; for each n, and & = J,, Gn.

LEMMA 2 22. Suppose that x{*---xor < xll’l xf{z where a;,b; € N, b, > 0. Then for any ¢ € N we

have o - 20 < xSat - ﬁ’{f‘_l.

PROOF. Let v := a{* -+ -z w = xlil xf{l We may assume v # 1. Clearly v <jex w and b, > 0
yield 5 - 20 <jox x§ab’ - sz Let now 0 € &, witness v = w. Let 7 be the cychc permutation 7 =
(123---(n+1)) and set  := 70. Then ov|w yields Gv|rw, hence Gv|ziTw = x5l - - n+1. Next, suppose
that v <jex v; then ov’ <jex ov. By Lemma 2.14 and the nature of 7, the map 7'0({1, .., [v|}) is strictly
increasing, which gives 5v' = 700’ <jex 700 = 6v. Hence & witnesses 291 - - - z%» < z$ab! - ST O

LEMMA 2.23. If o' -+ afr < x?l oo xlnwhere ai,b; € N, b, >0, and a,b € N are such that a < b,

n ’

a,.a1 b1 bnt1
then x§xy" - apr, < abagt -z
PROOF. As before let v := z{* -+ 28, w = xlfl .-zl Once again, we may assume v # 1, and it is
b .
clear that §a§" -+ 227 | <jex 2%ab - 2,7}, Let 0 € Gu witness v < w. By Lemma 2.14 we may assume

that o(z;) = x; for all i > n. Let 7 be the cyclic permutation 7 = (12---(n + 1)). Setting & = 707!, we
have ox1 = 21, hence

a _.ay a oA aNa(.a1 a _ a
(2.2) o(xfay' -y ) = o(2))o(ay' - xp ) = x{TOov.
Since av|w this last expression divides a}7w = z}a3---2ln . Suppose that v/ = (- 20" <jex
xfxyt - wpn ), where ¢; € N. Then, since we are using a lexicographic order, we have
C2 Cn+1 ai an
x2 ...anrl SIEX x2 ...xn+1
and therefore
U@ a) = o S 7w e = v
By assumption, this implies that o7~ 1(25? - - fﬁ:f) <jex ov and thus by (2.2)
~ c Cn+1
o2y -2\ ) Stex TOU =0 (25" - ap ).
If this inequality is strict, then since 1 ¢ 5({2,...,n + 1}), clearly
-~/ C1> C a
ov =705 - a ) <iex {TOUV =0 (2fTG - ahn ).
Otherwise x52 - - - ;"' = 25" ---x" |, hence ¢; < a, in which case we still have 5v" <jex 7 (225" - 2" ).

Therefore & witnesses zfag" - - a7, < abab - ,{ff This completes the proof. O
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We now have enough to show Theorem 2.20. The proof uses the basic idea from Nash-Williams’ proof
[13] of Higman’s lemma. Assume for the sake of contradiction that there exists a bad sequence

w w® ™ in X°.

For w € X°\ {1} let j(w) be the index j > 1 with |w| = z;, and put j(1) := 0. We may assume that
the bad sequence is chosen in such a way that for every n, j(w(™) is minimal among the j(w), where w
ranges over all elements of X with the property that w™, w® ... w1 w can be continued to a bad
sequence in X°. Because 1 <jox w for all w € X°, we have j(w(™) > 0 for all n. For every n > 0, write
w™ = x‘f(">v(") with a(™ € N and (™) € X° not divisible by 1. Since N is well-ordered, there is an infinite
sequence 1 < 47 < ig < --- of indices such that ali) < qli2) < ... Consider the monoid homomorphism
a: X° — X given by a(zi41) = z; for all § > 1. Then j(a(w)) = j(w) — 1 if w # 1. Hence by minimality
of w®,w® ... the sequence

wM w® | w Y ) e @), a(el™)), ..

is good; that is, there exist j < 4; and k with w) < a(v(*)), or there exist k < I with a(v(™*)) < a(v().
In the first case we have w(?) < w(*) by Lemma 2.22; and in the second case, w™) < w(") by Lemma 2.23.
This contradicts the badness of our sequence w™), w2, ..., finishing the proof.

QUESTION. Careful inspection of the proof of Theorem 2.18 (in particular Lemma 2.7) shows that in the
statement of the theorem, we can replace G x by its subgroup consisting of all o with the property that the
set of x € X with o(x) # x has cardinality < |X|. In Theorem 2.18, can one always replace Sx by &x)?

3. Proof of the Finiteness Theorem

We now come to the proof our main result. Throughout this section we let A be a commutative
Noetherian ring, X an arbitrary set, R = A[X], and we let G be a permutation group on X. An R[G]-
submodule of R will be called a G-invariant ideal of R, or simply an invariant ideal, if G is understood. We
will show:

THEOREM 3.1. If X° admits a lovely term ordering for G, then R is Noetherian as an R[G]-module.

For G = {1} and X finite, this theorem reduces to Hilbert’s basis theorem, by Example 2.15. We also
obtain Theorem 1.1:

COROLLARY 3.2. The R[&x]-module R is Noetherian.

PrOOF. Choose a cardinal well-ordering of X. Then the corresponding lexicographic ordering of X° is
lovely for G x, by Theorem 2.18. Apply Theorem 3.1. g

REMARK 3.3. It is possible to replace the use of Theorem 2.18 in the proof of the corollary above by the
more elementary Theorem 2.20. This is because if the R[S x]-module R was not Noetherian, then one could
find a countably generated R[S x]-submodule of R which is not finitely generated, and hence a countable
subset X’ of X such that R = A[X'] is not a Noetherian R’'[S x+]-module.

The following example shows how the conclusion of Theorem 3.1 may fail:

ExXAMPLE 3.4. Suppose that G has a cyclic subgroup H which acts freely and transitively on X. Then
X has a nice ordering (see [2]), but R = Q[X°] is not Noetherian. To see this let o be a generator for H,
and let x € X be arbitrary. Then the R[G]-submodule of R = Q[X°] generated by the elements c"zo "z
(n € N) is not finitely generated. So by Theorem 3.1, X° does not admit a lovely term ordering for G.

For the proof of Theorem 3.1 we develop a bit of Grébner basis theory for the R[G]-module R. For the
time being, we fix an arbitrary term ordering < (not necessarily lovely for G) of X°.

3.1. Reduction of polynomials. Let f € R, f # 0, and let B be a set of non-zero polynomials in R.
We say that f is reducible by B if there exist pairwise distinct ¢1,...,9m € B, m > 1, such that for each ¢
we have Im(g;) =< Im(f), witnessed by some o; € G, and

I6(f) = arwio1 1t(g1) + - -+ + am Wi o 1t(gm)
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for non-zero a; € A and monomials w; € X° such that w;o;lm(g;) = lm(f). In this case we write f - h,

where
h = f - (alwlalgl + -+ amwmamgm);

and we say that f reduces to h by B. We say that f is reduced with respect to B if f is not reducible by B.
By convention, the zero polynomial is reduced with respect to B. Trivially, every element of B reduces to 0.

EXAMPLE 3.5. Suppose that A is a field. Then f is reducible by B if and only if there exists some g € B
such that lm(g) < lm(f).

EXAMPLE 3.6. Suppose that f is reducible by B as defined (for finite X)) in, say, [1, Chapter 4], that is:
there exist ¢1,...,9m € B and a1,...,a, € A (m > 1) such that Im(g;)|lm(f) for all 7 and

le(f) =aile(gr) + - - + amle(gm)-
Then f is reducible by B in the sense defined above. (Taking o; = 1 for all i.)

REMARK 3.7. Suppose that G = S, the term ordering < of X° is <jex, and the order type of (X, <)
is < w. Then in the definition of reducibility by B above, we may require that the o; satisfy o;(x) = x for
all 1 <i<mand z > |lm(f)|. (By Lemma 2.14.)

The smallest quasi-ordering on R extending the relation - is denoted by %. If f,h#0and f - h,
then Im(h) < 1m(f), by Lemma 2.12. In particular, every chain
h0—>h1—>h2—>"'
B B B

with all h; € R\ {0} is finite. (Since the term ordering < is well-founded.) Hence there exists r € R such
that f %» r and r is reduced with respect to B; we call such an r a normal form of f with respect to B.

LEMMA 3.8. Suppose that f % r. Then there exist g1,...,9n € B, 01,...,0n, € G and hy,...,hy, € R
such that
f=r+ thigi and 1m(f) > max lm(h;0;9;).

1<i<n
i=1 T
(In particular, f —r € (B)g(a)-)

ProOF. This is clear if f = r. Otherwise we have f - h % r for some h € R. Inductively we may

assume that there exist ¢g1,...,9, € B, 01,...,0n, € G and hq,...,h, € R such that

h=r+ Z hio;g; and lm(h) > max lm(h;0;9;).

: T 1<i<n
i=1

There are also gn11,---,9n+m € B, 0nt1y--s0ntm € G, Gpni1ye-yOpim € A and wpy1, ..., Wptm € X°©
such that lm(wy,4;0n+ign+i) = lm(f) for all ¢ and

m

m
1t(f) = Z i WntiOnti 16(gnvi), f=h+ Z On+iWn+iOn+iGn+i-
i=1 i=1

Hence putting hpni; := GniiWnis for i = 1,...,m we have f = r + Z?ilm h;jo;g; and lm(f) > lm(h) >
Im(hjo;g;) if 1 < j <n,lm(f) =1lm(hjo;g;) if n < j<n+m. O

REMARK 3.9. Suppose that G = G x, < = <jex, and X has order type < w. Then in the previous lemma
we can choose the o; such that in addition o;(x) = z for all ¢ and all z > |1Im(f)|. (By Remark 3.7.)
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3.2. Grobner bases. Let B be a subset of R. We let
16(B) := (lc(g)w : 0 # g € B, Im(g) =< w>A

be the A-submodule of R generated by all elements of the form lc(g)w, where g € B is non-zero and w is a
monomial with Im(g) < w. Clearly for non-zero f € R we have: 1t(f) € 1t(B) if and only if f is reducible
by B. In particular, 1t(B) contains { It(g) : g € B}, and for an ideal I of R which is G-invariant, we simply
have

(1) = {1t(f): f eI}
(Use Lemma 2.12.) We say that a subset B of an invariant ideal I of R is a Grobner basis for I (with respect
to our choice of term ordering <) if 1t(I) = 1t(B).

LEMMA 3.10. Let I be an invariant ideal of R and B be a set of non-zero elements of I. The following
are equivalent:

(1) B is a Grébner basis for I.

(2) FEwvery non-zero f € I is reducible by B.

(3) Ewery f €I has normal form 0. (In particular, I = (B)Rgjq)-)
(4) FEvery f € I has unique normal form 0.

PRrROOF. The implications (1) = (2) = (3) = (4) are either obvious or follow from the remarks preceding
the lemma. Suppose that (4) holds. Every f € I'\ {0} with 1t(f) ¢ 1t(B) is reduced with respect to B, hence
has two distinct normal forms (0 and f), a contradiction. Thus 1t(I) = 1t(B). O

Suppose that B is a Grobner basis for an ideal I of the polynomial ring R = A[X°], in the usual sense of
the word (as defined, for finite X, in [1, Chapter 4]); if I is invariant, then B is a Grobner basis for I as defined
above (by Example 3.6). Moreover, for G = {1}, the previous lemma reduces to a familiar characterization
of Grobner bases in the usual case of polynomial rings. It is probably possible to also introduce a notion
of S-polynomial and to prove a Buchberger-style criterion for Grébner bases in our setting, leading to a
completion procedure for the construction of Grobner bases. At this point, we will not pursue these issues
further, and rather show:

PROPOSITION 3.11. Suppose that the term ordering < of X° is lovely for G. Then every invariant ideal
of R has a finite Grébner basis.

For a subset B of R let Im(B) denote the final segment of X© with respect to < generated by the lm(g),
g € B. If A is a field, then a subset B of an invariant ideal I of R is a Grobner basis for I if and only if
lm(B) = lm(I). Hence in this case, the proposition follows immediately from the equivalence of (1) and (4)
in Proposition 2.1. For the general case we use the following observation:

LEMMA 3.12. Let S be a well-quasi-ordered set and T be a well-founded ordered set, and let p: S — T
be decreasing: s <t = p(s) > ¢(t), for all s,t € S. Then the quasi-ordering <, on S defined by

s§<y,t = s<t A e(s) =)
is a well-quasi-ordering. O

PRrROOF OF PROPOSITION 3.11. Suppose now that our term ordering of X° is lovely for G, and let I be
an invariant ideal of R. For w € X° consider

le(I,w) :={lc(f): f €1, and f =0 or Im(f) = w},

an ideal of A. Note that if v < w, then lc(I,v) C le(I,w). We apply the lemma to S = X°, quasi-ordered by
=, T = the collection of all ideals of A, ordered by reverse inclusion, and ¢ given by w — lc(I,w). Thus by
(4) in Proposition 2.1, applied to the final segment X of the well-quasi-ordering <, we obtain finitely many
W, ..., Wy € X° with the following property: for every w € X there exists some ¢ € {1,...,m} such that
w; < w and le(I,w;) = le(I, w). Using Noetherianity of A, for every 7 we now choose finitely many non-zero
elements g;1, ..., gin, of I (n; € N), each with leading monomial w;, whose leading coefficients generate the
ideal lc(I,w;) of A. We claim that

B:={gj:1<i<m, 1<j<n}
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is a Grobner basis for I. To see this, let 0 # f € I, and put w := lm(f). Then there is some i with w; < w
and lc(Z,w;) = le(I,w). This shows that f is reducible by {g:1,. .., gin, }, and hence by B. By Lemma 3.10,
B is a Grobner basis for 1. O

From Proposition 3.11 and the implication (1) = (3) in Lemma 3.10 we obtain Theorem 3.1.

3.3. A partial converse of Theorem 3.1. Consider now the quasi-ordering |¢ of X defined by
vjgw <= doeG:ovjw,

which extends every symmetric cancellation ordering corresponding to a term ordering of X°. If M is a set
of monomials from X® and F the final segment of (X, |¢) generated by M, then the invariant ideal (M) gjq
of R is finitely generated as an R[G]-module if and only if F' is generated by a finite subset of M. Hence by
the implication (4) = (1) in Proposition 2.1 we get:

LEMMA 3.13. If R is Noetherian as an R[G]-module, then |¢ is a well-quasi-ordering. O

This will be used in Section 5 below.

3.4. Connection to a concept due to Michler. Let < be a term ordering of X°. For each 0 € G
we define a term ordering <, on X° by

v<,w <= ov<ow.
We denote the leading monomial of f € R with respect to <, by lm,(f). Clearly we have
(3.1) olm(f) =1lmg,-1(cf) forall o € G and f € R.

Let I be an invariant ideal of R. Generalizing terminology introduced in [10], let us call a set B of non-zero
elements of I a universal G-Grébner basis for I (with respect to <) if B contains, for every o € G, a Grébner
basis (in the usual sense of the word) for the ideal I with respect to the term ordering <,. If the set X
of indeterminates is finite, then every invariant ideal of R has a finite universal G-Grébner basis. By the
remark following Lemma 3.10, every universal G-Grobner basis for an invariant ideal I of R is a Grobner
basis for I. We finish this section by observing;:

LEMMA 3.14. Suppose that A is field. If B is a Grébner basis for the invariant ideal I of R, then
GB ={og:0€G, g€ B}
is a universal G-Grébner basis for I.

PrROOF. Let 0 € Gand f € I, f # 0. Then of € I, hence there exists 7 € G and g € B such that
w <1m(g) = w <; lm(g) for all w € X°, and 71m(g)|lm(cf). The first condition implies in particular that
71m(g) = lm(rg), hence o~ *71m(g) = lm, (0~ 17g) and o=t Im(cf) = Im,(f) by (3.1). Put h := 07179 €
GB. Then lm, (h)|1lm.(f) by the second condition. This shows that GB contains a Grébner basis for I with
respect to <., as required. O

EXAMPLE 3.15. Suppose that G = &,,, the group of permutations of {1,2,...,n}, acting on X =
{x1,...,2,} via 0x; = 2,(;). The invariant ideal I = (x1,...,z,)r has Grobner basis {1} with respect to
the lexicographic ordering; a corresponding (minimal) universal &,,-Grébner basis for I is {x1,...,2,}.

4. Invariant Chains of Ideals

In this section we describe a relationship between certain chains of increasing ideals in finite-dimensional
polynomials rings and invariant ideals of infinite-dimensional polynomial rings. We begin with an abstract
setting that is suitable for placing the motivating problem (described in the next section) in a proper context.
Throughout this section, m and n range over the set of positive integers. For each n, let R,, be a commutative
ring, and assume that R, is a subring of R, 11, for each n. Suppose that the symmetric group on n letters
S, gives an action (not necessarily faithful) on R,, such that f — of: R,, — R, is a ring homomorphism,
for each o € G,,. Furthermore, suppose that the natural embedding of &,, into &,, for n < m is compatible
with the embedding of rings R, C R,,; that is, if 0 € &,, and 7 is the corresponding element in &,,,, then
R, = 0. Note that there exists a unique action of G, on the ring R :=J,,~,; R, which extends the action
of each &,, on R,,. An ideal of R is invariant if of € I for all 0 € &, f € I.
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We will need a method for lifting ideals of smaller rings into larger ones, and one such technique is as
follows.

DEFINITION 4.1. For m > n, the m-symmetrization L,,(B) of a set B of elements of R,, is the &,,-
invariant ideal of R,, given by

Ln(B)={(9:9€ B)g,.[&,.]

In order for us to apply this definition sensibly, we must make sure that the m-symmetrization of an
ideal can be defined in terms of generators.

LEMMA 4.2. If B is a set of generators for the ideal Ip = (B) g, of Ry, then Ly, (Ig) = Ly, (B).

PROOF. Suppose that B generates the ideal Ig C R,. Clearly, L,,,(B) C L,,(Ig). Therefore, it is
enough to show the inclusion L,,(Ip) C L,,(B). Suppose that h € L,,(Ig) so that h = Z;:l fj - ojh; for
elements f; € Ry, h; € Ip and 0; € &,,. Next express each h; = > .2, p;;gi; for p;j € R, and g;; € B.
Substitution into the expression above for h gives us

h=> "3 fi-oipij 09i;-
j=1i=1
This is easily seen to be an element of L,,(B), completing the proof. O
EXAMPLE 4.3. Let S = QJt1,t2], Rn = Q[z1, ..., 2,], and consider the natural action of &,, on R,. Let

Q be the kernel of the homomorphism induced by the map ¢: Rz — S given by ¢(x1) = 2, ¢(x3) = t3, and
#(z3) = t1ta. Then, Q = (z122 — 23), and L4(Q) C Ry is generated by the following 12 polynomials:
T1To — T3, T1To — T3, T1T3 — T2, T1T3 — T3,
T1T4 — X3, T1T4 — T3, Tolz — Ti, ToTz — T3,
Toly — T3, Toly — T3, T3Ty — T7, T3Ty — T3
We would also like a way to project a set of elements in R,, down to a smaller ring R,, (n < m).

DEFINITION 4.4. Let B C R, and n < m. The n-projection P, (B) of B is the &,-invariant ideal of R,
given by
Pn(B) = <g g c B>Rm[6m] NR,.

We now consider increasing chains I, of ideals I,, C Ry:
LCCLC---CL,C--,

simply called chains below. Of course, such chains will usually fail to stabilize since they are ideals in larger
and larger rings. However, it is possible for these ideals to stabilize “up to the action of the symmetric
group,” a concept we make clear below. For the purposes of this work, we will only consider a special
class of chains; namely, a symmetrization invariant chain (resp. projection invariant chain) is one for which
Ly (I,) C Iy, (vesp. P,(I,) C I,) for all n < m. If I, is both a symmetrization and a projection invariant
chain, then it will be simply called an invariant chain. We will encounter some concrete invariant chains in
the next section. The stabilization definition alluded to above is as follows.

DEFINITION 4.5. A symmetrization invariant chain of ideals I, as above stabilizes modulo the symmetric
group (or simply stabilizes) if there exists a positive integer N such that

L(I,) =1, forallm>n > N.

To put it another way, accounting for the natural action of the symmetric group, the ideals I, are the
same for large enough n. Let us remark that if for a symmetrization invariant chain I,, there is some integer
N such that L,,(In) = I, for all m > N, then I, stabilizes. This follows from the inclusions

Im = Ln(In) € Lin(I) € I, n > N.
Any chain I, naturally gives rise to an ideal Z(I) of R = J,,», Rn by way of

I(L) = | J In.

n>1
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Conversely, if I is an ideal of R, then

I,=J.,I)=INR,
defines the components of a chain J(I) := I,. Clearly, for any ideal I C R, we have Z o J(I) = I, but, as
is easily seen, it is not true in general that J o Z(I,) = I,. However, for invariant chains, this relationship
does hold, as the following straightforward lemma describes.

LEMMA 4.6. There is a one-to-one, inclusion-preserving correspondence between invariant chains I, and
invariant ideals I of R given by the maps T and J . g

For the remainder of this section we consider the case where, for a commutative Noetherian ring A, we
have R,, = A[x1, ..., z,] for each n, endowed with the natural action of &,, on the indeterminates x1, ..., Z,.
Then R = A[X°] where X = {x1,22,...}. We use the results of the previous section to demonstrate the
following.

THEOREM 4.7. FEvery symmetrization invariant chain stabilizes modulo the symmetric group.

PROOF. Given a symmetrization invariant chain, construct the invariant ideal I = Z(I,) of R. One
would now like to apply Theorem 1.1, however, more care is needed to prove stabilization. Let < be a well-
ordering of X of order type w, and let B be a finite Grobner basis for I with respect to the corresponding
term ordering <jex of X°. (Theorem 2.20 and Proposition 3.11.) Choose a positive integer N such that
B C Iy; we claim that I,, = L,,(Iy) for all m > N. Let f € I,,,, f # 0. By the equivalence of (1) and (3)

in Lemma 3.10 we have f % 0. Hence by Lemma 3.8 there are ¢g1,...,9, € B, h1,...,h, € R, as well as
O1y...,0n € G, such that

f=hio1g1 +- -+ hpong, and 1lm(f) = maxlm(h;o;g;).

By Remark 3.9 we may assume that in fact o; € &, for each i. Moreover Im(h;) <jex Im(f), hence
[lm(h;)| < [lm(f)| < m, for each i. Therefore h; € R,, for each i. This shows that f € L,,(B) C L,,(In) as
desired. 0

5. A Chemistry Motivation

We can now discuss the details of the basic problem that is of interest to us. It was brought to our
attention by Bernd Sturmfels, who, in turn, learned about it from Andreas Dress.

Fix a natural number k£ > 1. Given a set S we denote by (S)* the set of all ordered k-element subsets
of S, that is, (S)* is the set of all k-tuples u = (uy,...,u) € S* with pairwise distinct uy,...,u,. We also
just write (n)* instead of ({1,...,n})*. Let K be a field, and for n > k consider the polynomial ring

Rn = K[{mu}ue(n)k}
We let &,, act on (n)* by
o(ut,...,up) = (o(w),...,o(uk)).
This induces an action (0, Ty, ) — 0%y = Toe Of &, on the indeterminates x,,, which we extend to an action
of &,, on R, in the natural way. We also put R = Un>,C R,,. Note that
R = K [{zu}ue@t],

where Q = {1,2,3,...} is the set of positive integers, and that the actions of &,, on R,, combine uniquely

to an action of G on R. Let now f(y1,...,yx) € K[y1,--.,Yk), let t1,t2,... be an infinite sequence of
pairwise distinct indeterminates over K, and for n > k consider the K-algebra homomorphism
On: Rp — K[t1,...,ts], Tluy,un) = f gy oo sty )
The ideal
Qn = ker ¢,
of R,, determined by such a map is the prime ideal of algebraic relations between the quantities f(ty,, ..., tu, )

Such ideals arise in chemistry [9, 15, 16]; of specific interest there is when f is a Vandermonde polynomial
[i<;(yi —yj). In this case, the ideals @, correspond to relations among a series of experimental measure-
ments. One would then like to understand the limiting behavior of such relations, and in particular, to see
that they stabilize up to the action of the symmetric group.
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EXAMPLE 5.1. The permutation o = (123) € &3 acts on the elements
(1,2), (2,1), (1,3), (3,1), (2,3), (3,2)
of (3)? to give
(2’ 3)7 (37 2)’ (2’ 1)7 (172)’ (3’ 1)7 (173)’
respectively. Let f(t1,t2) = t3ta. Then the action of o on the valid relation 22,231 — 2353721 € Q3 gives us
another relation 235715 — 23,732 € Q3.

It is easy to see that by construction, the chain @, of ideals

QrCQrt1C--CQpC---

(which we call the chain of ideals induced by the polynomial f) is an invariant chain. As in the proof of
Theorem 4.7, we would like to form the ideal @ = |J,,», @~ of the infinite-dimensional polynomial ring
R = {J,,>;, Rn, and then apply a finiteness theorem to conclude that Q. stabilizes in the sense mentioned
above (Definition 4.5). For k = 1, Theorem 4.7 indeed does the job. Unfortunately however, this simple-
minded approach fails for k > 2:

PROPOSITION 5.2. For k > 2, the R[S ]-module R is not Noetherian.

PROOF. Let us make the dependence on k explicit and denote R by R*). Then

L(uy,oyup,upsr) 7 Llur,...up)

defines a surjective K-algebra homomomorphism 7, : R#+t1) — R®) with invariant kernel. Hence if R(+1)
is Noetherian as an R[&]-module, then so is R™): thus it suffices to prove the proposition in the case
k = 2. Suppose therefore that k£ = 2. By Lemma 3.13 it is enough to produce an infinite bad sequence for
the quasi-ordering |g_, of X°, where X = {z; : ¢ € (2)?}. For this, consider the sequence of monomials

83 = T(1,2)2(3,2)L(3,4)
S4 = T(1,2)%(3,2)%(4,3)T(4,5)

S5 = T(1,2)2(3,2)L(4,3)L(5,4)L(6,7)

Sn = T(1,2)T(3,2)T(4,3) """ T(nn—1)T(n,nt1) (n=3,4,...)

Now for n < m and any 0 € G, the monomial os,, does not divide s,,. To see this, suppose otherwise.
Note that x(; 2), 7(3,2) is the only pair of indeterminates which divides s, or s,, and has the form z; j),
z@j) (i,4,1 € Q). Therefore 0(2) = 2, and either o(1) = 1, ¢(3) = 3, or o(1) = 3, 0(3) = 1. But since 1
does not appear as the second component j of a factor x(; ;) of s, we have o(1) = 1, 0(3) = 3. Since x4 3)
is the only indeterminate dividing s, or s,, of the form x(; 3y with i € Q, we get 0(4) = 4; since (5 4) is the
only indeterminate dividing s,, or s,, of the form x; 4y with i € Q, we get 0(5) = 5; etc. Ultimately this
yields o(i) = for all i = 1,...,n. But the only indeterminate dividing s,, of the form =z, ;) with j € Q is

T(n,n—1), hence the factor o, ny1) = T(n,o(n+1)) of 08, does not divide s,,. This shows that s3,54,... is a
bad sequence for the quasi-ordering |s_,, as claimed. O
REMARK 5.3. The construction of the infinite bad sequence ss,sy,... in the proof of the previous

proposition was inspired by an example in [7].

5.1. A criterion for stabilization. Our next goal is to give a condition for the chain @), to stabilize.
Given g € R, we define the variable size of g to be the number of distinct indeterminates z,, that appear in
g. For example, g = m‘rl’g + x45T93 + r45 has variable size 3.

LEMMA 5.4. A chain of ideals Qo induced by a polynomial f € Klyi,...,yx] stabilizes modulo the
symmetric group if and only if there exist integers M and N such that for all n > N, there are generators for
Qn with variable sizes at most M. Moreover, in this case a bound for stabilization is given by max(N,kM).
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PRrROOF. Suppose M and N are integers with the stated property. To see that @), stabilizes, since Qo is
an invariant chain, we need only verify that N’ = max(N, kM) is such that Q, C Ly, (Qr) for m >n > N'.
For this inclusion, it suffices that each generator in a generating set for the ideal @, of R, is in L,,(Q).
Since m > N, there are generators B for ), with variable sizes at most M. If g € B, then there are at most
kM different integers appearing as subscripts of indeterminates in g. We can form a permutation o € &,,
such that og € Ry and thus in R,,. But then og € P,,(Q,,) € Q, so that g = 07 tog € L,,(Q,,) as desired.

Conversely, suppose that @), stabilizes. Then there exists an N such that @, = L,,(Qn) for all m > N.
Let B be any finite generating set for Qx. Then for all m > N, Q,, = L,,(B) is generated by elements of

bounded variable size, by Lemma 4.2. d

Although this condition is a very simple one, it will prove useful. Below we will apply it together with
a preliminary reduction to the case that each indeterminate y1,...,y; actually occurs in the polynomial
f, which we explain next. For this we let 7: R — R(*) be the surjective K-algebra homomorphism
defined in the proof of Proposition 5.2. We write Q(*) for @, and considering f € K[yi, ..., yx] as an element
of K[y1,..., Yk, Ykr1), we also let Q1) be the kernel of the K-algebra homomorphsm

R(k-‘rl) - K[tlv t2) . ']) m(u17...,uk7uk+1) = f(t’u.l) e 7t’u.k ) tuk+1)
(: f(tuu s 7tuk))
Note that 7, (Q*+1)) = Q™) and the ideal ker 7, of R*+1) is generated by the elements
T(uyyeyur,d) — T(ug,eur,j) (Za.] € Q)v

in particular kerm, € Q+1) . Tt is easy to see that as an R(”C“)[C‘Eoo]—module7 ker 7y, is generated by the
single element x(1 . g.k+1) — T(1,... .k k+2)- Lhese observations now yield:

LEMMA 5.5. Suppose that the invariant ideal Q) of R®) is finitely generated as an R®*) [Es0]-module.
Then the invariant ideal Q*+1) of R+Y) s finitely generated as an R*+V (S ]-module. O

We let &, act on (Q)* by
T(ut, .o ug) = (Urr)s - oo Ur(k)) for 7 € &y, (u1,...,ux) € (Q)F.

This action gives rise to an action of & on {xu}u€<9>k by TZy = Tru, which we extend to an action of &y,
on R in the natural way. We also let & act on K[yi,...,yx] by 7f(y1,...,ux) = f(Yra1)s- - Yr(x))- Note
that

TQr C Qi1 C CTQn C oo
is the chain induced by 7f. Using the lemma above we obtain:

COROLLARY 5.6. Let f € Ky1,...,yx]. There arei € {0,...,k} and 1 € &, such that 7f € K[y1, ...,y
and each of the indeterminates yi,...,y; occurs in Tf. If the chain of ideals induced by the polynomial T f
stabilizes, then so does the chain of ideals induced by f. O

5.2. Chains induced by monomials. If the given polynomial f is a monomial, then the homomor-
phism ¢,, from above produces a (homogeneous) toric kernel @,. In particular, there is a finite set of
binomials that generate Q,, (see [17]). Although a proof for the general toric case eludes us, we do have the
following.

THEOREM 5.7. The sequence of kernels induced by a square-free monomial f € K[y1,...,yx] stabilizes
modulo the symmetric group. Moreover, a bound for when stabilization occurs is N = 4k.

To prepare for the proof of this result, we discuss in detail the toric encoding associated to our problem
(see [17, Chapter 14] for more details). By Corollary 5.6, we may assume that f = y1---yg. Theng—79 € Q
for all g € R. We say that w = (u1,...,u;) € (Q)* is sorted if uy < --- < ug, and unsorted otherwise;
similarly we say that x,, is sorted (unsorted) if w is sorted (unsorted, respectively). For example, 135 is a
sorted indeterminate, whereas z315 is not. Consider the set of vectors

Ay ={(i1,...,in) EZ" tix+ - +in =k, 0<iy,...,0, <1},

View A,, as an n-by- (Z) matrix entries with 0 and 1, whose with columns are indexed by sorted indeterminates
x4, and whose rows are indexed by ¢; (¢ = 1,...,n). (See Example 5.9 below.) Let sort( - ) denote the operator
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which takes any word in {1,...,n}* and sorts it in increasing order. By [17, Remark 14.1], the toric ideal
I 4, associated to A, is generated (as K-vector space) by the binomials @4, - - Ty, — v, -+ To,, where r € N
and the u;, v; are sorted elements of (n)* such that sort(u; - --u,) = sort(v; - - - v,.). In particular, we have
T4, CQn. Let B be any set of generators for the ideal 14, .

LEMMA 5.8. A generating set for the ideal Q,, of R, is given by
S=BU{xy —Try: T E Sy, u is sorted}.

Proor. Elements of @, are of the form g = %4, -+ - Tu,, — Tw, - * - T,., in Which the u; and v; are ordered
k-element subsets of {1,...,n} such that sort(u; - - u,) = sort(vy - - - v,.). We induct on the number ¢ of u;
and v; that are not sorted. If £ = 0, then g € I4,, and we are done. Suppose now that ¢ > 0 and assume
without loss of generality that w, is not sorted. Let 7 € &) be such that 7u; is sorted, and consider the

element h = Try, Tuy -+ Tu, — Ty - - Ty, 0f Q. This binomial involves t — 1 unsorted indeterminates, and
therefore, inductively, can be expressed in terms of S. But then

g=h—(Tru, — Tu,)Tu, " Tu,
can as well, completing the proof. O

EXAMPLE 5.9. Let k =2 and n = 4. Then

Ti2 X13 T14 T23 T24 T34

t1 1 1 1 0 0 0
to 1 0 0 1 1 0
ts 0 1 0 1 0 1
ty 0 0 1 0 1 1

represents the matrix associated to A4. The ideal I 4, is generated by the two binomials z13%24 — T12%34
and x14T23 — T12734. Hence Q4 is generated by these two elements along with

{T12 — 21,13 — 31, T14 — Ta1, T23 — T32, V24 — Ta2, T34 — T4z}
We are now in a position to prove Theorem 5.7.

PROOF OF THEOREM 5.7. By Lemma 5.4, we need only show that there exist generators for @),, which
have bounded variable sizes. Using [17, Theorem 14.2], it follows that I4, has a quadratic (binomial)
Grobner basis for each n (with respect to some term ordering of R,). By Lemma 5.8, there is a set of
generators for @), with variable sizes at most 4. This proves the theorem. O

We close with a conjecture that generalizes Theorem 5.7.

CONJECTURE 5.10. The sequence of kernels induced by a monomial f stabilizes modulo the symmetric
group.
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