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Enumeration of Bruhat intervals between nested involutions in Sn
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Abstract. We build a chain
id = ϑ0 < ϑ1 < · · · < ϑbn

2 c−1
< ϑbn

2 c

of nested involutions in the Bruhat ordering of Sn, with ϑbn
2
c the maximal element for the Bruhat order,

and we study the cardinality of the Bruhat intervals [ϑj , ϑk] for all 0 ≤ j < k ≤
¨

n
2

˝

, and the number of

permutations incomparable with ϑt, for all 0 ≤ t ≤
¨

n
2

˝

.

Résumé. Nous construisons une châıne

id = ϑ0 < ϑ1 < · · · < ϑbn
2 c−1

< ϑbn
2 c

des involutions nichées dans l’ordre de Bruhat de Sn, avec ϑbn
2 c

l’élément maximal pour l’ordre de Bruhat,

et nous étudions la cardinalité des intervalles de Bruhat [ϑj , ϑk] pour tout les 0 ≤ j < k ≤
¨

n
2

˝

, et le nombre

de permutations incomparables avec ϑt, pour tout le 0 ≤ t ≤
¨

n
2

˝

.

1. Overview

For any n ≥ 2, let Sn be the symmetric group of n elements equipped with the Bruhat ordering ≤;
see e.g. [3, 6, 8, 21, 22]. One of the most celebrated combinatorial and algebraic problems is to study its
Bruhat graph and its Bruhat intervals [a, b] = {z ∈ Sn : a ≤ z ≤ b} for a, b ∈ Sn; see e.g. [1, 7, 12, 15].
These are intimately related with the Kazhdan–Lusztig polynomials of Sn and the algebraic geometry of
Schubert varieties. See e.g. [9, 10, 13, 14, 18] and the references therein.

In this work we build a chain

id = ϑ0 < ϑ1 < · · · < ϑbn
2 c−1 < ϑbn

2 c

of nested involutions in the Bruhat ordering of Sn, with ϑbn
2 c

the maximal element for the Bruhat order

(see Definition 3.1 for the exact definition of ϑt, t = 0, . . . ,
⌊

n
2

⌋

), and we study the cardinality of the Bruhat

intervals [ϑj , ϑk] for all 0 ≤ j < k ≤
⌊

n
2

⌋

. Moreover we study the number of permutations incomparable

with ϑt, for all 0 ≤ t ≤
⌊

n
2

⌋

. Our results imply and generalize the result of [27], where a closed formula for
the cardinality of [ϑ0, ϑ1] is proved. This problem is related to the explicit computation of Kazhdan–Lusztig
polynomials for some classes of elements. See e.g. [24, 25] and the references therein.

The importance of the set {ϑt : t = 0, . . . ,
⌊

n
2

⌋

} lies in the fact that involutions of the symmetric group
and, more generally, of Coxeter groups, are elements having nice algebraic properties, see [28, 29, 30, 31].
In particular, in [28] it is proved that the maximal length element of any conjugacy class in Sn containing
involutions is one of the ϑt for some t = 0, . . . ,

⌊

n
2

⌋

.

2. Preliminaries

In this section we collect together some definitions, notation and results that will be used in the following.
We follow [11, 20, 32] for combinatorics and poset notation and terminology.
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For x ∈ R we let bxc = max{n ∈ Z : n ≤ x}; for n ∈ N we let [n] = {t ∈ N : 1 ≤ t ≤ n} = {1, . . . , n},

and [0] = ∅. For any complex number a, we define the rising factorial as (a)0 = 1 and (a)m =
∏m−1

j=0 (a+ j)

for any m ∈ N \ {0}. The cardinality of a set X will be denoted by #X .
For any n ≥ 2, let Sn be the symmetric group of permutations of n objects, viz. the set of all bijections

σ : [n]
∼
−→ [n] .

If σ ∈ Sn then we write σ = [a1, . . . , an] to mean that σ (j) = aj for j ∈ [n]. Sometimes we also write σ
in disjoint cycle form and we usually omit writing the 1–cycles of σ. Given σ, τ ∈ Sn we let στ = σ ◦ τ
(composition of functions) so that, for example (1, 2)(2, 3) = (1, 2, 3). For any σ = (a1, . . . , an) ∈ Z

n we say
that a pair (i, j) ∈ [n]× [n] is an inversion of σ if i < j and ai > aj , and we denote the number of inversions
of σ by inv (σ).

We set

: En = {(j, j + 1) : j ∈ [n− 1]},
: Tn = {(i, j) : 1 ≤ i < j ≤ n}, the set of transpositions in Sn,
: D (σ) = {τ ∈ En : inv (στ) < inv (σ)}, the descent set of σ ∈ Sn.

We recall the definition of Bruhat order on Sn:

Definition 2.1. Let n ≥ 2. For any u, v ∈ Sn, u < v in Bruhat order if and only if there exist k ∈ N

and t1, . . . , tk ∈ Tn such that

v = ut1 · · · tk,

inv (ut1 · · · tj+1) > inv (ut1 · · · tj) for any j ∈ [k − 1] .

It is easy to see that [n, . . . , 1] is the maximum element in Sn for the Bruhat order.
Now we state a criterion for deciding when two permutations are comparable in the Bruhat ordering,

which was achieved in [5].

Theorem 2.2. Let n ≥ 2, and for any σ, τ ∈ Sn, let σ [j, k] be the j-th entry in the increasing rearrange-
ment of {σ (1) , . . . , σ (k)} for all 1 ≤ j ≤ k ≤ n − 1, and define τ [j, k] similarly. Then the following are
equivalent:

(1) σ ≤ τ in the Bruhat order,
(2) σ [j, k] ≤ τ [j, k], for all k ∈ D (σ) and 1 ≤ j ≤ k,
(3) σ [j, k] ≤ τ [j, k], for all k ∈ {1, . . . , n− 1} \D (τ) and 1 ≤ j ≤ k.

3. Main Results

Definition 3.1. Let n ≥ 2. We define

ϑt =

t−1
∏

j=0

(j + 1, n− j) = (1, n) · · · (t, n− t+ 1)

= [n, . . . , n− t+ 1, t+ 1, . . . , n− t, t, . . . , 1] ∈ Sn

for all 0 ≤ t ≤
⌊

n
2

⌋

.

Obviously ϑt is an involution for all 0 ≤ t ≤
⌊

n
2

⌋

, and

id = ϑ0 < ϑ1 < · · · < ϑbn
2 c−1 < ϑbn

2 c
= max{σ ∈ Sn}

in the Bruhat order of Sn.

Definition 3.2. Let n ≥ 2, and 0 ≤ t ≤ n− 1. We define

Ft (n) =

{

{σ ∈ Sn : σ ≤ ϑt} = [ϑ0, ϑt] if t ≤
⌊

n
2

⌋

,

Sn if t ≥
⌊

n
2

⌋

;

and

Ft (n) = #Ft (n) ,

setting Ft (0) = Ft (1) = 1.
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Lemma 3.3. Let n ≥ 2, 0 ≤ t ≤ n− 1, and j ∈ [t+ 1]. The number of permutations σ ∈ Ft (n) with the
constraint that there exists a subset A = {α1, . . . , αj} ⊂ [t+ 1] and an array B = (β1, . . . , βj) with pairwise
distinct coordinates βk ∈ [t+ 1] for all k ∈ [j] such that

σ (αl) = βl for all l ∈ [j]

equals

j!

(

t+ 1

j

)2

Ft (n− j) .

Proof. Of course we can always assume t ≥ 1 otherwise the result is trivial.
For any fixed A = {α1, . . . , αj} and B = (β1, . . . , βj) with the desired properties, let

Zn
t [j] (A,B) = {σ ∈ Ft (n) : σ (αk) = βk for all k ∈ [j]}.

We note that from Theorem 2.2 and Definition 3.1 we get that Zn
t [j] (A,B) 6= ∅ for all possible choices of A

and B.
Consider the order–preserving bijections

ϕ : [n] \A
∼
−→ [n− t] ,

ψ : [n] \B
∼
−→ [n− t] .

Then from Theorem 2.2 there is a bijection

f : Zn
t [j] (A,B)

∼
−→ Ft (n− j)

defined in the following way: we delete σ (k) if k ∈ A, whereas for all k /∈ A

σ (k)
f

−→ ψ (σ (ϕ (k))) .

Noticing that there are
(

t+1
j

)

ways for choosing A and j!
(

t+1
j

)

ways for choosing B, the desired result

follows. �

Theorem 3.4. For any n ≥ 2,

Ft (n) =

{

∑t+1
j=1 (−1)

j−1
j!
(

t+1
j

)2
Ft (n− j) if 0 ≤ t ≤ n− 1,

n! if t ≥ n.

Proof. Of course we can always assume t ∈ [n− 1] otherwise the result is trivial.
From Theorem 2.2 we see that if σ ∈ Ft (n) then

{σ (k) : k ∈ [t+ 1]}
⋂

[t+ 1] 6= ∅.

Let k ∈ [t+ 1] and

Rk = {σ ∈ Ft (n) : σ (k) ∈ [t+ 1]}.

Then by inclusion–exclusion we have

Ft (n) = #





⋃

k∈[t+1]

Rk



 =

t+1
∑

j=1

(−1)
j−1

∑

I⊂[t+1]
#I=j

#

(

⋂

z∈I

Rz

)

,

and the desired result follows from Lemma 3.3. �

The following Corollary is immediate, and it gives a purely combinatorial proof of an identity for the
factorial.

Corollary 3.5. For any n ≥ 2 and for all
⌊

n
2

⌋

≤ k, t ≤ n− 1,

k+1
∑

j=1

(−1)
j−1

j!

(

k + 1

j

)2

(n− j)! =

t+1
∑

j=1

(−1)
j−1

j!

(

t+ 1

j

)2

(n− j)! = n!

Proof. From Definition 3.2, Fk (n) = Ft (n) = n! for all
⌊

n
2

⌋

≤ k, t ≤ n − 1. Taking in account
Theorem 3.4, the desired result follows. �



A. Conflitti

We note that this identity can be also proved using the theory of hypergeometric series and applying
Chu–Vandermonde summation, see [2, 17, 19, 23]. In fact, it is equivalent to

∞
∑

j=0

(−1)
j
j!

(

t+ 1

j

)2

(n− j)! = 0

for all
⌊

n
2

⌋

≤ t ≤ n− 1, and we have that

∞
∑

j=0

(−1)
j
j!

(

t+ 1

j

)2

(n− j)! =

(

2F1

[

−t− 1,−t− 1
−n

; 1

])

((1)n)

=
((1)n)

(

(1 − n+ t)1+t

)

(−n)1+t

;

obviously if
⌊

n
2

⌋

≤ t ≤ n− 1 then 1 − n+ t ≤ 0 ≤ 1 − n+ 2t, therefore (1 − n+ t)1+t = 0.
Now we give an explicit formula for the generating function of the sequence {Ft (n)}n≥2t for any t ≥ 1,

and then, using it, we are able to prove a closed formula for the function Ft (n) for any t ≥ 1 and any n ≥ 2t.

Theorem 3.6. For any t ≥ 1,

∑

n≥2t

Ft (n)Xn = X2t

∑t

k=0

(

∑t+1
j=k+1 (−1)

j−1 (t+1
j

)2
j! (2t− j + k)!

)

Xk

∑t+1
j=0 (−1)

j (t+1
j

)2
j!Xj

.

Proof. From Theorem 3.4 we get

∑

n≥2t

Ft (n)Xn =
∑

n≥2t

t+1
∑

j=1

(−1)
j−1

(

t+ 1

j

)2

j!Ft (n− j)Xn

=

t+1
∑

j=1

(−1)
j−1

(

t+ 1

j

)2

j!Xj

·





2t−1
∑

m=2t−j

Ft (m)Xm +
∑

m≥2t

Ft (m)Xm



 .

From Definition 3.2 we have Ft (n) = n! if 2t+ 1 ≥ n, thus

2t−1
∑

m=2t−j

Ft (m)Xm =
2t−1
∑

m=2t−j

m!Xm =

j−1
∑

k=0

(2t− j + k)!X2t−j+k,

hence




∑

n≥2t

Ft (n)Xn









t+1
∑

j=0

(−1)
j

(

t+ 1

j

)2

j!Xj





= X2t





t+1
∑

j=1

(−1)
j−1

(

t+ 1

j

)2

j!

j−1
∑

k=0

(2t− j + k)!Xk





= X2t ·
t
∑

k=0





t+1
∑

j=k+1

(−1)
j−1

(

t+ 1

j

)2

j! (2t− j + k)!



Xk,

and the desired result follows. �
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Theorem 3.7. For any t ≥ 1 and any n ≥ 2t

Ft (n) =

min{t,n−2t}
∑

z=0









t+1
∑

j=z+1

(−1)j−1

(

t+ 1

j

)2

j! (2t− j + z)!





·









∑

α∈N
t+1

Ω(α)=n−2t−z

(‖α‖)!
∏t+1

k=1 (αk!)





t+1
∏

j=1

(

(−1)j−1

(

t+ 1

j

)2

j!

)αj





















,

where for any multi–index α = (α1, . . . αt+1) ∈ N
t+1 we set ‖α‖ =

∑t+1
j=1 αj and Ω (α) =

∑t+1
j=1 j · αj.

Proof. With an eye on Theorem 3.6, observe first that

1
∑t+1

j=0 (−1)
j (t+1

j

)2
j!Xj

=
1

1 −
∑t+1

j=1 (−1)
j−1 (t+1

j

)2
j!Xj

(3.1)

=
∑

l≥0





t+1
∑

j=1

(−1)
j−1

(

t+ 1

j

)2

j!Xj





l

.

Now, for any r ≥ 1 and any multi–index α = (α1, . . . αr) ∈ N
r, we set ‖α‖ =

∑r

j=1 αj and Ω (α) =
∑r

j=1 j · αj , and we recall that for any r ≥ 1, s ≥ 1, and z1, . . . , zr ∈ R we have





r
∑

j=1

zj





s

=
∑

α∈N
r

‖α‖=s

s!
∏r

k=1 (αk!)





r
∏

j=1

z
αj

j



 .

Therefore (3.1) equals

∑

l≥0





t+1
∑

j=1

(−1)j−1

(

t+ 1

j

)2

j!Xj





l

=
∑

l≥0

∑

α∈N
t+1

‖α‖=l

l!
∏t+1

k=1 (αk!)





t+1
∏

j=1

(

(−1)
j−1

(

t+ 1

j

)2

j!Xj

)αj





=
∑

α∈Nt+1

(‖α‖)!
∏t+1

k=1 (αk!)





t+1
∏

j=1

(

(−1)j−1

(

t+ 1

j

)2

j!

)αj



XΩ(α)(3.2)

=
∑

v≥0









∑

α∈N
t+1

Ω(α)=v

(‖α‖)!
∏t+1

k=1 (αk!)





t+1
∏

j=1

(

(−1)j−1

(

t+ 1

j

)2

j!

)αj













Xv,
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and combining Theorem 3.6 and (3.2) we get
∑

n≥2t

Ft (n)Xn

= X2t ·





t
∑

k=0





t+1
∑

j=k+1

(−1)
j−1

(

t+ 1

j

)2

j! (2t− j + k)!



Xk





·
∑

v≥0









∑

α∈N
t+1

Ω(α)=v

(‖α‖)!
∏t+1

k=1 (αk!)





t+1
∏

j=1

(

(−1)
j−1

(

t+ 1

j

)2

j!

)αj













Xv

=
∑

l≥0





min{l,t}
∑

z=0





t+1
∑

j=z+1

(−1)
j−1

(

t+ 1

j

)2

j! (2t− j + z)!





·









∑

α∈N
t+1

Ω(α)=l−z

(‖α‖)!
∏t+1

k=1 (αk!)





t+1
∏

j=1

(

(−1)
j−1

(

t+ 1

j

)2

j!

)αj





















X2t+l.

The desired result follows. �

Now we show that knowing the cardinality of Bruhat intervals starting from the identity leads to knowing
the cardinality of Bruhat intervals between two general nested involutions.

Theorem 3.8. Let n ≥ 2 and 0 ≤ j < k ≤
⌊

n
2

⌋

; then

#[ϑj , ϑk] = Fk−j (n− 2j) .

Proof. In order to prove the statement we exhibit a bijection

f : [ϑj , ϑk]
∼
−→ Fk−j (n− 2j)

σ 7−→ fσ

From Theorem 2.2 we see that if σ ∈ [ϑj , ϑk] then σ (l) = n+ 1− l for all l ∈ [j]
⋃

([n] \ [n− j]). We set

fσ (l) = σ (l + j) − j

for all l ∈ [n− 2j], and the desired result follows. �

Knowing the cardinality of Bruhat intervals starting from the identity and Bruhat intervals between two
nested involutions leads to knowing the number of permutations less or equal than one of the two nested
involutions and incomparable with the other one.

Theorem 3.9. Let n ≥ 2 and 0 ≤ j < k ≤
⌊

n
2

⌋

; then

#{σ ∈ Sn : σ ≤ ϑk and σ is incomparable with ϑj}

= Fk (n) − Fj (n) − Fk−j (n− 2j) + 1.

Proof. We have

{σ ∈ Sn : σ ≤ ϑk and σ is incomparable with ϑj}

= Fk (n) \
(

Fj (n)
⋃

[ϑj , ϑk]
)

,

and Fj (n)
⋂

[ϑj , ϑk] = {ϑj}; the desired result follows. �

Corollary 3.10. Let n ≥ 2 and 0 ≤ t ≤
⌊

n
2

⌋

; then

#{σ ∈ Sn : σ is incomparable with ϑt} = n! + 1 − Ft (n) − Fbn
2 c−t

(n− 2t) .

�
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4. Remarks

Studying the cardinality of Bruhat intervals between similar nested involutions in different Coxeter
systems leads to other challenging questions.

In particular, one can consider the chains

id = φ0 < φ1 < · · · < φn−1 < φn,

id = ψ0 < ψ1 < · · · < ψbn
2 c−1 < ψbn

2 c

of nested involutions in the Bruhat ordering of Bn, the hyperoctahedral group of rank n (see [6, 26]), where

φr =

r−1
∏

j=0

(−n+ j, n− j) ,

ψt =

t−1
∏

j=0

(j + 1,−n+ j) (−j − 1, n− j)

for any r = 0, . . . , n− 1 and any t = 0, . . . ,
⌊

n
2

⌋

, and to investigate # [φj , φk] for all 0 ≤ j < k ≤ n− 1 and

# [ψh, ψz] for all 0 ≤ h < z ≤
⌊

n
2

⌋

.
We note that in order to study enumeration of Bruhat intervals in a Coxeter system (W,S) (see [6, 21, 22]

for comprehensive references about Coxeter systems) it is not required that W < ∞. In fact, the following
fact is well–known, and we refer e.g. to [6] for a proof.

Proposition 4.1. Let (W,S) be a Coxeter system, and u, v ∈ W . Bruhat intervals [u, v] = {z ∈ W :
u ≤ z ≤ v} are finite (even if #S = ∞). In fact, #[u, v] ≤ 2l(v), where l (v) denotes the length of v.

Therefore, another tempting choice to investigate the cardinality of Bruhat intervals between suitable
involutions would be to consider Ãn, the affine group of type Ã and rank n; see [4, 6, 16].
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