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Abstract. Using Du’s characterization of the dual canonical basis of the coordinate ring O(GLn(C)), we
show that all basis elements may be expressed in terms of immanants. We then give a new factorization
of permutations avoiding the patterns 3412 and 4231, which in turn yields a factorization theorem for the
corresponding Kazhdan-Lusztig basis of the Hecke algebra Hn(q). Using this factorization, we show that for
every totally nonnegative immanant Immf (x) and its expansion

P

dwImmw(x) with respect to the basis of
Kazhdan-Lusztig immanants, the coefficient dw must be nonnegative when w avoids the patterns 3412 and
4231.

Résumé. En utilissant les résultats de Du, nous démontrons que chacque élement du base dual canonique de
O(GLn(C)), se peut réalise en terme d’immanants. Nous factorisent les permutations qui evitent le 3412 et
le 4231, et aussi les élements du base de Kazhdan-Lusztig pour l’algébre de Hecke Hn(q). En utilissant cette
factorisation, nous montrons que pour chacque immanant totalement nonnegatif Immf (x) et l’expression
P

dwImmw(x) en terme de base dual canonique, le coefficient dw est nonnegatif quand w evite le 3412 et
le 4231.

1. Introduction

Searching for solutions of the quantum Yang-Baxter equation, Drinfeld [Dri85] and Jimbo [Jim85]
introduced a quantization Uq(slnC) of the universal enveloping algebra U(slnC). An explosion of mathemat-
ical research soon led to a quantization Oq(SLnC) of the coordinate ring O(SLnC), related by Hopf algebra
duality to Uq(slnC), and to a development of the representation theory of these algebras now known as
quantum groups. In particular, Kashiwara [Kas91] and Lusztig [Lus90] discovered a canonical (or crystal)
basis of Uq(slnC) which has many interesting representation theoretic properties. The corresponding dual
basis of Oq(SLnC) is known as the dual canonical basis and is perhaps best understood as the projection
of another dual canonical basis of the quantum polynomial ring Cq[x1,1, . . . , xn,n]. (See [Du92].) An ele-
mentary description of the canonical and dual canonical bases has been somewhat elusive, especially in the
nonquantum (q = 1) setting.

In [Lus94] Lusztig proved that when we specialize q = 1, the elements of the dual canonical basis of
C[x1,1, . . . , xn,n] are totally nonnegative (TNN) polynomials in the following sense. We define a matrix to be
totally nonnegative (TNN) if each of its minors is nonnegative. (See, e.g. [FZ00].) We define a polynomial
p(x) ∈ C[x1,1, . . . , xn,n] to be totally nonnegative (TNN) if for each n × n TNN matrix A = (ai,j), we have

p(A) =
def

p(a1,1, . . . , an,n) ≥ 0.

While it is not true that a polynomial is TNN only if it belongs to the dual canonical cone, we will show
that certain coordinates of the polynomial with respect to the dual canonical cone must be nonnegative. Our
criterion involves avoidance of the patterns 3412 and 4231 in permutations and thus links total nonnegativity
to smoothness in Schubert varieties.

In Section 2 we will review Du’s formulation of the dual canonical basis and show that these elements
can be expressed in terms of functions called immanants. In Section 3 we will state a factorization theorem
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for 3412-avoiding, 4231-avoiding permutations and for the corresponding Kazhdan-Lusztig basis elements.
In Section 4 we will use the factorization and immanant results to prove that for each TNN homogeneous
element p(x) of the coordinate ring O(SLn(C)), certain coordinates with respect to the dual canonical basis
must be nonnegative.

2. Kazhdan-Lusztig immanants and the dual canonical basis

The canonical bases of O(SLn(C)) and O(GLn(C)) may be obtained easily from a basis of the polynomial
ring C[x1,1, . . . , xn,n]. We will call this basis too the dual canonical basis.

Before explicitly describing the dual canonical basis, let us look at a multigrading of C[x1,1, . . . , xn,n] in
terms of multisets. The polynomial ring has a traditional grading by degree,

C[x] =
⊕

r≥0

Ar,

where Ar is the complex span of degree-r monomials. We may refine this grading by defining a multigrading
of Ar indexed by pairs of r-element multisets. Let M(n, r) be the set of r-element multisets of n. Then we
have

Ar =
⊕

M,M ′∈M(n,r)

Ar(M, M ′),

where we define a polynomial to be homogeneous of multidegree (M, M ′) if in each of its monomials, the
multiset of row indices is M and the multiset of column indices is M ′. For example, the polynomial
x1,1x

2
2,1x3,3 − x1,1x2,1x2,3x3,1 belongs to the component A3(1223, 1113) of C[x1,1, . . . , x3,3].

Closely related to this multigrading are generalized submatrices of x. Given two r-element multisets
M = m1 · · ·mr, M ′ = m′

1 · · ·m
′
r of [n] (written as weakly increasing words), define the (M, M ′) generalized

submatrix of x to be the matrix

xM,M ′ =




xm1,m′

1
xm1,m′

2
· · · xm1,m′

r

xm2,m′

1
xm2,m′

2
· · · xm2,m′

r

...
...

...
xmr,m′

1
xmr,m′

2
· · · xmr ,m′

r


 .

Letting y = xM,M ′ , we see that for every permutation w in Sr, the monomial

(2.1) y1,w(1) · · · yr,w(r) = xm1,m′

w(1)
· · ·xmn,m′

w(r)

belongs to Ar(M, M ′). We obtain the polynomial in the preceding paragraph from the matrix y = x1223,1113

as y1,1y2,2y3,3y4,4 − y1,1y2,2y3,4y4,3.
The multigrading is also closely related to parabolic subgroups of Sr as follows. Associate to M a subset

ι(M) of the generators {s1, . . . , sr−1} of Sr by

ι(M) = {sj |mj = mj+1}.

Let I = ι(M) and J = ι(M ′) be the subsets of generators of Sr corresponding to multisets M , M ′. Letting
the parabolic subgroups WI and WJ act by left and right multiplication on all r × r matrices (restricting
the defining representation of Sr to the parabolic subgroups), we see that xM,M ′ is fixed by this action.

The dual canonical basis of C[x1,1, . . . , xn,n] consists of homogeneous elements with respect to the multi-

grading above. Du gives a formula for the elements of this basis in terms of the following polynomials Q̃u,w(q)
which are alternating sums of (inverse) Kazhdan-Lusztig polynomials,

Q̃u,w(q) =
∑

v∈WIwWJ

u≤v≤w

(−1)`(w)−`(v)Pw0v,w0u(q),

where u and w are maximal representatives of cosets in WI\W/WJ , and ≤ is the Bruhat order on Sr. These
are generalizations of Deodhar’s q-parabolic Kazhdan-Lusztig polynomials [Deo91], for when I = ∅ we have

Q̃u,w(q) = P̃ J
w0ww′

0,w0uw′

0
(q),

where w0 and w′
0 are the longest elements of W and WJ , respectively.



DUAL CANONICAL BASIS

We will express the dual canonical basis in terms of Kazhdan-Lusztig immanants {Immu(x) |u ∈ Sn}
introduced in [RS05a],

Immu(x) =
∑

w≥u

(−1)`(w)−`(u)Pw0w,w0u(1)x1,w(1) · · ·xn,w(n),

and in terms of generalized submatrices as defined above.

Theorem 2.1. Let M , M ′ be two r-element multisets of [n]. The nonzero polynomials in the set
{Immv(xM,M ′ ) | v ∈ Sr} are the dual canonical basis of Ar(M, M ′). In particular, the permutations v corre-
sponding to nonzero polynomials are maximal length representatives of double cosets in Wι(M)\W/Wι(M ′).

Proof. Let I = ι(M), J = ι(M ′). By [Du92, Lem. 2.2], the canonical basis elements of Ar(M, M ′) are
in bijective correspondence with cosets in Wι(M)\W/Wι(M ′), and each has the form

Zu =
∑

z≥u

(−1)`(z′)−`(u′)Q̃u′,z′(1)x
α(z,1,1)
1,1 · · ·x

α(z,i,j)
i,j · · ·xα(z,n,n)

n,n ,

where u, z are minimal representatives of double cosets in WI\W/WJ , u′, z′ are the respective maximal coset
representatives, and

α(z, i, j) = |{z(k) |mk = i} ∩ {k |m′
k = j}|.

It is straightforward to show that u ≤ z if and only if u′ ≤ z′ for any pairs (u, z) and (u′, z′) of minimal coset
representatives and corresponding maximal coset representatives. (See [HS05] and references listed there.)
We may therefore rewrite Du’s description by summing over only maximal coset representatives,

Zu =
∑

z′≥u′

(−1)`(z′)−`(u′)Q̃u′,z′(1)x
α(z,1,1)
1,1 x

α(z,i,j)
1,2 · · ·xα(z,n,n)

n,n .

Let y = xM,M ′ . Then for any function f : Sr → C we have

(2.2) Immf (y) =
∑

w∈Sr

f(w)y1,w(1) · · · yn,w(n).

Since each permutation u in the double coset WIwWJ satisfies

y1,u(1) · · · yn,u(n) = y1,w(1) · · · yn,w(n),

we may sum over these double cosets,

Immf (y) =
∑

D∈WI\W/WJ

(
∑

v∈D

f(v)

)
y1,w(1) · · · yn,w(n),

where w is any representative of the double coset D. Note that yi,w(i) = xj,` if mi = j and m′
w(i) = `. Thus

the exponent of xj,` in y1,w(1) · · · yn,w(n) is equal to the number of indices i which satisfy

mi = j, m′
w(i) = `.

Since this is just α(w, i, j), we have

y1,w(1) · · · yn,w(n) = x
α(w,1,1)
1,1 · · ·xα(w,n,n)

n,n .

Now consider the function fu : v 7→ (−1)`(v)−`(u)Pw0v,w0u(1) and the corresponding immanant of y,
Immu(y) = Immfu

(y). If u is not a maximal representative of a double coset in WI\W/WJ , then by
[Cur85, Thm. 1.2] we have su > u for some transposition s in I, or we have us > u for some transposition
s in J . By [RS05a, Cor. 6.4] either of these conditions implies that Immu(y) = 0. Suppose therefore that
u′ is a maximal coset representative. Then by (2.2) we have

Immu′(y) =
∑

D∈WI\W/WJ



∑

v∈D
v≥u′

(−1)`(v)−`(u′)Pw0v,w0u′(1)


x

α(w′,1,1)
1,1 · · ·xα(w′,n,n)

n,n ,
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where w′ is the maximal representative of D, and we include the inequality v ≥ u′ because the number
Pw0v,w0u′(1) is zero otherwise. For each coset D and its maximal representative w′, the inner sum is equal
to

(−1)`(w′)−`(u′)
∑

v∈WIw′WJ

u′≤v≤w′

(−1)`(w′)−`(v)Pw0v,w0u′(1) = (−1)`(w′)−`(u′)Q̃u′,w′(1),

and we have

Immu′(y) =
∑

D∈WI\W/WJ

(−1)`(w′)−`(u′)Q̃u′,w′(1)x
α(w,1,1)
1,1 · · ·xα(w,n,n)

n,n .

Note that for any double coset whose maximal representative w′ satisfies u′ ≤ w′, we have Q̃u′,w′(1) = 0
and the contribution to the sum is zero. The sum therefore may be taken over double cosets D whose
maximal element w′ satisfies w′ ≥ u′, and we have

Zu = Immu′(xM,M ′ ),

as desired. �

Quantizing the Kazhdan-Lusztig immanants by

Immv(x; q) =
∑

w≥v

(−q−1/2)`(w)−`(v)Q̃v,w(q)x1,w(1) · · ·xn,w(n),

one constructs the quantum dual canonical basis of Ar(M, M ′) by taking all of the polynomials (q1/2)`(wJ
0 )−`(wI

0)Immv(xM,M ′ ; q),
where I = ι(M), J = ι(M ′), v is a maximal length coset representative in WI\W/WJ , and wI

0 , wJ
0 are the

maximal length elements of WI , WJ . Details will appear in [Ska05]. (See [Bru05], [Du92] for other
descriptions of this basis.)

Letting B be the dual canonical basis of C[x1,1, . . . , xn,n], we have the following formulas for the dual
canonical bases of the coordinate rings of GLn(C) and SLn(C). The dual canonical basis of

O(GL(n, C)) ∼= C[x1,1, . . . , xn,n, t]/(det(x)t − 1)

is obtained by dividing elements of B by powers of the determinant,

∪r≥0 ∪(M,M ′)∈M(n,r) {Immw(x) det(x)−k | k ≥ 0; w maximal in WιM\Sr/Wι(M ′)}.

The dual canonical basis of

O(SL(n, C)) ∼= C[x1,1, . . . , xn,n]/(det(x) − 1)

is obtained by projecting C[x1,1, . . . , xn,n] or O(GL(n, C)) onto O(SL(n, C)).

3. A Factorization Theorem

While each nonnegative linear combination of dual canonical basis elements is a totally nonnegative
polynomial, the converse of this statement is false. Intimately related to this fact is the vector space duality
between the component An([n], [n]) of the polynomial ring C[x1,1, . . . , xn,n] and and the group algebra C[Sn],
defined by

〈x1,u(1) · · ·xn,u(n), Tv〉 = δu,v.

In particular, Kazhdan and Lusztig [KL79] defined a basis {C′
w(q) |w ∈ Sn} of the Hecke algebra Hn(q) by

C′
v(q) = q−1/2

∑

u≤v

Pu,v(q)Tu,

where {Pu,v(q) |u, v ∈ Sn} are certain polynomials for which no elementary formula is known. Dual to this
basis is the basis of Kazhdan-Lusztig immanants,

〈Immu(x), C′
v(1)〉 = δu,v.

Since no elementary formula is known for the Kazhdan-Lusztig polynomials, it is not surprising that we
also have no elementary formula for the Kazhdan-Lusztig basis of the Hecke algebra or for the Kazhdan-
Lusztig immanants. Nevertheless, we can deduce certain properties of the Kazhdan-Lusztig immanants
by studying Kazhdan-Lusztig basis elements which have a rather simple form and others which factor as
products of these. The basis elements we shall consider correspond to permutations whose one-line notations
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avoid certain patterns. The factorization of these basis elements closely resembles the factorization of the
corresponding permutations.

Given a word u = u1 · · ·uk on a totally ordered alphabet and a permutation v in Sk with one-line
notation v1 · · · vk, we will say that u matches the pattern v if the letters of u appear in the same relative
order as those of v. We will also say that u1 matches the v1, u2 matches the v2, etc. For example, a word
u1u2u3 with u2 < u3 < u1 matches the pattern 312, with u1 matching the 3, u2 matching the 1, and u3

matching the 2.
We will say that a permutation w in Sn avoids the pattern v if no subword wi1 · · ·wik

with i1 < · · · < ik
matches the pattern v. We will also call such a permutation v-avoiding. In particular, we will be interested
in permutations which avoid the patterns 3412 and 4231. Note that a permutation w avoids these patterns
if and only if w−1 does, since the patterns are involutions. In particular, corresponding to each adjacent
transposition si is the basis element C′

si
(q) = q−1/2(Te + Tsi

), and we have the following factorization result
of Billey and Warrington [BW01].

Theorem 3.1. Let si1 · · · si`
be a reduced expression for w. Then we have

C′
w(q) = C′

si1
(q) · · ·C′

si`
(q)

if and only if the one-line notation for w avoids the patterns 321, 56781234, 46781235, 56718234, 46718235.

Other permutations w for which C′
w(q) has a particularly nice form are known as reversals. Write

s[i,j] for the permutation which fixes indices 1, . . . , i − 1, j + 1, . . . , n and reverses the remaining indices.
Corresponding to reversals are the Kazhdan-Lusztig basis elements

C′
s[i,j]

(q) = (q−1/2)(
j−i+1

2 )
∑

v≤s[i,j]

Tv

We will show in Theorem 3.3 that permutations which avoid the patterns 3412 and 4231 factor as products
of these basis elements.

To begin, we define the map ⊕ : Sn × Sm → Sn+m, as is somewhat customary, by

si1 · · · si`
⊕ sj1 · · · sjk

= si1 · · · si`
sj1+n · · · sjk+n.

Observation 3.2. If u and v are 3412-avoiding, 4231-avoiding permutations in Sm and Sn, then u⊕ v
is a 3412-avoiding, 4231-avoiding permutation in Sm+n.

We will say that a permutation w has an irreducible zig-zag factorization if there exist a positive integer
r, a sequence of nonnegative integers

j1, . . . , jr, k1, . . . , kr,

all odd except possibly for j1 and kr which may also be zero, and a sequence of intervals

(3.1) a0, b1,1, . . . , b1,j1 , a1, c1,1, . . . , c1,k1 , d1,

. . . , bi,1, . . . , bi,ji
, ai, ci,1, . . . , ci,ki

, di, . . . ,

br,1, . . . , br,jr
, ar, cr,1, . . . , cr,kr

, dr,

all nonempty except possibly for a0, ar, such that w is equal to the product of the reversals on these intervals
in the order listed,

w = sa0 · · · sdr
,

and the endpoints of the intervals, which we denote by

ai = [λ(ai), ρ(ai)], bi,j = [λ(bi,j), ρ(bi,j)], ci,k = [λ(ci,k), ρ(ci,k)], di = [λ(di), ρ(di)],

satisfy the following conditions.

(1) j1 = 0 if and only if a0 = s∅.
(2) kr = 0 if and only if ar = s∅.
(3) For each i satisfying ai−1 6= s∅ we have

λ(ai−1) < λ(bi,1)= λ(bi,2) < λ(bi,3)= · · · < λ(bi,ji
)= λ(di),

ρ(ai−1) = ρ(bi,1)< ρ(bi,2) = ρ(bi,3)< · · · = ρ(bi,ji
)< ρ(di).

(4) For each i satisfying ai 6= s∅ we have
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(5) and

λ(ai) = λ(ci,1)> λ(ci,2) = λ(ci,3)> · · · = λ(ci,ki
)> λ(di),

a′
i > ρ(ci,1)= ρ(ci,2) > ρ(ci,3)= · · · > ρ(ci,ki

)= ρ(di),

(6) For i = 1, . . . , r we have
ρ(bi,ji

) < λ(ci,ki
).

(7) For i = 1, . . . , r − 1 we have
ρ(ci,1) < ρ(bi+1,1).

Note that the intervals

{ai | 0 ≤ i ≤ r} ∪ {bi,j | 1 ≤ i ≤ r, j even } ∪ {ci,j | 1 ≤ i ≤ r, j even } ∪ {di | 1 ≤ i ≤ r}

have length at least two when they are nonempty.
Note that the lexicographic order on the set (3.1) of intervals (padded with zeros at the end) is

(3.2) a0, b1,1, . . . , b1,j1 , d1, c1,k1 , . . . , c1,1, a1,

. . . , bi,1, . . . , bi,ji
, di, ci,ki

, . . . , ci,k1 , ai, . . . ,

br,1, . . . , br,jr
, dr, cr,1, . . . , cr,kr

, ar,

If in this factorization we have r = 1 and k1 = 0, then the only intervals to appear are

a0, b1,1, . . . , b1,j1 , d1,

(with a0, b1,1, . . . , b1,j1 not appearing if j1 = 0) and we will say that the irreducible zig-zag factorization
is lexicographically increasing. Given a reversal factorization W1 · · ·Wp in which each Wi is an irreducible
zigzag factorization and the intervals don’t overlap, we will call this a zig-zag factorization. Note that each
permutation u possessing an irreducible zig-zag factorization decomposes as

u = e ⊕ · · · ⊕ e ⊕ v ⊕ e ⊕ · · · ⊕ e,

where e is the identity element of S1, and v possesses the same irreducible zig-zag factorization as u.

Proposition 3.1. A permutation avoids the patterns 3412, 4231 if and only if it has a zig-zag factor-
ization.

Proof. Omitted. �

Two examples of 3412-avoiding, 4231-avoiding permutations and zig-zag factorizations are

654213 = s[1,5]s[3,5]s[3,6], 621354 = s[1,3]s[3,4]s[4,6].

Proposition 3.2. Let sI1 · · · sIp
be a zig-zag factorization of w ∈ Sn, let (t1, . . . , tp) be a subexpression

of this factorization, and define the permutation u = t1 · · · tp. Then u ≤ w in the Bruhat order.

Proof. Omitted. �

The above factorization results for permutations translate into the following factorization result for
Kazhdan-Lusztig basis elements. Given a sequence of intervals I = (I1, . . . , Ir), define the Hn(q) algebra
element

Φ(I1, . . . , Ir ; q) = C′
sI1

(q) · · ·C′
sIr

(q).

Theorem 3.3. Let w avoid the patterns 3412 and 4231 and have zig-zag factoriztion (3.1), define the
sequence of intervals

(3.3) I = (a0, b1,2, b1,4, . . . , b1,j1−1, a1, c1,2, c1,4, . . . , c1,k1−1, d1,

. . . , bi,2, . . . , bi,ji−1, ai, ci,2, . . . , ci,ki−1, di, . . . ,

br,2, . . . , br,jr−1, ar, cr,2, . . . , cr,kr−1, dr)

and define the number

γ =
r∏

i=1

∏

j=1
j odd

|bi,j |!
∏

k=1
k odd

|ci,k|!.
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Then the Kazhdan-Lusztig basis element C′
w(1) factors as

C′
w(1) = 1

γ Φ(I; 1),

and the Kazhdan-Lusztig basis element C′
w(q) factors as

C′
w(q) = q−`(w)/2C′

w(1),

or equivalently

C′
w(q) = 1

γ qδ/2Φ(I; q),

where

δ =

r∑

i=0

(
|ai|

2

)
+

r∑

i=0

(
|di|

2

)
+
∑

j=1
j even

(
|bi,j |

2

)
+
∑

k=1
k even

(
|ci,k|

2

)
− `(w).

Proof. Omitted. �

Corresponding to previoius examples of 3412−avoiding,4231−avoiding permutations and zig-zag fac-
torizations are the factorizations of Kazhdan-Lusztig basis elements,

654213 = s[1,5]s[3,5]s[3,6], 621354 = s[1,3]s[3,4]s[4,6],

C′
654213(q) = C′

s[1,5]
(q)

q3/2

3q!
C′

s[3,6](q), C′
621354(q) = C′

s[1,3]
(q)C′

s[3,4](q)C
′
s[4,6](q).

4. The dual cone of total nonnegativity

In [RS05a, Sec. 7], we have cones of TNN and SNN elements of spanC{x1,w(1) · · ·xn,w(n) |w ∈ Sn} were
defined. Virtually all of the known TNN and SNN polynomials belong to these cones. (See [RS05a, Sec. 1].)
Generalizing these definitions a bit, we will define the following cones of functions on n×n matrices. Define
the dual canonical cone, the dual cone of total nonnegativity, and the dual cone of Schur nonnegativity,
which we will denote by ČB , ČTNN, and ČSNN, respectively, to be the cones whose extreme rays are ho-
mogeneous elements of C[x1,1, . . . , xn,n] belonging to B, having the TNN property, and having the SNN
property, respectively. Our use of the term dual refers to the relationship of this point of view to that of
Stembridge [Ste92], who define the cone of total nonnegativity to be the smallest cone in C[Sn] containing
all of elements of the form

∑
w∈Sn

a1,w(1) · · · an,w(n), where A = (ai,j) is a totally nonnegative matrix.
Using this terminology, we have the following.

Corollary 4.1. The dual canonical cone is contained in the intersection of the dual cones of total
nonnegativity and Schur nonnegativity.

Proof. The main results of [RS05a] and [RS05b] show that Kazhdan-Lusztig immanants of general-
ized submatrices of x = (xi,j)

n
i,j=1 are TNN and SNN. Since the cone generated by these functions is ČB ,

we have the desired result. �

The author and A. Zelevinsky have verified that the containment of ČB in ČTNN is strict. In particular,
the homogeneous element

(4.1) Imm3214(x) + Imm1432(x) − Imm3412(x)

belongs to ČTNN r ČB . Moreover we have used cluster algebras and Maple to show that this element is
equal to a subtraction-free rational expression in matrix minors. Thus the cone of functions which have this
subtraction-free rational function (SFR) property must also properly contain ČB . On the other hand, the
element (4.1) does not belong to ČSNN, for its evaluation on the Jacobi-Trudi matrix H2222 expands in the
Schur basis as

2s62 + 2s53 + 2s521 − s44 + 2s431 + 2s422.

Thus ČB and ČSNN are not known to be different. Let us examine the difference ČTNN r ČB more closely.



M. Skandera

Theorem 4.2. Let H be the planar network corresponding to a zig-zag factorization of a 3412-avoiding,
4231-avoiding permutation w in Sn, and let Aw be the path matrix of H. Then there exists a nonnegative
integer c such that we have

Immv(Aw) =

{
c if v = w,

0 otherwise.

Proof. Omitted. �

The existence of the matrices specified by the previous theorem allows us to compare the dual canonical
cone with the dual cone of total nonnegativity as follows.

Theorem 4.3. Let Immf (x) be totally nonnegative and let its expansion in terms of Kazhdan-Lusztig
immanants be given by

Immf (x) =
∑

w∈Sn

dwImmw(x).

Then cu is nonnegative for each 3412-avoiding, 4231-avoiding permutation u.

Proof. Let u be a 3412-avoiding, 4231-avoiding permutation in Sn, and suppose that du is negative.
Let Gu be the planar network corresponding to the reversal factorization of u, and let Au be the path matrix
of Gu. Then we have

Immf (Au) = cdu < 0,

contradicting the total nonnegativity of Immf (x). �

Theorem 4.3 suggests several problems. Recalling Lakshmibai and Sandhya’s result [LS90] that a
permutation w’s avoidance of the patterns 3412 and 4231 is equivalent to smoothness of the Schubert variety
Γw, we have the following.

Problem 4.4. Find an intuitive reason for the connection between total nonnegativity, the dual canonical
basis, and smoothness of Schubert varieties.

It would also be interesting to understand precisely how the cones mentioned earlier are related.

Problem 4.5. Find the extremal rays of ČTNN, ČSNN, and the cone of SFR functions in C[x1,1, . . . , xn,n],
or describe the containments satisfied by these cones.

Since the factorizations given in Theorems 3.1 and 3.3 agree on permutations which avoid all seven of
the forbidden patterns, the author believes that there is a simple generalization of the two results. It would
be interesting to understand in even greater generality which elements of the Kazhdan-Lusztig basis factor
as products of others.
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