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Abstract. Gil Kalai introduced the shifting-theoretic upper bound relation to characterize the f -vectors of
Gorenstein* complexes (or homology spheres) by using algebraic shifting. In the present paper, we study the
shifting-theoretic upper bound relation. First, we will study the relation between exterior algebraic shifting
and combinatorial shifting. Second, by using the relation above, we will prove that the boundary complex
of cyclic polytopes satisfies the shifting theoretic upper bound relation. We also prove that the boundary
complex of stacked polytopes satisfies the shifting-theoretic upper bound relation.

Résumé. Gil Kalai a défini une relation ”shifting-theoretic upper bound” pour caractériser les f -vecteurs des
complexes de Gorenstein (sphères d’homologie) en termes de décalages algébriques. Dans cet article, nous
étudions cette relation. Premièrement, nous étudions la relation entre le décalage algébrique exterieur et le

décalage combinatoire. Ensuite, en utilisant cette relation, nous démontrons que le complexe des frontières
des polytopes cycliques satisfait la relation ”shifting-theoretic upper bound”.

1. Introduction

Let Γ be a simplicial complex on [n] = {1, . . . , n}. Thus Γ is a collection of subsets of [n] such that (i)
{j} ∈ Γ for all j ∈ [n] and (ii) if σ ⊂ [n] and τ ∈ Γ with σ ⊂ τ , then σ ∈ Γ. A k-face of Γ is an element
σ ∈ Γ with |σ| = k + 1. The k-skeleton of Γ is a family of (k + 1)-subset Γk = {σ ∈ Γ : |σ| = k + 1}.
Let fk(Γ) = |Γk| the numbers of k-faces of Γ. The vector f(Γ) = (f0(Γ), f1(Γ), . . . ) is called the f -vector
of Γ. If σ = {s1, s2, . . . , sr} and τ = {t1, t2, . . . , tr} are r-subsets of [n] with sj < sj+1 and tj < tj+1 for
j = 1, 2, . . . , r − 1, write σ ≺p τ if sj ≤ tj for all 1 ≤ j ≤ r. A simplicial complex Γ is called shifted if τ ∈ Γ
and σ ≺p τ implies σ ∈ Γ.

The g-theorem gives a complete characterization of the f -vectors of boundary complexes of simplicial
polytopes. (see [10, pp 75–78].) It has been conjectured that the characterization of g-theorem holds for
all Gorenstein* complexes. In the present paper, we call this conjecture the g-conjecture. In [5], Kalai
introduced the shifting-theoretic upper bound relation to solve the g-conjecture by using algebraic shifting.
We recall shifting-theoretic upper bound relation.

Algebraic shifting is an operation which associates with each simplicial complex Γ another shifted sim-
plicial complex ∆(Γ). There are two types of algebraic shifting, i.e., exterior algebraic shifting Γ → ∆e(Γ)
and symmetric algebraic shifting Γ → ∆s(Γ).

For positive integers i < j, we write [i, j] = {i, i + 1, . . . , j − 1, j} and [i] = {1, 2, . . . , i}. A d-subset
σ is called admissible if j 6∈ σ implies [j + 1, d − j + 2] ⊂ σ. Let C(n, d) be the boundary complex of the
cyclic d-polytope with n vertices. Kalai [4] proved that ∆s(C(n, d)) is pure and ∆s(C(n, d))d−1 consists of
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all admissible d-subsets of [n], in other words,

∆s(C(n, d))d−1 = {[1, b
d + 1

2
c] ∪ σ : σ ⊂ [b

d + 1

2
c + 1, n], |σ| = d − b

d + 1

2
c}

⋃

1≤j≤b d+1

2
c

{([1, d − j + 2] \ {j}) ∪ σ : σ ⊂ [d − j + 3, n], |σ| = j − 1},

where bd+1
2 c means the integer part of d+1

2 . Furthermore, Kalai proved that the boundary complex P of
every simplicial d-polytope with n vertices satisfies ∆s(P ) ⊂ ∆s(C(n, d)) by using the Lefschetz property
of P (see §1.2 for the Lefschetz property). Furthermore, Kalai noticed that if Γ is a (d − 1)-dimensional
Gorenstein* complex Γ on [n] then the relation ∆s(Γ) ⊂ ∆s(C(n, d)) is equivalent to the Lefschetz property
of Γ.

It is not hard to see that if every (d − 1)-dimensional Gorenstein* complex Γ on [n] satisfies ∆e(Γ) ⊂
∆s(C(n, d)) then the g-conjecture is true. We say that a (d − 1)-dimensional complex Γ on [n] satisfies the
shifting-theoretic upper bound relation if Γ satisfies ∆e(Γ) ⊂ ∆s(C(n, d)). Kalai and Sarkaria conjectured that
if Γ is a simplicial complex on [n] whose geometric realization can be embedded in Sd−1 then Γ satisfies the
shifting-theoretic upper bound relation. However, it is not known whether Γ satisfies the shifting-theoretic
upper bound relation even if Gamma is the boundary complex of a simplicial polytope. In the present paper,
we will show that C(n, d) and the boundary complex of stacked polytopes satisfies the shifting-theoretic upper
bound relation.

In general, the computation of exterior algebraic shifting is rather difficult. First, we will show that
we can use combinatorial shifting to study shifting theoretic upper bound relation. Combinatorial shifting,
which was introduced by Erdös, Ko and Rado [3], is also an operation which associates with each simplicial
complex Γ another shifted simplicial complex ∆c(Γ). Although combinatorial shifting may not be uniquely
determined, it is easily computed by a simple combinatorial method. Regarding the relation between exterior
algebraic shifting and combinatorial shifting, we have the following result.

Theorem 1.6. Let Γ be a (d− 1)-dimensional Cohen-Macaulay complex on [n] with hd(Γ) 6= 0 and with
hi(Γ) = hd−i(Γ) for i = 0, 1, . . . , bd

2c.

(i) If ∆c(Γ)d−1 ⊂ ∆s(C(n, d))d−1, then this ∆c(Γ) is pure.
(ii) If there is a combinatorial shifted complex ∆c(Γ) of Γ with ∆c(Γ)d−1 ⊂ ∆s(C(n, d))d−1, then one

has ∆e(Γ) ⊂ ∆s(C(n, d)).

Thus, we can use combinatorial shifting for the shifting-theoretic upper bound relation. Also, since
combinatorial shifting is entirely a combinatorial operation, proving ∆c(P ) ⊂ ∆s(C(n, d)) for the boundary
complex P of a simplicial d-polytope without using the Lefschetz property would be interesting. By using
Theorem 1.6, we compute the exterior algebraic shifted complex of the boundary complex of the cyclic
d-polytope.

Theorem 2.1. Let C(n, d) be the boundary complex of the cyclic d-polytope with n vertices. Then there
is a combinatorial shifted complex ∆c(C(n, d)) such that ∆c(C(n, d)) = ∆s(C(n, d)). Thus, in particular,
one has ∆e(C(n, d)) = ∆s(C(n, d)).

We also compute algebraic shifting of the boundary complex of a stacked d-polytope with n vertices.

Theorem 2.2. Let L(n, d) be the pure (d − 1)-dimensional simplicial complex spanned by

{{2, . . . , d + 1}} ∪ {({1, . . . , d} \ {i}) ∪ {j} : 1 < i ≤ d, j > d or j = i}.

Let P (n, d) be the boundary complex of a stacked d-polytope with n vertices. Then

(i) One has ∆e(P (n, d)) = ∆s(P (n, d)) = L(n, d).
(ii) If Γ is the boundary complex of a simplicial d-polytope with n vertices, then one has

∆s(P (n, d)) ⊂ ∆s(Γ).

Note that ∆s(P (n, d)) = L(n, d) and (ii) easily follows from the relation ∆s(P (n, d)) ⊂ ∆s(C(n, d)). To
prove ∆e(P (n, d)) = L(n, d), we use the fact that the 1-skeleton of P (n, d) is a chordal graph. However,
we are not sure that L(n, d) can be obtained by applying combinatorial shifting to P (n, d), the boundary
complex of an arbitrary stacked d-polytopes with n vertices.



ALGEBRAIC SHIFTING OF CYCLIC AND STACKED POLYTOPES

1.1. algebraic shifting and combinatorial shifting. To define algebraic shifting, we need the theory
of generic initial ideals in the exterior algebra.

Let K be an infinite field, V a vector space over K of dimension n with basis e1, . . . , en and E =
⊕n

d=0

∧d
(V ) the exterior algebra of V . In other words, E is a K-algebra which satisfies

(i) Each
∧d

(V ) is a
(

n
d

)

dimensional K-vector space with the canonical K-basis
{es1

∧ es2
∧ · · · ∧ esd

: 1 ≤ s1 < s2 < · · · < sd ≤ n}.
(ii) For any integers i, j ∈ [n], one has ei ∧ ej = −ej ∧ ei.

For σ = {s1, . . . , sd} ⊂ [n] with s1 < · · · < sd, we call eσ = es1
∧· · ·∧esd

∈
∧d

(V ) a monomial of E of degree

d. Fix a term order <. For every homogeneous element f =
∑

|σ|=d ασeσ ∈
∧d

(V ) with each ασ ∈ K, the

monomial in<(f) = max<{eσ : ασ 6= 0} is called the initial monomial of f . Also, for every homogeneous
ideal J ⊂ E, The initial ideal of J is the monomial ideal generated by {in<(f) : f ∈ J}. A monomial ideal
J ⊂ E is called strongly stable if eτ ∈ J and τ ≺p σ means eσ ∈ J .

Let GLn(K) denote the general linear group with coefficients in K. Any ϕ = (aij) ∈ GLn(K) induce
an automorphism of graded K-algebra E as follows:

ϕ(f(e1, . . . , en)) = f(
n

∑

i=1

ai1ei, . . . ,
n

∑

i=1

ainei) for all f ∈ E.

If J ⊂ E is a homogeneous ideal, then each ϕ ∈ GLn(K) gives another homogeneous ideal ϕ(J) = {ϕ(f) :
f ∈ J}. Now, we recall the fundamental theorem of generic initial ideals.

Lemma 1.1 ([1, Theorem 1.6]). Let K be an infinite field. Fix a term order < with e1 < · · · < en.
Then, for each homogeneous ideal J ⊂ E, there exists a nonempty Zariski open subset U ⊂ GLn(K) such
that in<(ϕ(J)) = in<(ϕ′(J)) for all ϕ, ϕ′ ∈ U and this in<(ϕ(J)) is strongly stable.

This monomial ideal in<(ϕ(J)) is called the generic initial ideal of J ⊂ E with respect to the term order
< and will be denoted Gin<(J). In particular, we write Gin(J) = Gin<rev

(J), where <rev is the degree
reverse lexicographic order with e1 < e2 < · · · < en. In other words, for σ ⊂ [n] and τ ⊂ [n] with σ 6= τ ,
define eσ <rev eτ if (i) |σ| < |τ | or (ii) |σ| = |τ | and the minimal integer in symmetric difference (σ\τ)∪(τ \σ)
belongs to σ. Also, we define σ <rev τ by the same way.

A shifting operation on [n] is an operator which associates with each simplicial complex Γ on [n] a
simplicial complex ∆(Γ) on [n] and which satisfies the following conditions:

(S1) ∆(Γ) is shifted;
(S2) ∆(Γ) = Γ if Γ is shifted;
(S3) f(Γ) = f(∆(Γ));
(S4) ∆(Γ′) ⊂ ∆(Γ) if Γ′ ⊂ Γ.

(Exterior algebraic shifting) Let Γ be a simplicial complex on [n]. The exterior face ideal of Γ is a
monomial ideal of E generated by all monomials eσ ∈ E with σ 6∈ Γ. The exterior algebraic shifted complex
of Γ is the simplicial complex ∆e(Γ) defined by

J∆e(Γ) = Gin(JΓ).

The shifting operation Γ 7→ ∆e(Γ) which is in fact a shifting operation ([6, Proposition 8.8]), is called exterior
algebraic shifting.

(Combinatorial shifting) Erdös, Ko and Rado [3] introduced combinatorial shifting. Let Γ be a collection
of r-subsets of [n], where r ≤ n. For 1 ≤ i < j ≤ n, write Shiftij(Γ) for the collection of r-subsets of [n]
whose elements are Cij(σ) ⊂ [n], where σ ∈ Γ and where

Cij(σ) =

{

(σ \ {j})
⋃

{i}, if j ∈ σ, i 6∈ σ and (σ \ {j})
⋃

{i} 6∈ Γ,
σ, otherwise.

We can define Shiftij(Γ) for a simplicial complex Γ by the same way. It follows from, e.g., [6, Corollary 8.6]
that there exists a finite sequence of pairs of integers (i1, j1), (i2, j2), . . . , (iq, jq) with each 1 ≤ ik < jk ≤ n
such that

Shiftiqjq
(Shiftiq−1jq−1

(· · · (Shifti1j1(Γ)) · · · ))
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is shifted. Such a shifted complex is called a combinatorial shifted complex of Γ and will be denoted by
∆c(Γ). A combinatorial shifted complex ∆c(Γ) of Γ is, however, not necessarily unique. The shifting
operation Γ 7→ ∆c(Γ), which is in fact a shifting operation ([6, Lemma 8.4]), is called combinatorial shifting.

Algebraic shifting behaves nicely. For example, algebraic shifting preserves the Cohen-Macaulay property
and preserves the dimension of reduced homology groups. On the other hand, combinatorial shifting does
not behave nicely. However, the advantage of combinatorial shifting is that we can easily compute them by
purely combinatorial methods. Hence the following problem naturally occurs.

Problem (Kalai [5, Problem 24]). What are the relations between combinatorial shifting and algebraic
shifting?

We will remark a relation between combinatorial shifting and exterior algebraic shifting. For every
σ ⊂ [n] and for every shifted simplicial complex Γ on [n], define

m≤σ(Γ) = |{τ ∈ Γ : τ ≤rev σ and |τ | = |σ|}|.

Then we have the following relation between ∆c(Γ) and ∆e(Γ).

Lemma 1.2. Let Γ be a simplicial complex on [n]. Then, for any combinatorial shifted complex ∆c(Γ)
and for any subset σ ⊂ [n], one has

m≤σ(∆e(Γ)) ≥ m≤σ(∆c(Γ)).

Proof. It is not hard to see that (see [6, Lemma 8.3]), for all integers 1 ≤ i < j ≤ n, there is
ϕij ∈ GLn(K) such that in<rev

(ϕij(IΓ)) = IShiftij(Γ). For each ϕ ∈ GLn(K), define a simplicial complex
∆ϕ(Γ) by

I∆ϕ(Γ) = in<rev
(ϕ(IΓ)).

Then, it follows from [8, Theorem 3.1] that, for every σ ⊂ [n], one has

m≤σ(∆e(Γ)) ≥ m≤σ(∆e(∆ϕ(Γ))).(1.1)

By the definition of combinatorial shifting, there exists a finite sequence of pairs of integers (i1, j1), (i2, j2), . . . , (iq, jq)
such that ∆c(Γ) = ∆ϕiqjq

(∆ϕiq−1jq−1
(· · · (∆ϕi1j1

(Γ)) · · · )). Also, since ∆c(Γ) is shifted, the conditions of

shifting operation say ∆e(∆c(Γ)) = ∆c(Γ). Then, by (1.1), we have

m≤σ(∆e(Γ)) ≥ m≤σ(∆e(∆ϕiqjq
(∆ϕiq−1jq−1

(· · · (∆ϕi1j1
(Γ)) · · · ))))

= m≤σ(∆e(∆c(Γ)))

= m≤σ(∆c(Γ)),

for every σ ⊂ [n], as desired. �

Note that Lemma 1.2 induces some other relations between combinatorial shifting and exterior algebraic
shifting. For example, it was used in [9] to compare the graded Betti numbers of the Stanley-Reisner ideal
of ∆e(Γ) and ∆c(Γ).

1.2. The shifting-theoretic upper bound relation. The shifting-theoretic upper bound relation
was considered from the viewpoint of symmetric algebraic shifting. Thus, first, we recall symmetric algebraic
shifting which was introduced in [4]. We refer the reader to [10] for the definition of Cohen-Macaulay
complexes and Gorenstein∗ complexes.

(Symmetric algebraic shifting) Let K be a field of characteristic 0 and R = K[x1, . . . , xn] the polynomial
ring. Let Γ be a simplicial complex on [n]. The Stanley-Reisner ideal IΓ of Γ is a monomial ideal generated
by all squarefree monomials xi1xi2 · · ·xir

with {i1, i2, . . . , ir} 6∈ Γ and {i1, i2, . . . , ir} ⊂ [n]. The ring R(Γ) =
R/IΓ is called the face ring of Γ.

Let y1, y2, . . . , yn be generic linear forms in x1, x2, . . . , xn and M the set of monomials in y1, y2, . . . , yn.
For every monomial m in M , denote its image in R(Γ) by m̃. Define

GIN(Γ) = {m ∈ M : m̃ 6∈ span{l̃ : deg(l) = deg(m), l <rev m}}.
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For every monomial m ∈ GIN(Γ) with deg(m) = r ≤ n which does not involve y1, y2, . . . , yr−1, write
m = yi1yi2 · · · yir

with i1 ≤ i2 ≤ · · · ≤ ir, and define

S(m) = {i1 − r + 1, i2 − r + 2, . . . , ir−1 − 1, ir}.

The symmetric algebraic shifted complex ∆s(Γ) of Γ is defined by

∆s(Γ) = {S(m) : m ∈ GIN(Γ), deg(m) = r ≤ n and yi does not divides m for i ≤ r − 1}.

The shifting operation Γ → ∆s(Γ) which is in fact a shifting operation ([6, §8]), is called symmetric algebraic
shifting.

Second, we recall h-vectors. Let Γ be a (d − 1)-dimensional simplicial complex and (f0, f1, . . . , fd−1)
f -vectors of Γ. The h-vector of Γ is defined by the relation

d
∑

i=0

hi(Γ)xd−i =

d
∑

i=0

fi−1(x − 1)d−i,

where we let f−1 = 1. This is equivalent to

hi(Γ) =

i
∑

j=0

(−1)i−j

(

d − j

d − i

)

fj−1 and fi−1 =

i
∑

j=0

(

d − j

d − i

)

hi(Γ).

(The Lefschetz property) Let Γ be a (d − 1)-dimensional Cohen-Macaulay simplicial complex and
ϑ1, ϑ2, . . . , ϑd generic linear forms. Then ϑ1, ϑ2, . . . , ϑd is a system of parameters of R(Γ). Let

d
⊕

i=0

Hi(Γ) = R(Γ)/ < ϑ1, ϑ2, . . . , ϑd >,

where Hi(Γ) is the i-th homogeneous component of R(Γ)/ < ϑ1, ϑ2, . . . , ϑd >. It is well known [10, pp.
53–58] that

hi(Γ) = dimK Hi(Γ).

Let ϑd+1 be an additional general linear form and s = max{k : hk(Γ) 6= 0}. A (d − 1)-dimensional Cohen-
Macaulay simplicial complex Γ is called (strongly) Lefschetz if, for 0 ≤ i ≤ b s

2c, the multiplication

ϑs−2i
d+1 : Hi(Γ) → Hs−i(Γ)

is an isomorphism. Note that the boundary complex of every simplicial polytope is Lefschetz. The important
aspect of Lefschetz property is that proving the Lefschetz property for all Gorenstein* complexes implies the
g-conjecture. See [10, pp75–78] for the detail.

Next, we recall some basic property of algebraic shifting.

Lemma 1.3 ([6, Lemma 8.]). Let Γ be a simplicial complex. The followings are equivalent:

(i) Γ is Cohen-Macaulay;
(ii) ∆e(Γ) is Cohen-Macaulay;
(iii) ∆e(Γ) is pure.

Lemma 1.3 is also true for symmetric algebraic shifting ∆s. Also, if Γ is Cohen-Macaulay, then h-vectors
of Γ appears in ∆e(Γ) and ∆s(Γ) by the following way.

Lemma 1.4 (Kalai [4, Lemma 7.1]). Let Γ be a pure shifted (d− 1)-dimensional simplicial complex. Let
Wi(Γ) = {σ ∈ Γ : |σ| = d, [d − i] ⊂ σ and d − i + 1 6∈ σ}. Then hi(Γ) = |Wi(Γ)|.

Proof. For every monomial m ∈ K[y1, . . . , yn] with deg(u) = i, denote its image in R(Γ)/ < y1, y2, . . . , yd >
by [m]. Let

Li(Γ) = {m ∈ GIN(Γ) : deg(m) = i and m ∈ K[yd+1, . . . , yn]}.

First, we will show that dimK Hi(Γ) = |Li(Γ)|. If m is a monomial in K[yd+1, . . . , yn] with deg(m) = i

and l is a monomial in < y1, . . . , yd > with deg(l) = i, then l <rev m. Since GIN(Γ) = {m ∈ M : m̃ 6∈ span{l̃ :
l <rev m}}, it follows that the set of monomials m̃ with m ∈ GIN(Γ)i∩ < y1, . . . , yd >= {GIN(Γ)i \ Li(Γ)}
is a K-basis of {R(Γ)∩ < y1, . . . , yd >}i. Thus {[m] : m ∈ Li(Γ)} is a K-basis of {R(Γ)/ < y1, . . . , yd >}i.
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On the other hand, since y1, y2, . . . , yn are generic linear forms, it follows that y1, . . . , yd are generic system
of parameters. Thus Hi(Γ) = {R(Γ)/ < y1, . . . , yd >}i and, therefore, dimK Hi(Γ) = |Li(Γ)|.

Second, we will show that if ∆s(Γ) is pure and shifted, then, for all 0 ≤ i ≤ d, we have

Wi(∆
s(Γ)) = {[d − i] ∪ S(m) : m ∈ Li(Γ)}.(1.2)

For any m ∈ Li(Γ), we have min(S(m)) ≥ d− i+2 and |S(m)| = i. Since ∆s(Γ) is pure and shifted, we have
[d− i]∪ S(m) ∈ Wi(∆

s(Γ)). Conversely, if [d− i]∪ σ ∈ Wi(∆
s(Γ)), then σ ∈ ∆s(Γ) and min(σ) ≥ d− i + 2.

Hence there is m ∈ Li(Γ) with S(m) = σ.
Since Γ is shifted, we have ∆s(Γ) = Γ. Then the relation (1.2) says |Wi(Γ)| = |Li(Γ)| = dimK Hi(Γ) =

hi(Γ). �

Lemma 1.5 (Kalai). Let Γ be a (d − 1)-dimensional Cohen-Macaulay simplicial complex on [n] with
hd(Γ) 6= 0. The followings are equivalent:

(i) Γ is Lefschetz;
(ii) ∆s(Γ) ⊂ ∆s(C(n, d)) and hi(Γ) = hd−i(Γ) for all 0 ≤ i ≤ d.

Proof. ((i) ⇒ (ii)) The relation hi(Γ) = hd−i(Γ) immediately follows from the definition of Lefschetz

property. Note that ∆s(Γ)d−1 =
⋃d

j=0 Wi(∆
s(Γ)). We will show Wi(∆

s(Γ)) ⊂ Wi(∆
s(C(n, d))) for all

0 ≤ i ≤ d. For 0 ≤ i ≤ d
2 , the inclusion Wi(Σ) ⊂ Wi(∆

s(C(n, d))) is true for an arbitrary simplicial complex
Σ. Since y1, y2, . . . , yn are generic linear forms, it follows that y1, . . . , yd are generic system of parameters and
yd+1 is an additional generic linear form. Then, by assumption, the multiplication yd−2i

d+1 : Li(Γ) → Ld−i(Γ)

is a bijection. Then, for 0 ≤ i ≤ d
2 , Ld−i(Γ) is of the form Ld−i(Γ) = {yd−2i

d+1 m : m ∈ Li(Γ)}. Also, for every

m ∈ Li(Γ) with 0 ≤ i ≤ d
2 , we have

S(yd−2i
d+1 m) = {i + 2, . . . , d − i + 1} ∪ S(m)(1.3)

Thus, for 0 ≤ i ≤ d
2 , relation (1.2) says that Wd−i(∆

s(Γ)) is of the form

Wd−i(∆
s(Γ)) = {[i] ∪ {i + 2, . . . , d − i + 1} ∪ S(m) : m ∈ Li(Γ)} ⊂ Wd−i(∆

s(C(n, d))).

((ii) ⇒ (i)) If ∆s(Γ) ⊂ ∆s(C(n, d)), then, for 0 ≤ i ≤ d
2 , each Wd−i(∆

s(Γ)) is of the form

Wd−i(Γ) = {[i] ∪ {i + 2, . . . , d − i + 1} ∪ σ ∈ Γ : |σ| = i}.

Since ∆s(Γ) is shifted, there is a natural injection form Wd−i(Γ) to Wi(Γ) as follows:

[i] ∪ {i + 2, . . . , d − i + 1} ∪ σ 7→ [d − i] ∪ σ.(1.4)

Since hi(Γ) = hd−i(Γ), Lemma 1.4 says this injection is a bijection. Then (1.2) and (1.3) implies that the

multiplication yd−2i
d+1 : Li(Γ) → Ld−i(Γ) is a bijection. �

Let Γ be a (d − 1)-dimensional Gorenstein* complex on [n]. Since ∆s(∆e(Γ)) = ∆e(Γ), Lemma 1.5
says that ∆e(Γ) is Lefschetz if and only if ∆e(Γ) ⊂ ∆s(C(n, d)) and hi(Γ) = hd−i(Γ) for i = 0, 1, . . . , bd

2c.

Since hi(Γ) = hd−i(Γ), where 0 ≤ i ≤ bd
2c, are true for arbitrary Gorenstein* complex, if we can prove

the relation ∆e(Γ) ⊂ ∆s(C(n, d)) for arbitrary (d − 1)-dimensional Gorenstein* complex Γ on [n], then we
can prove the g-conjecture. However, the relation ∆e(Γ) ⊂ ∆s(C(n, d)) is unknown even for the boundary
complex of simplicial polytopes. We say that a (d − 1)-dimensional simplicial complex Γ on [n] satisfies the
shifting-theoretic upper bound relation if Γ satisfies ∆e(Γ) ⊂ ∆e(C(n, d)).

We will show that if ∆c(Γ) is Lefschetz, then ∆e(Γ) is also Lefschetz by using Lemma 1.2.

Theorem 1.6. Let Γ be a (d− 1)-dimensional Cohen-Macaulay complex on [n] with hd(Γ) 6= 0 and with
hi(Γ) = hd−i(Γ) for i = 0, 1, . . . , bd

2c.

(i) If ∆c(Γ)d−1 ⊂ ∆s(C(n, d))d−1, then this ∆c(Γ) is pure.
(ii) If there is a combinatorial shifted complex ∆c(Γ) of Γ with ∆c(Γ)d−1 ⊂ ∆s(C(n, d))d−1, then one

has ∆e(Γ) ⊂ ∆s(C(n, d)).
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Proof. (i) Fix a combinatorial shifted complex ∆c(Γ) which satisfies the assumption ∆c(Γ)d−1 ⊂
∆s(C(n, d))d−1. We will show |Wi(∆

c(Γ))| = hi(Γ) for all 0 ≤ i ≤ d.
Let σ(i, n) = [d − i] ∪ {n− i + 1, . . . , n}. Then, for every σ ⊂ [n] with |σ| = d, we have σ ≤rev σ(i, n) if

and only if [d − i] ⊂ σ. This implies that, for every (d − 1)-dimensional pure shifted simplicial complex Σ,
we have

m≤σ(i,n)(Σ) =

i
∑

j=0

|Wi(Σ)|.

Then Lemma 1.2 says that , for 0 ≤ i ≤ d
2 , we have

i
∑

j=0

|Wj(∆
e(Γ))| ≥

i
∑

j=0

|Wj(∆
c(Γ))| and

i
∑

j=0

|Wd−j(∆
e(Γ))| ≤

i
∑

j=0

|Wd−j(∆
c(Γ))|.(1.5)

On the other hand, since ∆c(Γ)d−1 ⊂ ∆s(C(n, d))d−1, the injection (1.4) says |Wi(∆
c(Γ))| ≥ |Wd−i(∆

c(Γ))|
for 0 ≤ i ≤ d

2 . In particular, we have

i
∑

j=0

|Wj(∆
c(Γ))| ≥

i
∑

j=0

|Wd−j(∆
c(Γ))|.(1.6)

Since Γ is Cohen-Macaulay and hi(Γ) = hd−i(Γ), Lemmas 1.3 and 1.4 say |Wi(∆
e(Γ))| = |Wd−i(∆

e(Γ))| =
hi(Γ). Thus these inequalities (1.5) and (1.6) are all equal. Inductively, we have |Wi(∆

c(Γ))| = |Wi(∆
e(Γ))| =

hi(Γ) for all 0 ≤ i ≤ d.
Let L be the pure simplicial complex generated by ∆c(Γ)d−1. Then Lemma 1.4 says L and Γ have the

same h-vector, that is, they have the same f -vector. Since ∆c(Γ) ⊃ L, we have ∆c(Γ) = L. Thus this ∆c(Γ)
is pure.

(ii) We will show Wi(∆
e(Γ)) ⊂ Wi(∆

s(C(n, d))) for all 0 ≤ i ≤ d. Let σ0(i) = max<rev
{Wi(∆

s(C(n, d)))},
σc(i) = max<rev

{Wi(∆
c(Γ))} and σe(i) = max<rev

{Wi(∆
e(Γ))}.

Since ∆c(Γ) ⊂ ∆s(C(n, d)), we have σ0(i) ≥rev σc(i) for all i. On the other hand, since |Wi(∆
c(Γ))| = hi,

we have

m≤σc(i)(∆
c(Γ)) =

i
∑

k=0

|Wk(∆c(Γ))| =

i
∑

k=0

hk(Γ)

and

m≤σe(i)(∆
e(Γ)) =

i
∑

k=0

|Wk(∆e(Γ))| =

i
∑

k=0

hk(Γ).

Then Lemma 1.2 says σc(i) ≥rev σe(i). Thus we have σ0(i) ≥rev σe(i) for all i.
On the other hand, Wi(∆

s(C(n, d))) is the set of smallest hi(Γ) elements w.r.t. <rev which contain
{1, . . . , d − i} and which do not contain {d − i + 1}, that is,

Wi(∆
s(C(n, d))) = {σ ⊂ [n] : [d − i] ⊂ σ, d − i + 1 6∈ σ and σ ≤rev σ0(i)}.

Thus we have ∆e(Γ) ⊂ ∆s(C(n, d)). �

2. Exterior algebraic shifting of Cyclic polytopes and stacked polytopes

2.1. Cyclic polytopes. We recall the definition of cyclic polytopes. We refer the reader to [2] for the
basic theory of convex polytopes.

Let R denote the set of real numbers. For any subset M of the d-dimensional Euclidean space R
d, there

is a smallest convex set containing M . This convex set is called convex hull of M and will be denoted by
conv(M). For d ≥ 2, the moment curve in R

d is the curve parameterized by

t → x(t) = (t, t2, . . . , td) ∈ R
d.

The cyclic d-polytope with n vertices is the convex hull P of the form

P = conv({x(t1), x(t2), . . . , x(tn)}),

where t1, t2, . . . , tn are distinct real numbers.
The main result of this section is the following.
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Theorem 2.1. Let C(n, d) be the boundary complex of the cyclic d-polytope with n vertices. Then there
is a combinatorial shifted complex ∆c(C(n, d)) such that ∆c(C(n, d)) = ∆s(C(n, d)). Thus, in particular,
one has ∆e(C(n, d)) = ∆s(C(n, d)).

Proof. (sketch) By virtue of Theorem 1.6, what we have to do is finding a combinatorial shifted complex
∆c(C(n, d)) which satisfies ∆c(C(n, d)) = ∆s(C(n, d)).

Also, by Gale’s evenness condition ( [2, Theorem 13.6]), we know that C(n, d)d−1 is the collection of
d-subsets σ of [n] which satisfies, for every i < j with i, j 6∈ σ, the number |{i, i + 1, . . . , j} ∩ σ| is even.

Define

Shiftn↓i(Γ) = Shiftii+1(· · · (Shiftin−1(Shiftin(Γ))) · · · )

and

Shiftn↑i(Γ) = Shiftin(· · · (Shiftii+2(Shiftii+1(Γ))) · · · ).

(i) In case of d is even, then

Shiftn−1↓n(Shiftn−2↓n(· · · (Shift1↓n(C(n, d)) · · · )) = ∆s(C(n, d)).

(ii) In case of d is odd, then

Shiftn−1↑n(Shiftn−2↑n(· · · (Shift1↑n(C(n, d)) · · · )) = ∆s(C(n, d)).

Since computations of (i) and (ii) are complicated, we omit the proof. �

2.2. Stacked polytopes. We recall the construction of stacked polytopes. Starting with a d-simplex,
one can add new vertices by building a shallow pyramids over facets to obtain a simplicial convex d-polytope
with n vertices. Such convex polytopes are called stacked d-polytopes. Let P (n, d) be the boundary complex
of a stacked d-polytope with n vertices. Note that the combinatorial type of P (n, d) is not unique. Then we
have the following result for algebraic shifting of stacked polytopes.

Theorem 2.2. Let L(n, d) be the pure (d − 1)-dimensional simplicial complex generated by

{{2, . . . , d + 1}} ∪ {({1, . . . , d} \ {i}) ∪ {j} : 1 < i ≤ d, j > d or j = i}.

Let P (n, d) be the boundary complex of a stacked d-polytope with n vertices. Then

(i) One has ∆e(P (n, d)) = ∆s(P (n, d)) = L(n, d).
(ii) If Γ is the boundary complex of a simplicial d-polytope with n vertices, then one has

∆s(P (n, d)) ⊂ ∆s(Γ).

Proof. (sketch) The equality ∆s(P (n, d)) = L(n, d) and (ii) easily follows from the Lefschetz property
of the boundary complex of simplicial polytopes.

We will show ∆e(P (n, d)) = ∆s(P (n, d)). The case d = 2 is easy. In case of d ≥ 3, by using Lemma
1.4, it is not hard to show that if ∆e(P (n, d)) 6= L(n, d) then {d + 1, d + 2} ∈ ∆e(P (n, d)). Note that
{d + 1, d + 2} 6∈ ∆s(P (n, d)). On the other hand, it is known that 1-skeleton of P (n, d) is a chordal graph if
d ≥ 3. It follows from [7, Theorem 4.8] that if G is a chordal graph then ∆e(G) = ∆s(G). This says that
{d + 1, d + 2} 6∈ ∆e(P (n, d)) and ∆e(P (n, d)) = ∆s(P (n, d)) = L(n, d). �
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