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Bijections of trees arising from Voiculescu’s free probability theory

Artur Jeż and Piotr Śniady

Abstract. We present a bijective proof of the multidimensional generalizations of the Cauchy identity. Our
bijection uses oriented planar trees equipped with some linear orders. The considered identities play an im-
portant role in the theory of operator algebras and our bijective prove can be used to prove multidimensional
analogues of the arc-sine law in classical probability theory.

Résumé. Nous présentons une preuve bijective des généralisations multidimensionnelles de l’identité de
Cauchy. Notre bijection emploie les arbres planaires orientés équipés de quelques ordres linéaires. Les identités
considérés jouent un rôle important dans la théorie d’algèbres d’opérateur et notre bijection peut être employé
pour prouver des analogues multidimensionnels de la loi d’arcsinus dans la théorie des probabilités classique.

1. Introduction

1.1. How to generalize the Cauchy identity? Cauchy identity states that for each nonnegative
integer l

(1) 22l =
∑

p+q=l

(
2p

p

)(
2q

q

)

,

where the sum runs over nonnegative integers p, q. Cauchy identity and its bijective proof have important
implications to the classical probability theory since they can be used to extract some information about
random walks and arc-sine law [Śni04], it is therefore very tempting to look for some more identities which
would share some resemblance to the Cauchy identity. Such identities could shed some light on the properties
of the random walks in higher dimensions.

Guessing how the left-hand side of (1) could be generalized is not difficult and something like mml is a
reasonable candidate. Unfortunately, it is by no means clear which sum should replace the right-hand side
of (1). The strategy of writing down lots of wild and complicated sums with the hope of finding the right
one by accident is predestined to fail. It is much more reasonable to find some combinatorial objects which
are counted by the right-hand side of (1) and then to find a reasonable generalization of these objects.

For fixed integers p, q ≥ 0 we consider the tree from Figure 1. Every edge of this tree is oriented and it is
a good idea to regard these edges as one-way-only roads: if vertices x and y are connected by an edge and the
arrow points from y to x then the travel from y to x is permitted but the travel from x to y is not allowed.
This orientation defines a partial order ≺ on the set of the vertices: we say that x ≺ y if it is possible to
travel from the vertex y to the vertex x by going through a number of edges (in order to remember this
convention we suggest the Reader to think that ≺ is a simplified arrow←). Let < be a total order on the set
of the vertices. We say that < is compatible with the orientations of the edges if for all pairs of vertices x, y
such that x ≺ y we also have x < y. It is very easy to see that for the tree from Figure 1 there are

(
2p
p

)(
2q
q

)

total orders < which are compatible with the orientations of the edges; this cardinality coincides with the
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Figure 1. There are
(
2p
p

)(
2q
q

)
total orders < on the vertices of this oriented tree which are

compatible with the orientation of the edges.

summand on the right-hand side of (1). It remains now to find some natural way of generating the trees of
the form depicted on Figure 1 with the property p + q = l. We shall do it in the following.

1.2. Quotient graphs and quotient trees. We recall now the construction of Dykema and Haagerup
[DH04a]. For integer k ≥ 1 let G be an oriented k–gon graph with consecutive vertices v1, . . . , vk and edges
e1, . . . , ek (edge ei connects vertices vi and vi+1). The vertex v1 is distinguished, see Figure 2. We encode
the information about the orientations of the edges in a sequence ε(1), . . . , ε(k) where ε(i) = +1 if the arrow
points from vi+1 to vi and ε(i) = −1 if the arrow points from vi to vi+1. The graph G is uniquely determined
by the sequence ε and sometimes we will explicitly state this dependence by using the notation Gε.

Let σ =
{
{i1, j1}, . . . , {ik/2, jk/2}

}
be a pairing of the set {1, . . . , k}, i.e. pairs {im, jm} are disjoint and

their union is equal to {1, . . . , k}. We say that σ is compatible with ε if

(2) ε(i) + ε(j) = 0 for every {i, j} ∈ σ.

It is a good idea to think that σ is a pairing between the edges of G, see Figure 2. For each {i, j} ∈ σ
we identify (or, in other words, we glue together) the edges ei and ej in such a way that the vertex vi is
identified with vj+1 and vertex vi+1 is identified with vj and we denote by Tσ the resulting quotient graph.
Since each edge of Tσ origins from a pair of edges of G, we draw all edges of Tσ as double lines. The condition
(2) implies that each edge of Tσ carries a natural orientation, inherited from each of the two edges of G it
comes from, see Figure 3.

From the following on, we consider only the case when the quotient graph Tσ is a tree. One can show
[DH04a] that the latter holds if and only if the pairing σ is non–crossing [Kre72]; in other words it is not
possible that for some p < q < r < s we have {p, r}, {q, s} ∈ σ. The name of the non–crossing pairings
comes from their property that on their graphical depictions (such as Figure 2) the lines do not cross. Let
the root R of the tree Tσ be the vertex corresponding to the distinguished vertex v1 of the graph G.

1.3. How to generalize the Cauchy identity? (continued). Let us come back to the discussion
from Section 1.1. We consider the polygon Gε corresponding to

ε = ( −1
︸︷︷︸

l times

, +1
︸︷︷︸

l times

, −1
︸︷︷︸

l times

, +1
︸︷︷︸

l times

).

All possible non-crossing pairings σ which are compatible with ε are depicted on Figure 4 and it easy to see
that the corresponding quotient tree Tσ has exactly the form depicted on Figure 1.

In this way we managed to find relatively natural combinatorial objects, the number of which is given by
the right-hand side of the Cauchy identity (1). After some guesswork we end up with the following conjecture
(please note that the usual Cauchy identity (1) corresponds to m = 2).



BIJECTIONS OF TREES ARISING FROM FREE PROBABILITY THEORY

v1

v2

v3

v4

v5

v6

v7

v8

e1

e2e3

e4

e5

e6 e7

e8

Figure 2. A graph Gε corresponding to the sequence ε = (+1,−1, +1, +1,−1,−1, +1,−1).
The dashed lines represent the pairing σ =

{
{1, 6}, {2, 3}, {4, 5}, {7, 8}}

}
.
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Figure 3. The quotient graph Tσ corresponding to the graph from Figure 2. The root R
of the tree Tσ is encircled.
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Figure 4. A graph T corresponding to sequence ε = ( −1
︸︷︷︸

l times

, +1
︸︷︷︸

l times

, −1
︸︷︷︸

l times

, +1
︸︷︷︸

l times

). The

dashed lines denote a pairing σ for which the quotient graph Tσ is depicted on Figure 1.
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Theorem 1 (Generalized Cauchy identity). For integers l, m ≥ 1 there are exactly mml pairs (σ, <),
where σ is a non-crossing pairing compatible with

(3) ε = ( −1
︸︷︷︸

l times

, +1
︸︷︷︸

l times

, −1
︸︷︷︸

l times

, +1
︸︷︷︸

l times

, . . .

︸ ︷︷ ︸

2m blocks, i.e. total of 2ml elements

)

and < is a total order on the vertices of Tσ which is compatible with the orientations of the edges.

Above we provided only vague heuristical arguments why the above conjecture could be true. Surpris-
ingly, as we shall see in the following, Theorem 1 is indeed true.

The formulation of Theorem 1 is combinatorial and therefore appears to be far from its motivation, the
usual Cauchy identity (1), which is formulated algebraically, nevertheless for each fixed value of m one can
enumerate all ‘classes’ of pairings compatible with (3) and for each class count the number of compatible
orders <. To give to the Reader a flavor of the algebraic implications of Theorem 1, we present the case of
m = 3 [DY03]:

(4) 33l =
∑

p+q=l

(
3p

p, p, p

)(
3q

q, q, q

)

+ + 3
∑

p+q+r=l−1
r′+q′=r+q+1

p′′+r′′=p+r+1

(
2p + p′′

p, p, p′′

)(
2q + q′

q, q, q′

)(
r + r′ + r′′

r, r′, r′′

)

.

and the case of m = 4 [Śni03]:

(5) 44k =
X

p+q=k

“ 4p

p, p, p, p

”“ 4q

q, q, q, q

”

+ 8
X

p+q+r=k−1

p′+q′=p+q+1

p′′+q′′=p+q+1

q′′′+r′′′=q+r+1

“2p + p′ + p′′

p, p, p′, p′′

”“q + q′ + q′′ + q′′′

q, q′, q′′, q′′′

”“ 3r + r′′′

r, r, r, r′′′

”

+

+ 4
X

p+q′+r′=k−1

p+q′′+r′′=k−1

p′′′+q′′′=p+q′+1

p′′′′+q′′′′=p+q′′+1

“2p + p′′′ + p′′′′

p, p, p′′′, p′′′′

”“q′ + q′′′

q′, q′′′

”“q′′ + q′′′′

q′′, q′′′′

”“ 2r′′

r′′, r′′

”“ 2r′

r′, r′

”“ q′ + q′′ + q′′′ + q′′′′ + 2r′ + 2r′′ + 2

q′ + q′′′ + 2r′ + 1, q′′ + q′′′′ + 2r′′ + 1

”

+

+ 8
X

p+q+r+s=k−2

q′+r′=q+r+s+2

p′′+r′′=p+q+r+2

“ 2p

p, p

”“q + q′

q, q′

”“r + r′′

r, r′′

”“ 2s

s, s

”“ 3p + p′′ + 2q + q′ + 2

2p + q + q′ + 1, p + q + 1, p′′

”“ 2r + r′ + r′′ + 3s + 2

r + r′′ + 2s + 1, r + s + 1, r′

”

.

1.4. Bijective proof of generalized Cauchy identities. Theorem 1 was conjectured by Dykema
and Haagerup [DH04a] and its first proof (analytic one) was given by the second-named author [Śni03].
Another analytic proof was given by Aagaard and Haagerup [AH04]. The main result of this article (which

is a shortened and edited version of [Śni04]) is the first bijective proof of Theorem 1, formulated explicitly
as the following theorem.

Theorem 2 (The main result). Let integers l, m ≥ 1 be given. We set L = lm + 1 and

εi =
(

(−1)i−1

︸ ︷︷ ︸

l times

, (−1)i

︸ ︷︷ ︸

l times
︸ ︷︷ ︸

i times, i.e. a total of 2li elements

)
for 1 ≤ i ≤ m.

Note that εm coincides (up to a possible sign change) with (3). The function described in this article provides
a bijection between

(α) the set of pairs (σ, <), where σ is a pairing compatible with εm and < is a total order on the vertices
of Tσ which is compatible with the orientations of the edges;

(β) the set of tuples (B1, . . . , Bm), where B1, . . . , Bm are disjoint sets such that B1 ∪ · · · ∪ Bm =
{1, 2, . . . , L} and

|B1|+ · · ·+ |Bn| ≤ ln

holds true for each 1 ≤ n ≤ m− 1;

Alternatively, set (β) can be described as
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(γ) the set of sequences (a1, . . . , aL) such that a1, . . . , aL ∈ {1, . . . , m} and for each 1 ≤ n ≤ m− 1 at
most ln elements of the sequence (ai) belong to the set {1, . . . , n};

where the bijection between sets (β) and (γ) is given by Bj = {k : ak = j}.

From the Raney lemma [Ran60] it follows that the set (β) has mml elements [Śni03] hence Theorem 1
indeed follows from Theorem 2.

2. Quotient trees

In the following we shall discuss some aspects of the quotient trees which were not included in Section
1.2. Sometimes, with a very small abuse of notation, we will denote by the same symbol Tσ the set of the
vertices of the tree Tσ.

2.1. Structure of a planar tree. Order �. For a non–crossing pairing σ we can describe the process
of creating the quotient graph as follows: we think that the edges of the graph G are sticks of equal lengths
with flexible connections at the vertices. Graph G is lying on a flat surface in such a way that the edges
do not cross. For each pair {i, j} ∈ σ we glue together edges ei and ej by bending the joints in such a way
that the sticks should not cross. In this way Tσ has a structure of a planar tree, i.e. for each vertex we can
order the adjacent edges up to a cyclic shift (just like points on a circle). We shall provide an alternative
description of this planar structure in the following.

Let us visit the vertices of G in the usual cyclic order v1, v2, . . . , vk, v1 by going along the edges e1, . . . , ek;
by passing to the quotient graph Tσ we obtain a journey on the graph Tσ which starts and ends in the root
R. The structure of the planar tree defined above can be described as follows: if we travel on the graphical
representation of Tσ by touching the edges by our left hand, we obtain the same journey. For each vertex
of Tσ we mark the time we visit it for the first time; comparison of these times gives us a total order �,
called preorder [Sta99], on the vertices of Tσ. For example, in the case of the tree from Figure 3 we have
v1 � v2 � v3 � v5 � v8.

2.2. Catalan sequences. We say that ε =
(
ε(1), . . . , ε(k)

)
is a Catalan sequence if ε(1), . . . , ε(k) ∈

{−1, +1}, ε(1) + · · ·+ ε(k) = 0 and all partial sums are non-negative: ε(1) + · · ·+ ε(l) ≥ 0 for all 1 ≤ l ≤ k.
We say that ε is anti-Catalan if −ε is Catalan.

Lemma 3. For a Catalan sequence ε there exists a unique compatible pairing σ with the property that
R � v for every vertex v ∈ Tσ. For an anti-Catalan sequence ε there exists a unique compatible pairing σ
with the property that R � v for every vertex v ∈ Tσ.

3. Proof of almost the main result

3.1. Statement of the result. The following result will be crucial for the bijective proof of generalized
Cauchy identities in Section 4.

Theorem 4. Let ε =
(
ε(1), . . . , ε(k)

)
be a Catalan sequence. The function described in this section

provides a bijection between

(A) the set of pairs (σ, <), where σ is a pairing compatible with ε and < is a total order on the vertices
of Tσ compatible with the orientation of the edges;

(B) the set of pairs (σ, <), where σ is a pairing compatible with ε and < is a total order on the vertices
of Tσ with the following two properties:
• on the set {x ∈ Tσ : x � R} the orders < and � coincide;
• for all pairs of vertices v, w ∈ Tσ such that R 6� v and R 6� w we have

v ≺ w =⇒ v < w.

Proof. In this article we will present only the bijection without presenting its inverse and without any
proofs which can be found in [Śni04].

Our bijection will be given by repeating the following procedure: if the pair (σ, <) is as in (B) then
we our algorithm finishes. Otherwise, let D be the maximal element (with respect to the order <) such
that D � R and such that on the subtree U = {x : x � R and x < D} the orders < and � coincide.
The vertex D is a leaf of the tree U which is not maximal in U (with respect to the order �); otherwise
this would contradict the maximality of D. We start in D a walk on the graph U with the first step going
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A CB

R

D

Figure 5. The case D 6= B. The order of the vertices is given by R ≤ A < B < C < D.
Note that only the edges belonging to the subtree U are displayed.

R

D

Figure 6. The tree from Figure 5 after ungluing the edges BA and CA.

A

B

D

R

C

Figure 7. The tree from Figure 5 after regluing the edges BA and CA in a different way.
Please notice the change of the labels of the vertices A, B, C, D.

towards the root R, always touching the edges by our left hand (as we did in Section 2.1) and we denote
by w0 = D, w1, w2, . . . the consecutive vertices we visit on our journey. Let n be the smallest number for
which the arrow on the edge connecting wn and wn+1 points from wn+1 towards wn; we denote B = wn−1,
A = wn, C = wn+1.

Let us consider the case when B 6= D, cf. Figure 5. Each of the edges BA and CA of the quotient graph
Tσ was created by gluing a pair of edges of the graph G; let us unglue these four edges of G, cf. Figure 6
and let us glue these four edges in pairs in a different way, cf Figure 7. In this way we obtain a quotient
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A CD

R

Figure 8. The case D = B. The order of vertices is given by R ≤ A < C < D.

A

C

D

R

Figure 9. The tree from Figure 8 after regluing the edges DA and CA in a different way.
Please notice the change of the labels of the vertices A, C, D.

graph Tσ′ , where σ′ is a pairing of edges obtained from σ by changing connections between certain four
edges. Figure 5 and Figure 7 show an identification between the vertices of Tσ and Tσ′ ; please note that this
identification is nontrivial only on the vertices A, B, C, D. We define the order < on Tσ′ to be the inherited
order < from Tσ under the above identification of the vertices.

We consider now the case when B = D, cf. Figure 8. Similarly as above, we unglue and reglue in a
different way edges DA and CA and thus we obtain a tree Tσ′ depicted on Figure 9. Figure 8 and Figure 9
show the identification between the vertices of Tσ and the vertices of Tσ′ and we define the order < on Tσ′

to be the inherited order < from Tσ.
After a finite number of steps the above procedure will eventually stop. �

Remark 5. For each pair (σ, <) from the set (A) and the corresponding pair (σ′, <) from the set (B)
there is a canonical unique bijection j mapping the vertices of Tσ onto the vertices of Tσ′ with the property
that for all v, w ∈ Tσ the condition v < w holds if and only if j(v) < j(w). In fact this identification is very
easy to see since the bijection from Theorem 4 is a composition of a number of elementary operations. Each
such operation is either a replacement of Figure 5 by Figure 7 or replacement of Figure 8 by Figure 9 and
for each such a replacement the corresponding identification preserves the labels of the vertices.

4. Proof of the main result

Proof. We shall construct now the main result of the article: the bijection announced in Theorem 2.
In this article we will present only the bijection without presenting its inverse and without any proofs which
can be found in [Śni04].
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Figure 10. Example of a tree Tσ̃. A subtree {v : R � v} was marked in gray.

Firstly, observe that the order < on the vertices of the tree Tσ can be alternatively described by labeling
the vertices by the numbers from the set {1, 2, . . . , L} in such a way that each number appears exactly once
and the order of the labels coincides with the order < on the vertices.

Our algorithm consists of m−1 steps; in the first step the variable i takes the value i := m and after each
step its value decreases by one. At the beginning of each step we start with a tree Tσ, where σ is a pairing
compatible with εi such that some of the vertices are labeled by the numbers from the set {1, 2, . . . , L} and
some vertices might be unlabeled (in the first step i = m there are no unlabeled vertices) and in this step
we will construct the set Bi.

Let us consider the case when i is odd. We define a total order < on the vertices of Tσ as follows: for
a pair of vertices v, w which carry some labels we set v < w if and only if the label of v is smaller than the
label of w; if v has no label and w has a label then v < w; if both v and w have no labels then v < w if and
only if v � w. In this way (σ, <) is as prescribed in point (A) of Theorem 4.

Let (σ̃, <) denote the corresponding element of the point (B). We consider the canonical identification
of the vertices of the tree Tσ with the vertices of the tree Tσ̃, as described in Remark 5; in this way some
of the vertices of the tree Tσ̃ are labeled by the numbers from the set {1, . . . , L}. We consider a subtree
U = {x ∈ Tσ̃ : R � x}. We define Bi to be the set of the labels on the vertices of U and we remove all labels
from the vertices of U .

Each edge of Tσ̃ consists of two edges of the graph G; let us unglue all the edges belonging to the tree U .
We denote by T ′ the resulting graph, cf Figure 10 and Figure 11. The sequence εi−1 can be obtained from
the sequence εi by removal of the first l and the last l elements therefore the polygonal graph Gεi−1

can be
obtained from the graph Gεi

by removing two groups (of l edges each) surrounding the distinguished vertex
R from both sides; clearly these 2l edges must be among the unglued ones in the graph T ′. We denote by
T ′′ the graph obtained from T ′ by the removal of these 2l edges, cf Figure 12.

Please note that T ′′ can be obtained from the polygonal graph Gεi−1
by gluing some pairs of edges hence

it can be viewed as a certain polygonal graph Gε′ with a number of trees attached to it. The sequence ε′

can be obtained from εi−1 by a removal of a number of blocks of consecutive elements, provided the sum of
elements of each block is equal to zero. Since εi−1 is anti-Catalan, ε′ is anti-Catalan as well. We denote by
Tσ′ the tree resulting from T ′′ by gluing the edges constituting Gε′ by the pairing given by Lemma 3 applied
to ε′; please note that in this way we defined implicitly the pairing σ′ compatible with εi−1, cf Figure 13.
Thus, the description of the step of the algorithm in the case when i is odd is finished.

To cover the case when i is even we can simply reverse the orientations on all edges (which corresponds
to a change of signs in the sequence εi) and consider the opposite order on the set {1, . . . , L}; since sequence
−εi is Catalan and −εi−1 is anti-Catalan we reduced the situation to the case considered previously.

Our algorithm takes a particularly simple form for i = 1; we simply set B1 to be the set of the labels of
the tree Tσ and the algorithm stops. �

5. Combinatorial calculus: how to convert an analytic proof into a bijection?

The bijection presented in this article might look artificial and it is by no means clear how the authors
invented it. It turns out that there is a very systematic way of constructing this bijection given by careful
analysis of the analytic proof of generalized Cauchy identities given by the second-named author [Śni03]. In
this analytic proof we associated to oriented trees certain polynomials and we proved that these polynomials
fulfill recursion relation analogous to the one fulfilled by Abel polynomials. It turns out that if we replace the
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Figure 11. The graph T ′ obtained for Tσ′ depicted on Figure 10.

Figure 12. The graph T ′′ is obtained from T ′ depicted on Figure 11 by removal of the
dashed edges. The graph T ′′ can be regarded as a certain polygonal graph Gε′ with a
number of trees attached to it.

Figure 13. Tree Tσ′ is obtained from the graph T ′′ depicted on Figure 12 by gluing edges
as prescribed in Lemma 3.

usual differential calculus by a combinatorial calculus in which the role of polynomials is played by certain
graphs and oriented sets then the analytic proof from [Śni03] is valid also in this more general setup and it

determines uniquely the bijection presented in this article [JŚ06a].

6. Postscript: operator algebras, free probability and triangular operator T

The story presented in Sections 1.1 and 1.3 is too beautiful to be true. In fact, it is not how the
generalized Cauchy identities were discovered. In this section we will present the true story which also gives
very strong motivations for studying these identities.

6.1. Invariant subspace conjecture. The Voiculescu’s free probability [VDN92, HP00] is a non-
commutative probability theory with the classical notion of independence replaced by the notion of freeness.
Natural examples which fit nicely into the framework of the free probability include large random matrices,
free products of von Neumann algebras and asymptotics of large Young diagrams. Families of operators
which arise in the free probability are, informally speaking, very non-commutative and for this reason they
are perfect candidates for counterexamples to the conjectures in the theory of operator algebras [Voi96].

Dykema and Haagerup [DH04a] suggested that free probability could be used to construct a coun-
terexample for the famous invariant subspace conjecture (this conjecture asks if for every bounded operator
x acting on an infinite-dimensional Hilbert space H there exists a closed subspace K ⊂ H such that K is
nontrivial in the sense that K 6= {0}, K 6= H and which is an invariant subspace of x). They also described
explicitly a very good candidate for such a counterexample, namely the triangular operator T [DH04a].

For more details on the history of the search of such a counterexample within free probability theory we
refer to [Śni04].

6.2. Combinatorics of the triangular operator T . Even though the primary description of the
triangular operator T was purely analytic as a limit of certain random matrices, already in the original
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article [DH04a] Dykema and Haagerup gave a purely combinatorial description of this operator and we will
present it in the following.

The triangular operator T is an element of a certain algebra (finite von Neumann algebra) equipped
with a functional φ. The elements of such algebras can be uniquely determined by the values of φ on
all polynomials in T and T ? therefore we need to specify the numbers φ(T ε(1) · · ·T ε(n)) for any sequence
ε(1), . . . , ε(n) ∈ {1, ?}. Dykema and Haagerup proved that that (n/2 + 1)! φ(T ε(1) · · ·T ε(n)) is equal to the
number of pairs (σ, <) such that σ is a pairing compatible with ε and < is a total order on the vertices of
Tσ which is compatible with the orientation of the edges (please notice that the sequence ε considered above
takes the values 1 and ? while in the rest of this article we used the convention that ε takes the values +1
and −1, this difference is irrelavant). The Reader may easily see that the latter definition of T is very closely
related to the results presented in this paper; in particular Theorem 1 can be now equivalently stated as
follows (in fact it is the form in which Dykema and Haagerup stated originally their conjecture [DH04a]):

Theorem 6. If l, m ≥ 1 are integers then

φ
[(

T l(T ?)l
)m]

=
mml

(ml + 1)!
.

Theorem 1 and Theorem 6 were conjectured by Dykema and Haagerup [DH04a] in the hope that they
might be useful in the study of spectral properties of T . Literally speaking, this hope turned out to be wrong
since the later construction of the hyperinvariant subspaces of T by Dykema and Haagerup [DH04b, Haa02]
did not make use of Theorem 1 and Theorem 6, however it made use of one of the auxiliary results used in
our proof [Śni03] of these theorems. In this way, indirectly, Theorem 1 and Theorem 6 turned out to be
indeed helpful for their original purpose. Later on Aagaard and Haagerup [AH04] gave a different analytic
proof of the generalized Cauchy identities based on very clever matrix manipulations.

As we already mentioned, Dykema and Haagerup [DH04b, Haa02] constructed a family of hyperin-
variant subspaces of T and in this way the original motivation for studying the operator T (as a possible
counterexample for the invariant subspace conjecture) ended up as a failure. Nevertheless, operator T is
still regarded as a canonical example of a quasinilpotent operator and its deep understanding may give us
an insight into the structure of all quasinilpotent operators.

6.3. Applications in classical probability theory. The generalized Cauchy identities and their
bijective proof can be used [JŚ06b] to extract some information about multidimensional random walks and
Brownian motions.
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