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Abstract. In this paper we derive an enumeration formula for the number of hypermaps of given genus g

and given number of darts n in terms of the numbers of rooted hypermaps of genus γ ≤ g with m darts ,
where m|n.

Résumé. Dans ce travail on denombre les hypergraphes d’un genus g donné, et un nombr e de fleches n,
selon le nombre de hyper cartes de genus γ ≤ g, et av ec m fleches, ou m|n.

1. Introduction

In this paper we derive an enumeration formula for the number of hypermaps of given genus g and given
number of darts n in terms of the numbers of rooted hypermaps of genus γ ≤ g with m darts , where m|n.
Explicit expressions for the number of rooted hypermaps of genus g with n darts were derived by Walsh [32]
for g = 0, and by Arques [2] for g = 1. We apply our general counting formula to derive explicit expressions
for the number of unrooted spherical and toroidal hypermaps with given number of darts.

Oriented map is 2-cell decomposition of a closed orientable surface with a fixed global orientation. Gen-
erally, maps can be described combinatorially via graph embeddings. Oriented hypermaps are generalisations
of oriented maps. While maps are 2-cell embeddings of graphs, hypermaps can be viewed as embeddings
of hypermaps into closed orientable surfaces. Such a model was investigated by Walsh in [32], where the
underlying hypergraph is described via the corresponding 2-coloured bipartite graph B, and the hypermap
itself is determined by a 2-cell embedding B → S.

Beginnings of the enumerative theory of maps are closely related with the enumeration of plane trees
considered in 60-th by Tutte [28], Harary, Prins and Tutte [6], see [7, 22] as well. Later a lot of other
distinguished classes of maps including triangulations, outerplanar, cubic, Eulerian, nonseparable, simple,
looples, two-face maps and others were considered. Enumeration of maps on surfaces has attracted a lot
of attention last decades [23]. Although there are more than 100 published papers on map enumeration
most of them deal with the enumeration of rooted maps of given property. In particular, there is a lack
of results on enumeration of unrooted maps of genus ≥ 1. Most of the results on map enumeration in the
unrooted case restrict to planar maps [17, 18, 33, 34, 20]. A recent paper [25] presents a breakthrough
in the enumeration problem for unrooted maps on closed oriented surface. In the presented paper we apply
the methods employed in [24] and [25] to solve an analogous problem for hypermaps.

2. Hypermaps on surfaces and orbifolds

Hypermaps on surfaces. An oriented combinatorial hypermap is a triple H = (D;R,L), where D is
a finite set of darts (called brins, blades, bits as well) and R, L are permutations of D such that 〈R,L〉 is
transitive on D. Orbits of R are called hypervertices, orbits of L are called hyperedges and orbits of RL are
called hyperfaces. The degree of a hypervertex (hyperedge, hyperface) is the size of the respective orbit.
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Let |D| = n. Denote by v, e and f the numbers of hypervertices, hyperedges and hyperfaces. Then
genus g of H is given by Euler-Poincare formula as follows

v + e+ f − n = 2 − 2g.

Given hypermaps Hi = (Di;Ri, Li), i = 1, 2 a mapping ψ : D1 → D2 such that R2ψ = ψR1 and L2ψ = ψL1

is called a morphism (or a covering) H1 → H2. Note that each morphism between hypermaps is by definition
an epimorphism. If ψ : H1 → H2 is a bijection, ψ is an isomorphism. Isomorphisms H → H form a group
Aut(H) of automorphisms of H. It is easily seen that Aut(H) acts semiregularly on D, equivalently, the
stabiliser of a dart is trivial. A hypermap H is called rooted if one element x of D is chosen to be a root.
Morphisms between rooted hypermaps take roots onto roots. It follows that a rooted hypermap admits no
non-trivial automorphisms.

By a surface we mean a connected, orientable surface without boundary. A topological map is a 2-cell
decomposition of a surface. Standardly, maps on surfaces are described as 2-cell embeddings of graphs.
Oriented combinatorial maps are hypermaps (D;R,L) such that L is a fixed-point-free involution. Walsh
observed that oriented hypermaps can be viewed as particular maps. Namely, he proved a one-to-one
correspondence [32, Lemma 1] between hypermaps and the set of (oriented) 2-coloured bipartite maps.
That means that one of the two global orientations of the underlying surface is fixed, and moreover, we
assume that a colouring of vertices, say by black and white colours, is preserved by morphisms between
maps. The correspondence is given as follows. Let M 2-coloured bipartite map on an orientable surface S
with a fixed global orientation. We set D to be the set of edges of M. The orientation of S induces at each
black vertex v of M a cyclic permutation Rv of edges incident with v. This way a permutation R =

∏

Rv of
D is defined. Similarly, the orientation of S determines at each white vertex u a cyclic permutation Lu. Set
L =

∏

Lu. Hence we have a unique hypermap (D;R,L) corresponding to M. Conversely, given hypermap
(D;R,L) we first define a bipartite 2-colored graph X whose edges are elements of D, black vertices are
orbits of R and white vertices are orbits of L. An edge x ∈ D is incident to a (black or white) vertex u
if x ∈ u. The permutation R and L induce local rotations of arcs outgoing from black and white vertices,
respectively. It is well known (see Gross and Tucker [5, Section 3.2]) that the system of rotations determines
a 2-cell embedding of X into an orientable surface.

Similarly as above, an oriented 2-coloured bipartite map is called rooted if one of the edges is selected
to be a root. Morphisms between rooted 2-coloured bipartite maps take a root onto a root.

There is yet another way to describe hypermaps. Let H = (D;R,L) be a hypermap. Clearly, the
permutation group 〈R,L〉 is an epimorphic image of the free product ∆+ = C ∗ C ∼= 〈ρ〉 ∗ 〈λ〉 of two
infinite cyclic groups. The group ∆+ acts on D via epimorphism taking ρ 7→ R and λ 7→ L. Thus using
some standard considerations in permutation group theory each hypermap can be described by a subgroup
F ≤ ∆+ [13, 30, 31, 9]. The subgroup F , called a hypermap subgroup, can be identified with a stabiliser
of a dart in the action of ∆+ on D. Since the action of ∆+ on D is transitive, the number of darts |D| = n
coincides with index [∆+ : F ] of F in ∆+. Given F ≤ ∆+ the corresponding hypermap can be constructed
as an algebraic hypermap H(∆+/F ) = (D;R,L), where D = {xF |x ∈ ∆+} is the set of left cosets, and
the action of R, L on D is defined by R(xF ) = (ρx)F , L(xF ) = (λx)F . Note that the group ∆+ is
sometimes called a universal oriented triangle group. More precisely, ∆+ is identified with the triangle group
T (∞,∞,∞) =< x, y, z : x y z = 1 > acting on the hyperbolic plane H2 by orientation preserving isometries
(see G.Jones, D.Singerman [13]). In this case H2/∆+ is a trice punctured sphere and H2/F is a punctured
orientable surface, whose genus g coincides with the genus of the corresponding hypermap.

We summarise the above discussion in the following propositions.

Proposition 2.1. The following objects are in one-to-one correspondence:

(1) rooted 2-coloured bipartite maps of genus g with n edges,
(2) rooted hypermaps (D;R,L) of genus g with |D| = n,
(3) subgroups of the group ∆+ = T (∞,∞,∞) of index n and genus g .

Part (1) ⇔ (2) follows from Walsh [32]. Part (2) ⇔ (3) is in ([13, 4]).
By definition isomorphic hypermaps have conjugated hypermap subgroups. Hence isomorphism classes

of hypermaps correspond to conjugacy classes of subgroups.

Proposition 2.2. The following objects are in one-to-one correspondence:

(1) isomorphism classes of 2-coloured bipartite maps of genus g with n edges,
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(2) isomorphism classes of hypermaps (D;R,L) of genus g with |D| = n,
(3) conjugacy classes subgroups of index n and genus g of the group ∆+ = T (∞,∞,∞).

Regular coverings. Let ψ : H1 → H2 be a covering of hypermaps. The covering transformation group
consists of automorphisms α of H1 satisfying the condition ψ = ψ ◦ α. A covering ψ : H1 → H2 will be
called regular if the covering transformation group acts transitively on a fibre ψ−1(x) over a dart x of H2.
Regular coverings can be constructed by taking a subgroup G ≤ Aut(H1), H1 = (D;R,L), and setting D̄ to
be the set of orbits of G, R̄[x] = [Rx], L̄[x] = [Lx]. Then the natural projection x 7→ [x] defines a regular
covering M → N , where H2 = (D̄, R̄, L̄).

Maps and hypermaps on orbifolds. Given regular covering ψ : H → K, let be x be a hypervertex,
hyperface or a hyperedge of K. Let H be of genus g, K be of genus γ and let G ≤ Aut(H) be a covering
transformation group. The ratio of degrees b(x) = deg(x̃)/deg(x), where x̃ ∈ ψ−1(x) is a lift of x along ψ,
will be called a branch index of x. By transitivity of the action of the group of covering transformations a
branch index is a well-defined positive integer not depending on the choice of the lift x̃. Hence b is a well
defined integer function defined on the union V (K)∪E(K)∪F (K). Writing all the values b(x), b(x) ≥ 2 in a
non-decreasing order we get an integer sequence m1,m2, . . . ,mr. This way an orbifold Sg/G with signature
[γ;m1,m2, . . . ,mr] is defined.

For our purposes we define a topological 2-dimensional orbifold O = O[γ;m1, . . . ,mr] to be a closed
orientable surface of genus γ with a distinguished set of points B, called branch points, and an integer
function assigning to each x ∈ B an integer b(x) ≥ 2. A 2-coloured bipartite map of genus γ is a map on O
provided the following two conditions are satisfied:

(1) no branch point x ∈ B lies on an edge,
(2) each face contains at most one branch point x ∈ B.

The operation associating a 2-coloured bipartite map to a hypermap is functorial. In particular the signature
of an orbifold associated with a regular covering of hypermaps coincides with the signature of an orbifold
determined by the corresponding regular covering of Walsh 2-coloured bipartite maps. Note also that a
regular covering ψ : H → K, extends (uniquely) to a regular covering Sg → Sg/G, where g is genus of H and
G is the group of covering transformations.

Let O be an orbifold with signature [γ;m1,m2, . . . ,mr]. The orbifold fundamental group π1(O) is an
F-group

π1(M,σ) = F [γ;m1,m2, . . . ,mr] =

〈a1, b1, a2, b2, . . . , aγ , bγ , e1, . . . , er|

γ
∏

i=1

[ai, bi]

r
∏

j=1

ej = 1, em1
1 = . . . emr

r = 1〉. (2.1)

Let H → H/G = K be a regular covering between hypermaps with a covering transformation group
G, let H be finite. Let the the signarure of the orbifold K = H/G be [γ;m1,m2, . . . ,mr]. Then the Euler
characteristic of the underlying surface of H is given by the Riemann-Hurwitz equation:

χ = |G|
(

2 − 2γ −
r
∑

i=1

(1 −
1

mi
)
)

. (2.2)

3. General counting formula.

The following theorem is the main result of [24].

Theorem 3.1. Let Γ be a finitely generated group. Then the number of conjugacy classes of subgroups
of index n in the group Γ is given by the formula

NΓ(n) =
1

n

∑

`|n
`m=n

∑

K<Γ
[Γ:K]=m

Epi(K,Z`).

In fact, a little modification of the proof allows us to generalise the above statement to subsets of
subgroups of given index closed under conjugacy. Let P be a set of subgroups of a finitely generated group Γ
closed under conjugation. By EpiP(K,Z`) we denote the number of epimorphisms K → Z` with the kernel
in P .
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Hence we have the following

Theorem 3.2. Let Γ be a finitely generated group and P is a set of subgroups of Γ closed under conju-
gation. Then the number of conjugacy classes of subgroups of index n in P is given by the formula

NP
Γ (n) =

1

n

∑

`|n
`m=n

∑

K<Γ
[Γ:K]=m

EpiP(K,Z`).

A group epimorphism is called order preserving if it preserves the orders of elements of finite order.
Given closed orientable surface Sg of genus g and a cyclic orbifold O = Sg/Z` we denote by Epi0(π1(O), Z`)
the number of order preserving epimorphisms π1(O) → Z`.

The following result is the main tool to calculate the number of unrooted hypermaps on a closed oriented
surface.

Theorem 3.3. Let Sg be a closed orientable surface of genus g. Denote by hO(m) be the number of
rooted hypermaps with m darts on a cyclic orbifold O = Sg/Z`.

Then the number of unrooted hypermaps of genus g having n darts is

Hg(n) =
1

n

∑

`|n
`m=n

∑

O∈Orb(S/Z`)

hO(m)Epi0(π1(O), Z`),

where the second sum runs through all admissible cyclic orbifolds Sg/Z`.

Proof. Given S = Sg let P = Pg be the set subgroups of genus g of ∆+ = T (∞,∞,∞). By Proposi-
tions 2.1 and 2.2 rooted hypermaps on S correspond subgroups in P , and isomorphism classes of unrooted
hypermaps on S correspond to conjugacy classes of subgroups in P . Setting Γ = ∆+ in Theorem 3.2 we get

Hg(n) = NP
∆+(n) =

1

n

∑

`|n
`m=n

∑

K<∆+

[∆+:K]=m

EpiP(K,Z`).

Given epimorphism ψ : K → Z` with kernel H ∈ P determines a regular covering of algebraic hypermaps
ψ∗ : H(∆+/H) → H(∆+/K) induced by HEK with the group of covering transformations isomorphic to Z`.
Let σ be the signature of the orbifold O = O(σ) = Sg/Z` determined by the covering of hypermaps. Hence
the set of epimorphisms ψ : K → Z` with Ker(ψ) = H ∈ P split into classes characterised by the signatures
of the cyclic orbifolds O = S/Z`. Denote by Epiσ(K,Z`) the number of epimorphisms K → Z` with kernel
H ∈ P and quotient orbifold O = S/Z` with signature σ. We set Pσ = {K|K < ∆+, Epiσ(K,Z`) 6= 0}.

It is well known that the group ∆+ acts on the universal covering surface H2 as a discontinuous group
of conformal automorphisms. This allows us to introduce the structure of Riemann surface (as well as the
orbifold structure) on the hypermaps H(∆+/H), H(∆+/K), respectively. A regular covering of hypermaps
ψ : H(∆+/H) → H(∆+/K) extends to a branched regular covering S → O of the orbifold O = O(σ) by
the closed surface S. By the Riemann Extension Theorem there is a one-to-one correspondence between
coverings H2/H → H2/K and coverings of the compactified quotient spaces S = H2/H → O = H2/K (see
[12] for a more detailed explanation). We want to show Epiσ(K,Z`) = Epi0(Γ(σ), Z`). Given K ∈ Pσ

we calculate the number of regular Z`-coverings H2/H → H2/K with H E K and H ∈ P . By G. Jones
[11] there are Epiσ(K,Z`)/ϕ(`) such coverings. On the other hand, we have Epi0(Γ(σ), Z`)/ϕ(`) of regular

Z`-coverings S = H2/H → O = H2/K over the orbifold O = O(σ) with the signature σ [11]. By virtue
of the one-to-one correspondence these numbers coincide. Hence, we have Epiσ(K,Z`) = Epi0(Γ(σ), Z`) as
it was required. Given m, ` and σ denote by νσ(m) the number of subgroups K < ∆+ in P(σ) and by
Sign(Sg/Z`) the set of signatures of cyclic g-admissible orbifolds. We have

Hg(n) =
1

n

∑

`|n
`m=n

∑

K<∆+

[∆+:K]=m

EpiP(K,Z`) =
1

n

∑

`|n
`m=n

∑

σ∈Sign(Sg/Z`)

νσ(m)Epiσ(K,Z`) =

1

n

∑

`|n
`m=n

∑

σ∈Sign(Sg/Z`)

νσ(m)Epi0(Γ(σ), Z`).

Taking into the account the correspondence between groups in Pσ and rooted hypermaps on the orbifold
O = O(σ) we get νσ(m) = hO(m) and the proof is complete.
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In what follows we derive a formula enumerating numbers of rooted hypermaps on orbifolds in terms
of numbers of rooted hypermaps on surfaces. Let H be a rooted hypermap on an orbifold O such that
H = H̃/Z` = (D;R,L) is a quotient of an ordinary finite map H̃ on a surface Sg. Thus O = Sg/G where
G ∼= Z` is a cyclic group of orientation preserving symmetries of Sg of order `. It follows that each branch
index of the branched covering Sg → O is a divisor of ` and can write O = O[γ; 2q2 , . . . , `q` ], where qi ≥ 0
denotes the number of branch points of index i, for i = 2, . . . , `. In this case, genera γ and g are related by the

Riemann-Hurwitz equation 2− 2g = `(2− 2γ−
∑`

j=2 qj(1− 1/j)). We use the convention hγ(m) = ν[γ; ∅](m)
denoting the number of rooted hypermaps with m darts on a surface of genus g. Clearly, the exponential
notation O = O[γ; 2q2 , . . . , `q` ] can be used for any oriented orbifold (not necessarily cyclic) provided the
indexes of branch points are bounded by `.

Given integers x1, x2, . . . , xq and y ≥ x1 + x2 + · · · + xq we denote by
(

y

x1, x2, . . . , xq

)

=
y!

x1!x2! . . . xq!(y −
∑q

j=1 xj)!
,

the multinomial coefficient.
Now we are able to determine the number of rooted hypermaps on an arbitrary orbifold.

Proposition 3.4. The number of rooted hypermaps on an orbifold O = O[γ; 2q2 , . . . , `q` ] with m darts
is

hO(m) =

(

m+2−2γ

q2, q3, . . . , q`

)

hγ(m). (5.1)

Proof. Let H be a rooted hypermap on Sγ with v hypervetices, e hyperedges and f hyperfaces. Then
H gives rise to as many rooted hypermaps as is the number of partitions of the set V (H) ∪ E(H) ∪ F (H)
of cardinality v + e+ f = m+ 2 − 2γ into disjoint subsets of cardinalities q1, q2, . . . , q`. This is exactly the
number

(

m+ 2 − 2γ

q2, q3, . . . , q`

)

.

Combining Proposition 3.4 and Theorem 3.3 we get our main theorem.

Theorem 3.5. The number of unrooted hypermaps on a closed surface Sg of genus g with n darts is
given by

Hg(n) =
1

n

∑

`|n
`m=n

∑

O∈Orb(S/Z` )

O=O[γ;2q2 ,3q3 ,...,`q` ]

Epi0(π1(O), Z`)

(

m+2−2γ

q2, q3, . . . , q`

)

hγ(m),

where the second sum runs through all cyclic orbifolds Sg/Z`.

Note that the numbers Epi0(π1(O), Z`) were computed by the authors in [25] in terms of some standard
arithmetical functions. The following section surveys results on Epi0(π1(O), Z`).

4. Number of epimorphisms from an F-group onto a cyclic group

As one can see in Theorems 3.3 and 3.5 to derive an explicit formula for the number of unrooted
hypermaps with given genus and given number of darts one needs to deal with the numbers Epi0(π1(O), Z`)
of order preserving epimorphisms from an F -group Γ onto a cyclic group Z`. These numbers are counted
using some number theoretical machinery in [25]. In what follows we recall some relevant results used in
later computations.

Denote by µ(n), φ(n) and Φ(x, n) the Möbius, Euler and von Sterneck functions, respectively. The
relationship between them is given by the formula

Φ(x, n) =
φ(n)

φ( n
(x,n))

µ

(

n

(x, n)

)

,

where (x, n) is the greatest common divisor of x and n. It was shown by O. Hölder that Φ(x, n) coincides
with the Ramanujan sum

∑

1≤k≤n
(k, n)=1

exp(2 ikx
n ). For the proof, see Apolstol [1, p.164] and [26]. An arithmetic

function, called by Liskovets orbicyclic arithmetic function [21], is a multivariate integer function defined by
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E(m1,m2, . . . ,mr) =
1

m

m
∑

k=1

Φ(k, m1) · Φ(k, m2) . . .Φ(k, mr).

Recall that the Jordan multiplicative function φk(n) of order k can be defined as follows:

φk(n) =
∑

d|n

µ
(n

d

)

dk.

The following proposition is proved in [25].

Proposition 4.1. Let Γ = F [g;m1, . . . ,mr] be an F−group of signature [g;m1, . . . ,mr]. Denote by
m = lcm (m1, . . . ,mr) the least common multiple of m1, . . . ,mr and let m|`. Then the number of order-
preserving epimorphisms of the group Γ onto a cyclic group Z` is given by the formula

Epi0(Γ,Z`) = m2gφ2g(`/m)E(m1,m2, . . . ,mr).

In particular, if Γ = F [g; ∅] = F [g; 1] is a surface group of genus g we have

Epi0(Γ,Z`) = φ2g(`).

Let us note that the conditionm|` in the above proposition gives no principal restriction, sinceEpi0(Γ,Z`) =
0 by the definition providedm does not divide `. An orbifold O = O[g;m1, . . . ,mr] will be called γ-admissible
if it can be represented in the form O = Sγ/Z`, where Sγ is an orientable surface of genus γ surface and Z` is
a cyclic group of automorphisms of Sγ . There is an orbifold O = Sγ/Z` with signature [g;m1,m2, . . . ,mr] if
and only if there exists ` such that the number Epi0(π1(O), Z`) 6= 0 and the numbers γ, g, m1, . . . ,mr and
` are related by the Riemann-Hurwitz equation 2− 2γ = `(2− 2g −

∑r
i=1(1 − 1/mi)). The Wiman theorem

makes us sure that 1 ≤ ` ≤ 4γ + 2 for γ > 1.
Using Proposition 4.1 and result by Harvey [8]we derive the following lists of γ-admissible orbifolds, for

γ = 0, 1.

Corollary 4.2. 0-admissible orbifolds are O = O[0; `2], with Epi0(π1(O), Z`) = φ(`) for any positive
integer `.

Corollary 4.3. Let O = O[g;m1,m2, . . . ,mr] = S1/Z` be a 1-admissible orbifold. Then one of the
following cases happens:

O = O[1; ∅], with Epi0(π1(O), Z`) =
∑

k|`

µ(`/k)k2 = φ2(`) for any `,

` = 2 and O = O[0; 24], with Epi0(π1(O), Z`) = 1,
` = 3 and O = O[0; 33], with Epi0(π1(O), Z`) = 2,
` = 4 and O = O[0; 42, 2], with Epi0(π1(O), Z`) = 2,
` = 6 and O = O[0; 6, 3, 2], with Epi0(π1(O), Z`) = 2.

The lists of 2− and 3−admissible orbifolds can be found in [25].

5. Counting unrooted hypermaps on the sphere and torus

In this section we apply the above results to calculate the number of unrooted hypermaps with given
number of darts on the sphere and torus.

Theorem 5.1. The number of spherical unrooted hypermaps with n darts is given by the formula

H0(n) =
1

n

(

3 · 2n−1

(n+ 1)(n+ 2)

(

2n

n

)

+
∑

`|n, `>1
`m=n

3 · 2m−2

(

2m

m

)

φ(`)

)

Proof. For ` > 1 there is only one possible action of cyclic group Z` on the sphere S. The corresponding
orbifold O has a signature [0; `, `] and by Corollary 4.2 we have Epi0(π1(O), Z`) = φ(`). By Theorem 3.5 we
obtain

H0(n) =
1

n

(

h0(n) +
∑

`|n, `>1
`m=n

φ(`)

(

m+ 2

2

)

h0(m)
)

.
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To finish the proof we note that by T. Walsh [32]

h0(m) =
3 · 2m−1

(m+ 1)(m+ 2)

(

2m

m

)

. (5.1)

The numbers of rooted and unrooted spherical hypermaps up to 30 darts is given in Table 1.
Table 1. Numbers of rooted and unrooted hypermaps on the sphere with at most 30 darts
No. of darts, rooted hypermaps, unrooted hypermaps

01, 1, 1
02, 3, 3
03, 12, 6
04, 56, 20
05, 288, 60
06, 1584, 291
07, 9152, 1310
08, 54912, 6975
09, 339456, 37746
10, 2149888, 215602
11, 13891584, 1262874
12, 91287552, 7611156
13, 608583680, 46814132
14, 4107939840, 293447817
15, 28030648320, 1868710728
16, 193100021760, 12068905911
17, 1341536993280, 78913940784
18, 9390758952960, 521709872895
19, 66182491668480, 3483289035186
20, 469294031831040, 23464708686960
21, 3346270487838720, 159346213738020
22, 23981605162844160, 1090073011199451
23, 172667557172477952, 7507285094455566
24, 1248519259554840576, 52021636161126702
25, 9063324995286990848, 362532999811480604
26, 66032796394233790464, 2539722940697502966
27, 482722511571640123392, 17878611539691757938
28, 3539965084858694238208, 126427324476844560112
29, 26035872237025235042304, 897788697828456380772
30, 192014557748061108436992, 6400485258395785352796
We note that the numbers H0(n) was determined in terms of unrooted planar 2-constellations formed

by n polygons by M. Bosquet-Melon and G. Schaeffer [3].
Now we derive an explicit formula for counting unrooted maps on torus. Rooted toroidal maps were

enumerated by D. Arquès in [2]. He proved that

h1(n) =
1

3

n−3
∑

k=0

2k(4n−2−k − 1)

(

n+ k

k

)

. (5.2)

Theorem 5.2. The number of unrooted toroidal hypermaps H1(n) with n darts is equal to

1
n

(

(n
2 +2
4

)

h0

(

n
2

)

+ 2
(n

3 +2
3

)

h0

(

n
3

)

+ 6
(n

4 +2
3

)

h0

(

n
4

)

+ 12
(n

6 +2
3

)

h0

(

n
6

)

+
∑

`|n
`m=n

φ2(`)h1(m)
)

,

where φ2 is the Jordan function, and functions h0 and h1 are given by (5.1) and (5.2), respectively.

Proof. Following Theorem 3.5 and Corollary 4.3 we have

H1(n) =
1

n

(

h[0;24](n/2) + 2h[0;33](n/3) + 2h[0;2,42](n/4)+
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2h[0;2,3,6](n/6) +
∑

`|n
`m=n

∑

k|`

µ(`/k)k2h1(n/`)
)

. (5.3)

It remains to calculate the numbers of rooted hypermaps on orbifoldsO[0; 24], O[0; 33], 0[2; 42] andO[0; 2, 3, 6].

By Proposition 3.4 we obtain

h[0;24](m) =
(

m
4

)

h0(m), h[0;33](m) =
(

m+2
3

)

h0(m),

h[0;2,3,6](m) =
(

m+2
1,1,1

)

h0(m) = 6
(

m+2
3

)

h0(m),

h[0;2,42](m) =
(

m+2
1,2

)

h0(m) = 3
(

m+2
3

)

h0(m).

Inserting the above numbers into (5.3) we get the theorem.
The following list containing the numbers of rooted and oriented unrooted maps of genus 1 up to 30

edges follows.
Table 2. Numbers of rooted and unrooted hypermaps on the torus with at most 30 darts
No. of darts, rooted hypermaps, unrooted hypermaps

03, 1, 1
04, 15, 6
05, 165, 33
06, 1611, 285
07, 14805, 2115
08, 131307, 16533
09, 1138261, 126501
10, 9713835, 972441
11, 81968469, 7451679
12, 685888171, 57167260
13, 5702382933, 438644841
14, 47168678571, 3369276867
15, 388580070741, 25905339483
16, 3190523226795, 199408447446
17, 26124382262613, 1536728368389
18, 213415462218411, 11856420991413
19, 1740019150443861, 91579955286519
20, 14162920013474475, 708146055343668
21, 115112250539595093, 5481535740059577
22, 934419385591442091, 42473608898628639
23, 7576722323539318101, 329422709719100787
24, 61375749135369153195, 2557322884534185500
25, 496747833856061953365, 19869913354242478293
26, 4017349254284543961771, 154513432889706455145
27, 32467023775647069984085, 1202482362061007078175
28, 262225359776626483309227, 9365191420865873023026
29, 2116714406654571321840981, 72990151953605907649689
30, 17077642118698511054318251, 569254737292213025378571
The above tables were computed using MATHEMATICA, Ver. 5. The input numbers of rooted maps

come from [2].
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