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Abstract. We give combinatorial proofs that certain families of differences of products of Schur functions
are monomial-positive. We show in addition that such monomial-positivity is to be expected of a large class
of generating functions with combinatorial definitions similar to Schur functions. These generating functions
are defined on posets with labelled Hasse diagrams and include for example generating functions of Stanley’s
(P, ω)-partitions. Then we prove Okounkov’s conjecture, a conjecture of Fomin-Fulton-Li-Poon, and a special
case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements
using a recent result of Rhoades and Skandera. An alternative proof of this result is provided. We also give
an intriguing log-concavity property of Schur functions. This text contains the material from [LP, LPP].

Résumé. Nous prouvons combinatoirement que certaines familles de différences de produits de fonctions de

Schur sont monomiales-positives. Nous montrons de plus que l’on peut attendre une telle propriété pour une
importante classe de fonctions génératrices définies combinatoirement d’une façon similaire aux fonctions
de Schur. Ces fonctions génératrices sont définies en termes d’ensembles partiellement ordonnés dont le
diagramme de Hasse est étiqueté et comprennent par exemple la fonction génératrice des (P, ω)-partitions
de Stanley. Nous prouvons aussi la conjecture d’Okounkov, une conjecture de Fomin-Fulton-Li-Poon, et
un cas particulier de la conjecture de Lascoux-Leclerc-Thibon sur la positivité de Schur, et nous donnons
plusieurs énoncés plus généraux en utilisant un résultat récent de Rhoades et Skandera. Nous donnons aussi
une nouvelle preuve de ce résultat et une propriété surprenante de log-concavité des fonctions de Schur.

1. Schur positivity conjectures

The Schur functions sλ form an orthonormal basis of the ring of symmetric functions Λ. They have a
remarkable number of combinatorial and algebraic properties, and are simultaneously the irreducible char-
acters of GL(N) and representatives of Schubert classes in the cohomology H∗(Grkn) of the Grassmannian;
see [Mac, Sta]. In recent years, a lot of work has gone into studying whether certain expressions of the form

(1.1) sλsµ − sνsρ

The first aim of this article is to provide a large class of expressions of the form (1.1) which are monomial-

positive, that is, expressible as a non-negative linear combination of monomials. In particular, we show that
(1.1) is monomial-positive when λ = ν ∨ ρ and µ = ν ∧ ρ are the union and intersections of the Young
diagrams of ν and ρ. However, we show in addition that such monomial-positivity is to be expected of
many families of generating functions with combinatorial definitions similar to Schur functions, which are
generating functions for semistandard Young tableaux.

We define a new combinatorial object called a T-labelled poset and given a T-labelled poset (P,O) we
define another combinatorial object which we call (P,O)-tableaux. These (P,O)-tableaux include as special
cases standard Young tableaux, semistandard Young tableaux, cylindric tableaux, plane partitions, and
Stanley’s (P, ω)-partitions. Our main theorem is the cell transfer theorem. It says that for a fixed T-labelled
poset (P,O), one obtains many expressions of the form (1.1) which are monomial-positive, where the Schur
functions in (1.1) are replaced by generating functions for (P,O)-tableaux.

Key words and phrases. Schur functions, Schur positivity, Schur log-concavity, immanants, Kazhdan-Lusztig polynomials,
Temperley-Lieb algebra, minors.
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A symmetric function is called Schur nonnegative if it is a linear combination with nonnegative coefficients
of the Schur functions, or, equivalently, if it is the character of a certain representation of GLn. In particular,
skew Schur functions sλ/µ are Schur nonnegative. We prove that our cell-transfer results for Schur functions
hold not just for monomial-positivity but also for Schur-positivity. In particular, we prove the following
theorem.

For two partitions λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ), let us define partitions

λ ∨ µ := (max(λ1, µ1),max(λ2, µ2), . . . )

and
λ ∧ µ := (min(λ1, µ1),min(λ2, µ2), . . . ).

The Young diagram of λ ∨ µ is the set-theoretical union of the Young diagrams of λ and µ. Similarly, the
Young diagram of λ ∧ µ is the set-theoretical intersection of the Young diagrams of λ and µ. For two skew
shapes, define (λ/µ) ∨ (ν/ρ) := λ ∨ ν/µ ∨ ρ and (λ/µ) ∧ (ν/ρ) := λ ∧ ν/µ ∧ ρ.

Theorem 1.1. Let λ/µ and ν/ρ be any two skew shapes. Then we have

s(λ/µ)∨(ν/ρ) s(λ/µ)∧(ν/ρ) ≥s sλ/µ sν/ρ.

Using this theorem, we prove the following several Schur positivity conjectures due to Okounkov, Fomin-
Fulton-Li-Poon, and Lascoux-Leclerc-Thibon.

Okounkov [Oko] studied branching rules for classical Lie groups and proved that the multiplicities were
“monomial log-concave” in some sense. An essential combinatorial ingredient in his construction was the
theorem about monomial nonnegativity of some symmetric functions. He conjectured that these functions
are Schur nonnegative, as well. For a partition λ with all even parts, let λ

2 denote the partition (λ1

2 ,
λ2

2 , . . .).
For two symmetric functions f and g, the notation f ≥s g means that f − g is Schur nonnegative.

Conjecture 1.2. Okounkov [Oko] For two skew shapes λ/µ and ν/ρ such that λ + ν and µ+ ρ both

have all even parts, we have (s (λ+ν)
2 / (µ+ρ)

2

)2 ≥s sλ/µ sν/ρ.

Fomin, Fulton, Li, and Poon [FFLP] studied the eigenvalues and singular values of sums of Hermitian
and of complex matrices. Their study led to two combinatorial conjectures concerning differences of products
of Schur functions. Let us formulate one of these conjectures, which was also studied recently by Bergeron
and McNamara [BM]. For two partitions λ and µ, let λ ∪ µ = (ν1, ν2, ν3, . . . ) be the partition obtained
by rearranging all parts of λ and µ in the weakly decreasing order. Let sort1(λ, µ) := (ν1, ν3, ν5, . . . ) and
sort2(λ, µ) := (ν2, ν4, ν6, . . . ).

Conjecture 1.3. Fomin-Fulton-Li-Poon [FFLP, Conjecture 2.7] For two partitions λ and µ, we have

ssort1(λ,µ)ssort2(λ,µ) ≥s sλsµ.

Lascoux, Leclerc, and Thibon [LLT] studied a family of symmetric functions G
(n)
λ (q, x) arising combi-

natorially from ribbon tableaux and algebraically from the Fock space representations of the quantum affine

algebra Uq(ŝln). They conjectured that G
(n)
nλ (q, x) ≥s G

(m)
mλ (q, x) for m ≤ n. For the case q = 1, their conjec-

ture can be reformulated, as follows. For a partition λ and 1 ≤ i ≤ n, let λ[i,n] := (λi, λi+n, λi+2n, . . . ). In
particular, sorti(λ, µ) = (λ ∪ µ)[i,2], for i = 1, 2.

Conjecture 1.4. Lascoux-Leclerc-Thibon [LLT, Conjecture 6.4] For integers 1 ≤ m ≤ n and a

partition λ, we have
∏n

i=1 sλ[i,n] ≥s

∏m
i=1 sλ[i,m] .

Theorem 1.5. Conjectures 1.2, 1.3 and 1.4 are true.

In Section 6, we present and prove more general versions of these conjectures.

2. Posets and Tableaux

Let (P,≤) be a possibly infinite poset. Let s, t ∈ P . We say that s covers t and write s m t if for any
r ∈ P such that s ≥ r ≥ t we have r = s or r = t. The Hasse diagram of a poset P is the graph with vertex
set equal to the elements of P and edge set equal to the set of covering relations in P . If Q ⊂ P is a subset
of the elements of P then Q has a natural induced subposet structure. If s, t ∈ Q then s ≤ t in Q if and only
if s ≤ t in P . Call a subset Q ⊂ P connected if the elements in Q induce a connected subgraph in the Hasse
diagram of P .
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Figure 1. An example of a T-labelled poset (P,O) and a (P,O)-tableaux.

An order ideal I of P is an induced subposet of P such that if s ∈ I and s ≥ t ∈ P then t ∈ I. A subposet
Q ⊂ P is called convex if for any s, t ∈ Q and r ∈ P satisfying s ≤ r ≤ t we have r ∈ Q. Alternatively, a
convex subposet is one which is closed under taking intervals. A convex subset Q is determined by specifying
two order ideals J and I so that J ⊂ I and Q = {s ∈ I | s /∈ J}. We write Q = I/J . If s /∈ Q then we write
s < Q if s < t for some t ∈ Q and similarly for s > Q. If s ∈ Q or s is incomparable with all elements in Q
we write s ∼ Q. Thus for any s ∈ P , exactly one of s < Q, s > Q and s ∼ Q is true.

Let P denote the set of positive integers and Z denote the set of integers. Let T denote the set of all
weakly increasing functions f : P→ Z ∪ {∞}.

Definition 2.1. A T-labelling O of a poset P is a map O : {(s, t) ∈ P 2 | sm t} → T labelling each edge
(s, t) of the Hasse diagram by a weakly increasing function O(s, t) : P → Z ∪ {∞}. A T-labelled poset is an
an ordered pair (P,O) where P is a poset, and O is a T-labelling of P .

We shall refer to a T-labelled poset (P,O) as P when no ambiguity arises. If Q ⊂ P is a convex subposet
of P then the covering relations of Q are also covering relations in P . Thus a T-labelling O of P naturally
induces a T-labelling O|Q of Q. We denote the resulting T-labelled poset by (Q,O) := (Q,O|Q).

Definition 2.2. A (P,O)-tableau is a map σ : P → P such that for each covering relation s l t in P
we have

σ(s) ≤ O(s, t)(σ(t)).

If σ : P → P is any map, then we say that σ respects O if σ is a (P,O)-tableau.

Figure 1 contains an example of a T-labelled poset (P,O) and a corresponding (P,O)-tableau.
Denote by A(P,O) the set of all (P,O)-tableaux. If P is finite then one can define the formal power

series KP,O(x1, x2, . . .) ∈ Q[[x1, x2, . . .]] by

KP,O(x1, x2, . . .) =
∑

σ∈A(P,O)

x
#σ−1(1)
1 x

#σ−1(2)
2 · · · .

The composition wt(σ) = (#σ−1(1),#σ−1(2), . . .) is called the weight of σ.

Example 2.3. Any Young diagram P = λ can be considered as a T-labelled poset. Indeed, consider
its cells to be elements of the poset, and let O be the labelling of the horizontal edges with the function
fweak(x) = x and label the vertical edges with the function f strict(x) = x − 1. A (λ,O)-tableau is just a
semistandard Young tableaux and Kλ,O(x1, x2, · · · ) is the Schur function sλ(x1, x2, · · · ).

Example 2.4. Another interesting example are cylindric tableaux and cylindric Schur functions. Let
1 ≤ k < n be two positive integers. Let Ck,n be the quotient of Z2 given by

Ck,n = Z2/(k − n, k)/Z.

In other words, the integer points (a, b) and (a + k − n, b + k) are identified in Ck,n. We can give Ck,n the
structure of a poset by the generating relations (i, j)l(i+1, j) and (i, j)l(i, j+1). We give Ck,n a T-labelling
O by labelling the edges (i, j) l (i + 1, j) with the function fweak(x) = x and the edges (i, j) l (i, j + 1)
with the function f strict(x) = x− 1. A finite convex subposet P of Ck,n is known as a cylindric skew shape;
see [GK, Pos, McN]. The (P,O)-tableau are known as semistandard cylindric tableaux of shape P and the
generating function KP,O(x1, x2, · · · ) is the cylindric Schur function defined in [BS, Pos].
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Example 2.5. Let N be the number of elements in a poset P , and let ω : P −→ [N ] be a bijective
labelling of elements of P with numbers from 1 to N . Recall that a (P, ω)-partition (see [Sta]) is a map
σ : P −→ P such that s ≤ t in P implies σ(s) ≤ σ(t), while if in addition ω(s) > ω(t) then σ(s) < σ(t). Label
now each edge (s, t) of the Hasse diagram of P with fweak or fstrict, depending on whether ω(s) ≤ ω(t) or
ω(s) > ω(t) correspondingly. It is not hard to see that for this labelling O the (P,O)-tableaux are exactly
the (P, ω)-partitions. Similarly, if we allow any labelling of the edges of P with fweak and fstrict, we get the
oriented posets of McNamara; see [McN].

3. The Cell Transfer Theorem

A generating function f ∈ Q[[x1, x2, . . .]] is monomial-positive if all coefficients in its expansion into
monomials are non-negative. If f is actually a symmetric function then this is equivalent to f being a
non-negative linear combination of monomial symmetric functions.

Let (P,O) be a T-labelled poset. Let Q and R be two finite convex subposets of P . The subset Q ∩R
is also a convex subposet. Define two convex subposets Q ∧R and Q ∨R by

(3.1) Q ∧R = {s ∈ R | s < Q} ∪ {s ∈ Q | s ∼ R or s < R}

and

(3.2) Q ∨R = {s ∈ Q | s > R} ∪ {s ∈ R | s ∼ Q or s > Q}

Recall that if A and B are sets then A\B = {a ∈ A | a /∈ B} denotes the set difference.

Lemma 3.1. The subposets Q∧R and Q∨R are both convex subposets of P . We have (Q∧R)∪(Q∨R) =
Q ∪R and (Q ∧R) ∩ (Q ∨R) = Q ∩R.

Proof. Suppose s < t lie in Q ∧R and s < r < t for some r ∈ P but r /∈ Q ∧R. Then either s ∈ R\Q
and t ∈ Q\R or s ∈ Q\R and t ∈ R\Q. In the first case, since t > s we must have t > R which is impossible
by definition. In the second case, we have t > Q which is again impossible. The proof for Q∨R is analogous.
The second statement of the lemma is straightforward. �

Note that the operations ∧ and ∨ are stable so that (Q∧R)∧(Q∨R) = Q∧R and (Q∧R)∨(Q∨R) = Q∨R.

Theorem 3.2 (Cell Transfer Theorem). The difference

KQ∧R,OKQ∨R,O −KQ,OKR,O

is monomial-positive.

Proof. We prove Theorem 3.2 by exhibiting an injection

η : A(Q,O) ×A(R,O) −→ A(Q ∧R,O)×A(Q ∨R,O)

which is weight preserving. We call this the cell transfer procedure. The name comes from our main examples
where elements of a poset are cells of a Young diagram. For convenience, in this paper we call elements of
any poset cells.

Let ω be a (Q,O)-tableau and σ be a (R,O)-tableau. We now describe how to construct a (Q ∧R,O)-
tableau ω ∧ σ and a (Q ∨R,O)-tableau ω ∨ σ. Define a subset of Q ∩R, depending on ω and σ, by

(Q ∩R)+ = {x ∈ Q ∩R | ω(x) < σ(x)}.

We give (Q ∩R)+ the structure of a graph by inducing from the Hasse diagram of Q ∩R.
Let bd(R) = {x ∈ Q ∩ R | x m y for some y ∈ R\Q} be the “lower boundary” of Q ∩ R which touches

elements in R. Let bd(R)+ ⊂ (Q∩R)+ be the union of the connected components of (Q∩R)+ which contain
an element of bd(R). Similarly, let bd(Q) = {x ∈ Q∩R | xly for some y ∈ Q\R} be the “upper boundary”
of Q ∩R which touches elements in Q. Let bd(Q)+ ⊂ (Q ∩R)+ be the union of the connected components
of (Q ∩ R)+ which contain an element of bd(Q). The elements in bd(Q)+ ∪ bd(R)+ are amongst the cells
that we might “transfer”.

Let S ⊂ Q ∩R. Define (ω ∧ σ)S : Q ∧R→ P by

(ω ∧ σ)S(x) =

{
σ(x) if x ∈ R\Q or x ∈ S,

ω(x) otherwise.
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And define (ω ∨ σ)S : Q ∨R→ P by

(ω ∨ σ)S(x) =

{
ω(x) if x ∈ Q\R or x ∈ S,

σ(x) otherwise.

One checks directly that wt(σ) + wt(ω) = wt((ω ∧ σ)S) + wt((ω ∨ σ)S). We claim that when S = S∗ :=
bd(Q)+ ∪ bd(R)+, both (ω ∧ σ)∗S and (ω ∨ σ)S∗ respect O. We check this for (ω ∧ σ)S∗ and the claim for
(ω ∨ σ)S∗ follows from symmetry.

Let sl t be a covering relation in Q ∧R. Since σ and ω are assumed to respect O, we need only check
the conditions when (ω ∧ σ)S∗(s) = ω(s)(6= σ(s)) and (ω ∧ σ)S∗(t) = σ(t)(6= ω(t)); or when (ω ∧ σ)S∗(s) =
σ(s)(6= ω(s)) and (ω ∧ σ)S∗(t) = ω(t)(6= σ(t)).

In the first case, we must have s ∈ Q and t ∈ R. If t ∈ R but t /∈ Q then by the definition of Q ∧ R
we must have t < Q and so t < t′ for some t′ ∈ Q. This is impossible since Q is convex. Thus t ∈ Q ∩ R
and so t ∈ S∗. We compute that ω(s) ≤ O(s, t)(ω(t)) ≤ O(s, t)(σ(t)) since ω(t) < σ(t) and O(s, t) is weakly
increasing.

In the second case, we must have s ∈ R and t ∈ Q. By the definition of Q ∧ R we must have t ∈ R as
well. So t ∈ Q ∩R but t /∈ S∗ which means that ω(t) > σ(t). Thus σ(s) ≤ O(s, t)(σ(t)) ≤ O(s, t)(ω(t)) and
ω ∧ σ respects O here.

For each (ω, σ), say a subset S ⊆ S∗ is transferrable if both (ω ∧ σ)S and (ω ∨ σ)S respect O. If S′ and
S′′ are both transferrable then it is easy to check that so is S′ ∩ S′′. Thus there exists a unique smallest
transferrable subset S� ⊆ S∗. Now define η : A(Q,O) ×A(R,O)→ A(Q ∧R,O)×A(Q ∨R,O) by

(ω, σ) 7−→ ((ω ∧ σ)S� , (ω ∨ σ)S�).

Note that S� depends on ω and σ, though we have suppressed the dependence from the notation.
We now show that this η is injective. Given (α, β) ∈ η(A(Q,O) ×A(R,O)), we show how to recover ω

and σ. As before, for a subset S ⊂ Q ∩R, define ωS = ω(α, β)S : Q→ P by

ωS(x) =

{
β(x) if x ∈ (Q\R) ∩ (Q ∨R) or x ∈ S,

α(x) otherwise.

And define σS = σ(α, β)S : R→ P by

σS(x) =

{
α(x) if x ∈ (R\Q) ∩ (Q ∧R) or x ∈ S,

β(x) otherwise.

Note that if (α, β) = ((ω∧σ)S� , (ω∨σ)S�)) then ω = ωS� and σ = σS� . Let S� ⊂ Q∩R be the unique smallest
subset such that ωS� and σS� both respect O. Since we have assumed that (α, β) ∈ η(A(Q,O)×A(R,O)),

such a S� must exist. (As before the intersection of two transferrable subsets with respect to (α, β) is
transferrable.)

We now show that if (α, β) = ((ω ∧ σ)S� , (ω ∨ σ)S�)) then S� = S�. By definition, S� ⊂ S�. Let
C ⊂ S�\S� be a connected component of S�\S�, viewed as an induced subgraph of the Hasse diagram of
P . We claim that S�\C is a transferrable set for (ω, σ); this means that changing α|C to ω|C and β|C to
σ|C gives a pair in A(Q ∧ R,O) × A(Q ∨ R,O). Suppose first that c ∈ C and s ∈ S� is so that c l s. By
the definition of S�, we must have α(c) ≤ O(c, s)(β(s)) and β(c) ≤ O(c, s)(α(s)). Now suppose that c ∈ C
and s ∈ Q\R such that c l s. Then we must have O(c, s)(ω(s)) = O(c, s)(β(s)) ≥ α(c) = σ(c). Similar
conclusions hold for cm s. Thus we have checked that S�\C is a transferrable set for (ω, σ).

This shows that the map (ω, σ) 7→ ((ω ∧ σ)S� , (ω ∨ σ)S�)) is injective, completing the proof. �

On Figure 2 we can see how shapes P ∨Q and P ∧Q are formed in the case of SSYT. On Figure 3 an
example of cell transfer for those shapes is given. Note that S� does not contain one cell which is is in S∗.

Note that (ω, σ) 7→ ((ω∧σ)S∗ , (ω∨σ)S∗) also defines a weight-preserving map η∗ : A(Q,O)×A(R,O)→
A(Q ∧R,O)×A(Q ∨R,O). Unfortunately, η∗ is not always injective.

Suppose P is a locally-finite poset with a minimal element. Let J(P ) be the lattice of finite order ideals
of P ; see [Sta]. If I, J ∈ J(P ) then the sets I ∧ J and I ∨ J defined in (3.1) and (3.2) are finite order ideals
and agree with the the meet ∧J(P ) and join ∨J(P ) of I and J respectively within J(P ). In fact, by defining
(Q ∧ R)′ = {s ∈ R | s < Q} ∪ {s ∈ Q | s ∈ R or s < R} and (Q ∨ R)′ = {s ∈ Q | s ∼ R} ∪ {s ∈ R | s ∼
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Q

R

Q ∩ R

Q ∧ R

Q ∨ R

Q ∧ R ∩ Q ∨ R

Figure 2. An example of P ∧Q and P ∨Q for semistandard Young tableaux.

Figure 3. An example of cell transfer for semistandard Young tableaux, cells in S� are marked.

Q or s > Q}, the order ideals (I ∧ J)′ = I ∧J(P ) J and (I ∨ J)′ = I ∨J(P ) J agree with the meet and join in
J(P ) even when P does not contain a minimal element.

Corollary 3.3. Let P be a locally-finite poset and I, J ∈ J(P ). Then the generating function

KI∧J(P)J,OKI∨J(P)J,O −KI,OKJ,O

is monomial-positive.

Proof. The elements altered going from (Q∧R) to (Q∧R)′ do not involve the intersection Q∩R, and
in fact are incomparable to the elements of Q ∩ R. The cells being transferred in the proof of Theorem 3.2
are not affected by changing (Q ∧ R) to (Q ∧ R)′ and changing (Q ∨ R) to (Q ∨ R)′. Thus the same proof
works here. �

4. Background for Schur positivity proof

In this section we give an overview of some results of Haiman [Hai] and Rhoades-Skandera [RS2, RS1].
We include an alternative proof Rhoades-Skandera’s result.

4.1. Haiman’s Schur positivity result. Let Hn(q) be the Hecke algebra associated with the sym-
metric group Sn. The Hecke algebra has the standard basis {Tw | w ∈ Sn} and the Kazhdan-Lusztig basis

{C′w(q) | w ∈ Sn} related by

ql(v)/2C′v(q) =
∑

w≤v

Pw,v(q)Tw and Tw =
∑

v≤w

(−1)l(vw)Qv,w(q) ql(v)/2C′v(q),

where Pw,v(q) are the Kazhdan-Lusztig polynomials and Qv,w(q) = Pw◦w,w◦v(q), for the longest permutation
w◦ ∈ Sn, see [Hum] for more details.
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For w ∈ Sn and a n× n matrix X = (xij), the Kazhdan-Lusztig immanant was defined in [RS2] as

Immw(X) :=
∑

v∈Sn

(−1)l(vw)Qw,v(1)x1,v(1) · · ·xn,v(n),

Let hk =
∑

i1≤···≤ik
xi1 · · ·xik

be the k-th homogeneous symmetric function, where h0 = 1 and hk = 0

for k < 0. A generalized Jacobi-Trudi matrix is a n × n matrix of the form
(
hµi−νj

)n

i,j=1
, for partitions

µ = (µ1 ≥ µ2 · · · ≥ µn ≥ 0) and ν = (ν1 ≥ ν2 · · · ≥ νn ≥ 0). Haiman’s result can be reformulated as follows,
see [RS2].

Theorem 4.1. Haiman [Hai, Theorem 1.5] The immanants Immw of a generalized Jacobi-Trudi matrix

are Schur non-negative.

Haiman’s proof of this result is based on the Kazhdan-Lusztig conjecture proven by Beilinson-Bernstein
and Brylinski-Kashiwara. This conjecture expresses the characters of Verma modules as sums of the char-
acters of some irreducible highest weight representations of sln with multiplicities equal to Pw,v(1). One
can derive from this conjecture that the coefficients of Schur functions in Immw are certain tensor product
multiplicities of irreducible representations.

4.2. Temperley-Lieb algebra. The Temperley-Lieb algebra TLn(ξ) is the C[ξ]-algebra generated by
t1, . . . , tn−1 subject to the relations t2i = ξ ti, titjti = ti if |i − j| = 1, titj = tjti if |i − j| ≥ 2. The

dimension of TLn(ξ) equals the n-th Catalan number Cn = 1
n+1

(
2n
n

)
. A 321-avoiding permutation is a

permutation w ∈ Sn that has no reduced decomposition of the form w = · · · sisjsi · · · with |i − j| = 1.
(These permutations are also called fully-commutative.) A natural basis of the Temperley-Lieb algebra
is {tw | w is a 321-avoiding permutation in Sn}, where tw := ti1 · · · til

, for a reduced decomposition w =
si1 · · · sil

.
The map θ : Tsi

7→ ti − 1 determines a homomorphism θ : Hn(1) = C[Sn] → TLn(2). Indeed, the
elements ti − 1 in TLn(2) satisfy the Coxeter relations.

Theorem 4.2. Fan-Green [FG] The homomorphism θ acts on the Kazhdan-Lusztig basis {C′w(1)} of

Hn(1) as follows:

θ(C′w(1)) =

{
tw if w is 321-avoiding,

0 otherwise.

For any permutation v ∈ Sn and a 321-avoiding permutation w ∈ Sn, let fw(v) be the coefficient of the
basis element tw ∈ TLn(2) in the basis expansion of θ(Tv) = (ti1 − 1) · · · (til

− 1) ∈ TLn(2), for a reduced

decomposition v = si1 · · · sil
. Rhoades and Skandera [RS1] defined the Temperley-Lieb immanant ImmTL

w (x)
of an n× n matrix X = (xij) by

ImmTL
w (X) :=

∑

v∈Sn

fw(v)x1,v(1) · · ·xn,v(n).

Theorem 4.3. Rhoades-Skandera [RS1] For a 321-avoiding permutation w ∈ Sn, we have ImmTL
w (X) =

Immw(X).

Proof. Applying the map θ to Tv =
∑

w≤v(−1)l(vw)Qw,v(1)C′w(1) and using Theorem 4.2 we ob-

tain θ(Tv) =
∑

(−1)l(vw)Qw,v(1) tw, where the sum is over 321-avoiding permutations w. Thus fw(v) =

(−1)l(vw)Qw,v(1) and ImmTL
w = Immw. �

A product of generators (decomposition) ti1 · · · til
in the Temperley-Lieb algebra TLn can be graphically

presented by a Temperley-Lieb diagram with n non-crossing strands connecting the vertices 1, . . . , 2n and,
possibly, with some internal loops. This diagram is obtained from the wiring diagram of the decomposition
w = si1 · · · sil

∈ Sn by replacing each crossing “ ” with a vertical uncrossing “ ”. For example,
the following figure shows the wiring diagram for s1s2s2s3s2 ∈ S4 and the Temperley-Lieb diagram for
t1t2t2t3t2 ∈ TL4.

s1

4

3

2

1

5

6

7

8

t2t3t2t2t1

1

2

3

4

8

7

6

5

s2s3s2s2
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Pairs of vertices connected by strands of a wiring diagram are (2n+ 1− i, w(i)), for i = 1, . . . , n. Pairs
of vertices connected by strands in a Temperley-Lieb diagram form a non-crossing matching, i.e., a graph on
the vertices 1, . . . , 2n with n disjoint edges that contains no pair of edges (a, c) and (b, d) with a < b < c < d.
If two Temperley-Lieb diagrams give the same matching and have the same number of internal loops, then
the corresponding products of generators of TLn are equal to each other. If the diagram of a is obtained
from the diagram of b by removing k internal loops, then b = ξka in TLn.

The map that sends tw to the non-crossing matching given by its Temperley-Lieb diagram is a bijection
between basis elements tw of TLn, where w is 321-avoiding, and non-crossing matchings on the vertex set
[2n]. For example, the basis element t1t3t2 of TL4 corresponds to the non-crosssing matching with the edges
(1, 2), (3, 4), (5, 8), (6, 7).

4.3. An identity for products of minors. For a subset S ⊂ [2n], let us say that a Temperley-Lieb
diagram (or the associated element in TLn) is S-compatible if each strand of the diagram has one end-point
in S and the other end-point in its complement [2n] \ S. Coloring vertices in S black and the remaining
vertices white, a basis element tw is S-compatible if and only if each edge in the associated matching has
two vertices of different colors. Let Θ(S) denote the set of all 321-avoiding permutation w ∈ Sn such that
tw is S-compatible.

For two subsets I, J ⊂ [n] of the same cardinality let ∆I,J(X) denote the minor of an n× n matrix X
in the row set I and the column set J . Let Ī := [n] \ I and let I∧ := {2n+ 1− i | i ∈ I}.

Theorem 4.4. Rhoades-Skandera [RS1, Proposition 4.3], cf. Skandera [Ska] For two subsets I, J ⊂ [n]
of the same cardinality and S = J ∪ (Ī)∧, we have

∆I,J(X) ·∆Ī,J̄(X) =
∑

w∈Θ(S)

ImmTL
w (X).

The proof given in [RS1] employs planar networks. We give a more direct proof that uses the involution
principle.

Proof. Let us fix a permutation v ∈ Sn with a reduced decomposition v = si1 · · · sil
. The coefficient

of the monomial x1,v(1) · · ·xn,v(n) in the expansion of the product of two minors ∆I,J(X) ·∆Ī,J̄(X) equals
{

(−1)inv(I)+inv(Ī) if v(I) = J,
0 if v(I) 6= J,

where inv(I) is the number of inversions i < j, v(i) > v(j) such that i, j ∈ I.
On the other hand, by the definition of ImmTL

w , the coefficient of x1,v(1) · · ·xn,v(n) in the right-hand
side of the identity equals the sum

∑
(−1)r 2s over all diagrams obtained from the wiring diagram of the

reduced decomposition si1 · · · sil
by replacing each crossing “ ” with either a vertical uncrossing “ ”

or a horizontal uncrossing “ ” so that the resulting diagram is S-compatible, where r is the number of
horizontal uncrossings “ ” and s is the number of internal loops in the resulting diagram. Indeed, the
choice of “ ” corresponds to the choice of “tik

” and the choice of “ ” corresponds to the choice of “−1”
in the k-th term of the product (ti1 − 1) · · · (til

− 1) ∈ TLn(2), for k = 1, . . . , l.
Let us pick directions of all strands and loops in such diagrams so that the initial vertex in each strand

belongs to S (and, thus, the end-point is not in S). There are 2s ways to pick directions of s internal loops.
Thus the above sum can be written as the sum

∑
(−1)r over such directed Temperley-Lieb diagrams.

Here is an example of a directed diagram for v = s3s2s1s3s2s3 and S = {1, 4, 5, 7} corresponding to the
term t3t2(−1)t3(−1)t3 in the expansion of the product (t3 − 1)(t2 − 1)(t1 − 1)(t3 − 1)(t2 − 1)(t3 − 1). This
diagram comes with the sign (−1)2.

−1 t3

5

6

7

8

t2 −1 t3

1

2

3

4

t3

Let us construct a sign reversing partial involution ι on the set of such directed Temperley-Lieb diagrams.
If a diagram has a misaligned uncrossing, i.e., an uncrossing of the form “ ”, “ ”, “ ”, or “ ”, then
ι switches the leftmost such uncrossing according to the rules ι : ↔ and ι : ↔ . Otherwise,
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when the diagram involves only aligned uncrossings “ ”, “ ”, “ ”, “ ”, the involution ι is not
defined.

For example, in the above diagram, the involution ι switches the second uncrossing, which has the form
“ ”, to “ ”. The resulting diagram corresponds to the term t3(−1)(−1)t3(−1)t3.

Since the involution ι reverses signs, this shows that the total contribution of all diagrams with at least
one misaligned uncrossing is zero. Let us show that there is at most one S-compatible directed Temperley-
Lieb diagram with all aligned uncrossings. If we have a such diagram, then we can direct the strands of
the wiring diagram for v = si1 . . . sil

so that each segment of the wiring diagram has the same direction
as in the Temperley-Lieb diagram. In particular, the end-points of strands in the wiring diagram should
have different colors. Thus each strand starting at an element of J should finish at an element of I∧, or,
equivalently, v(I) = J . The directed Temperley-Lieb diagram can be uniquely recovered from this directed
wiring diagram by replacing the crossings with uncrossings, as follows: → , → , → ,
→ . Thus the coefficient of x1,v(1) · · ·xn,v(n) in the right-hand side of the needed identity is zero, if

v(I) 6= J , and is (−1)r, if v(I) = J , where r is the number of crossings of the form “ ” or “ ” in the
wiring diagram. In other words, r equals the number of crossings such that the right end-points of the pair
of crossing strands have the same color. This is exactly the same as the expression for the coefficient in the
left-hand side of the needed identity. �

5. Proof of Theorem 1.1

For two subsets I, J ⊆ [n] of the same cardinality, let ∆I,J(H) denote the minor of the Jacobi-Trudi
matrix H = (hj−i)1≤i,j≤n with row set I and column set J , where hi is the i-th homogeneous symmetric
function, as before. According to the Jacobi-Trudi formula, see [Mac], the minors ∆I,J(H) are precisely the
skew Schur functions

∆I,J(H) = sλ/µ,

where λ = (λ1 ≥ · · · ≥ λk ≥ 0), µ = (µ1 ≥ · · · ≥ µk ≥ 0) and the associated subsets are I = {µk + 1 <
µk−1 + 2 < · · · < µ1 + k}, J = {λk + 1 < λk−1 + 2 < · · · < λ1 + k}.

For two sets I = {i1 < · · · < ik} and J = {j1 < · · · < jk}, let us define I ∨ J := {max(i1, j1) < · · · <
max(ik, jk)} and I ∧ J := {min(i1, j1) < · · · < min(ik, jk)}.

Theorem 1.1 can be reformulated in terms of minors, as follows. Without loss of generality we can
assume that all partitions λ, µ, ν, ρ in Theorem 1.1 have the same number k of parts, some of which might
be zero. Note that generalized Jacobi-Trudi matrices are obtained from H by skipping or duplicating rows
and columns.

Theorem 5.1. Let I, J, I ′, J ′ be k element subsets in [n]. Then we have

∆I∨I′, J∨J′(X) ·∆I∧I′, J∧J′(X) ≥s ∆I,J(X) ·∆I′,J′(X),

for a generalized Jacobi-Trudi matrix X.

Proof. Let us denote Ī := [n] \ I and Š := [2n] \ S. By skipping or duplicating rows and columns of
the matrix X , we may assume that I ′ = Ī and J ′ = J̄ . Then I ∨ I ′ = I ∧ I ′ and J ∨ J ′ = J ∧ J ′. Let
S := J ∪ (Ī)∧ and T := (J ∨ J ′) ∪ (I ∨ I ′)∧. Then we have T = S ∨ Š and Ť = S ∧ Š.

Let us show that Θ(S) ⊆ Θ(T ), i.e., every S-compatible non-crossing matching on [2n] is also T -
compatible. Let S = {s1 < · · · < sn} and Š = {š1 < · · · < šn}. Then T = {max(s1, š1), . . . ,max(sn, šn)}
and Ť = {min(s1, š1), . . . ,min(sn, šn)}. Let M be an S-compatible non-crossing matching on [2n] and let
(a < b) be an edge of M . Without loss of generality we may assume that a = si ∈ S and b = šj ∈ Š.

We must show that either (a ∈ T and b ∈ Ť ) or (a ∈ Ť and b ∈ T ). Since no edge of M can cross (a, b),
the elements of S in the interval [a + 1, b − 1] are matched with the elements of Š in this interval. Let
k = #(S ∩ [a+ 1, b− 1]) = #(Š ∩ [a+ 1, b− 1]). Suppose that a, b ∈ T , or, equivalently, ši < si and sj < šj .

Since there are at least k elements of Š in the interval [ši + 1, šj − 1], we have i+ k + 1 ≤ j. On the other
hand, since there are at most k− 1 elements of S in the interval [si +1, sj− 1], we have i+ k ≥ j. We obtain

a contradiction. The case a, b ∈ Ť is analogous.
Now Theorem 4.4 implies that the difference ∆I∨I′, J∨J′ · ∆I∧I′, J∧J′ − ∆I,J · ∆I′,J′ is a nonnegative

combination of Temperley-Lieb immanants. Theorems 4.1 and 4.3 imply its Schur nonnegativity. �
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6. Proof of conjectures and generalizations

In this section we prove generalized versions of Conjectures 1.2-1.4, which were conjectured by Kir-
illov [Kir, Section 6.8]. Corollary 6.2 was also conjectured by Bergeron-McNamara [BM, Conjecture 5.2]
who showed that it implies Theorem 6.3.

Let bxc be the maximal integer ≤ x and dxe be the minimal integer ≥ x. For vectors v and w and
a positive integer n, we assume that the operations v + w, v

n , bvc, dve are performed coordinate-wise. In

particular, we have well-defined operations bλ+ν
2 c and dλ+ν

2 e on pairs of partitions.
The next claim extends Okounkov’s conjecture (Conjecture 1.2).

Theorem 6.1. Let λ/µ and ν/ρ be any two skew shapes. Then we have

sbλ+ν
2 c/b

µ+ρ
2 c

sdλ+ν
2 e/d

µ+ρ
2 e
≥s sλ/µ sν/ρ.

Proof. We will assume that all partitions have the same fixed number k of parts, some of which might
be zero. For a skew shape λ/µ = (λ1, . . . , λk)/(µ1, . . . , µk), define

−−→
λ/µ := (λ1 + 1, . . . , λk + 1)/(µ1 + 1, . . . , µk + 1),

that is,
−−→
λ/µ is the skew shape obtained by shifting the shape λ/µ one step to the right. Similarly, define the

left shift of λ/µ by
←−−
λ/µ := (λ1 − 1, . . . , λk − 1)/(µ1 − 1, . . . , µk − 1),

assuming that the result is a legitimate skew shape. Note that sλ/µ = s←−−
λ/µ

= s−−→
λ/µ

.

Let θ be the operation on pairs of skew shapes given by

θ : (λ/µ, ν/ρ) 7−→ ((λ/µ) ∨ (ν/ρ), (λ/µ) ∧ (ν/ρ)).

According to Theorem 1.1, the product of the two skew Schur functions corresponding to the shapes in
θ(λ/µ, ν/ρ) is ≥s sλ/µ sν/ρ. Let us show that we can repeatedly apply the operation θ together with the left
and right shifts of shapes and the flips (λ/µ, ν/ρ) 7→ (ν/ρ, λ/µ) in order to obtain the pair of skew shapes
(bλ+ν

2 c/b
µ+ρ

2 c, d
λ+ν

2 e/d
µ+ρ

2 e) from (λ/µ, ν/ρ).
Let us define two operations φ and ψ on ordered pairs of skew shapes by conjugating θ with the right

and left shifts and the flips, as follows:

φ : (λ/µ, ν/ρ) 7−→ ((λ/µ) ∧ (
−−→
ν/ρ),

←−−−−−−−−−
(λ/µ) ∨ (

−−→
ν/ρ)),

ψ : (λ/µ, ν/ρ) 7−→ (
←−−−−−−−−−
(
−−→
λ/µ) ∨ (ν/ρ), (

−−→
λ/µ) ∧ (ν/ρ)).

In this definition the application of the left shift “←−” always makes sense. Indeed, in both cases, before the
application of “←−”, we apply “−→” and then “∨”. As we noted above, both products of skew Schur functions
for shapes in φ(λ/µ, ν/ρ) and in ψ(λ/µ, ν/ρ) are ≥s sλ/µ sν/ρ.

It is convenient to write the operations φ and ψ in the coordinates λi, µi, νi, ρi, for i = 1, . . . , k. These
operations independently act on the pairs (λi, νi) by

φ : (λi, νi) 7→ (min(λi, νi + 1),max(λi, νi + 1)− 1),
ψ : (λi, νi) 7→ (max(λi + 1, νi)− 1,min(λi + 1, νi)),

and independently act on the pairs (µi, ρi) by exactly the same formulas. Note that both operations φ and
ψ preserve the sums λi + νi and µi + ρi.

The operations φ and ψ transform the differences λi−νi and µi−ρi according to the following piecewise-
linear maps:

φ̄(x) =

{
x if x ≤ 1,

2− x if x ≥ 1,
and ψ̄(x) =

{
x if x ≥ −1,

−2− x if x ≤ −1.

Whenever we apply the composition φ ◦ ψ of these operations, all absolute values |λi − νi| and |µi − ρi|
strictly decrease, if these absolute values are ≥ 2. It follows that, for a sufficiently large integer N , we have
(φ◦ψ)N (λ/µ, ν/ρ) = (λ̃/µ̃, ν̃/ρ̃) with λ̃i + ν̃i = λi +νi, µ̃i + ρ̃i = µi +ρi, and |λ̃i− ν̃i| ≤ 1, |µ̃i− ρ̃i| ≤ 1, for all

i. Finally, applying the operation θ, we obtain θ(λ̃/µ̃, ν̃/ρ̃) = (dλ+ν
2 e/d

µ+ρ
2 e, b

λ+ν
2 c/b

µ+ρ
2 c), as needed. �

The following conjugate version of Theorem 6.1 extends Fomin-Fulton-Li-Poon’s conjecture (Conjec-
ture 1.3) to skew shapes.
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Corollary 6.2. Let λ/µ and ν/ρ be two skew shapes. Then we have

ssort1(λ,ν)/sort1(µ,ρ) ssort2(λ,ν)/sort2(µ,ρ) ≥s sλ/µ sν/ρ.

Proof. This statement is obtained from Theorem 6.1 by conjugating the shapes. Indeed, dλ+µ
2 e
′ =

sort1(λ
′, µ′) and bλ+µ

2 c
′ = sort2(λ

′, µ′). Here λ′ denote the partition conjugate to λ. �

Theorem 6.3. Let λ(1)/µ(1), . . . , λ(n)/µ(n) be n skew shapes, let λ =
⋃
λ(i) be the partition obtained

by the decreasing rearrangement of the parts in all λ(i), and, similarly, let µ =
⋃
µ(i). Then we have∏n

i=1 sλ[i,n]/µ[i,n] ≥s

∏n
i=1 sλ(i)/µ(i) .

This theorem extends Corollary 6.2 and Conjecture 1.3. Also note that Lascoux-Leclerc-Thibon’s conjec-
ture (Conjecture 1.4) is a special case of Theorem 6.3 for the n-tuple of partitions (λ[1,m], . . . , λ[m,m], ∅, . . . , ∅).

Proof. Let us derive the statement by applying Corollary 6.2 repeatedly. For a sequence v = (v1, v2, . . . , vl)
of integers, the anti-inversion number is ainv(v) := #{(i, j) | i < j, vi < vj}. Let L = (λ(1)/µ(1), . . . , λ(n)/µ(n))
be a sequence of skew shapes. Define its anti-inversion number as

ainv(L) = ainv(λ
(1)
1 , λ

(2)
1 , . . . , λ

(n)
1 , λ

(1)
2 , . . . , λ

(n)
2 , λ

(1)
3 , . . . , λ

(n)
3 , . . . )

+ ainv(µ
(1)
1 , µ

(2)
1 , . . . , µ

(n)
1 , µ

(1)
2 , . . . , µ

(n)
2 , µ

(1)
3 , . . . , µ

(n)
3 , . . . ).

If ainv(L) 6= 0 then there is a pair k < l such that ainv(λ(k)/µ(k), λ(l)/µ(l)) 6= 0. Let L̃ be the sequence of
skew shapes obtained from L by replacing the two terms λ(k)/µ(k) and λ(l)/µ(l) with the terms

sort1(λ
(k), λ(l))/sort1(µ

(k), µ(l)) and sort2(λ
(k), λ(l))/sort2(µ

(k), µ(l)),

correspondingly. Then ainv(L̃) < ainv(L). Indeed, if we rearrange a subsequence in a sequence in the
decreasing order, the total number of anti-inversions decreases. According to Corollary 6.2, we have sL̃ ≥s sL,

where sL :=
∏n

i=1 sλ(i)/µ(i) . Note that the operation L 7→ L̃ does not change the unions of partitions
⋃
λ(i)

and
⋃
µ(i). Let us apply the operations L 7→ L̃ for various pairs (k, l) until we obtain a sequence of skew

shapes L̂ = (λ̂(1)/µ̂(1), . . . , λ̂(n)/µ̂(n)) with ainv(L̂) = 0, i.e., the parts of all partitions must be sorted as

λ̂
(1)
1 ≥ · · · ≥ λ̂

(n)
1 ≥ λ̂

(1)
2 ≥ · · · ≥ λ̂

(n)
2 ≥ λ̂

(1)
3 ≥ · · · ≥ λ̂

(n)
3 ≥ · · · , and the same inequalities hold for the µ̂

(i)
j .

This means that λ̂(i)/µ̂(i) = λ[i,n]/µ[i,n], for i = 1, . . . , n. Thus sL̂ =
∏
sλ[i,n]/µ[i,n] ≥s sL, as needed. �

Let us define λ{i,n} := ((λ′)[i,n])′, for i = 1, . . . , n. Here λ′ again denotes the partition conjugate to
λ. The partitions λ{i,n} are uniquely defined by the conditions dλ

ne ⊇ λ{1,n} ⊇ · · · ⊇ λ{n,n} ⊇ bλ
nc and∑n

i=1 λ
{i,n} = λ. In particular, λ{1,2} = dλ

2 e and λ{2,2} = bλ
2 c. If λ

n is a partition, i.e., all parts of λ are

divisible by n, then λ{i,n} = λ
n for each 1 ≤ i ≤ n.

Corollary 6.4. Let λ(1)/µ(1), . . . , λ(n)/µ(n) be n skew shapes, let λ = λ(1) + · · · + λ(n) and µ =
µ(1) + · · ·+ µ(n). Then we have

∏n
i=1 sλ{i,n}/µ{i,n} ≥s

∏n
i=1 sλ(i)/µ(i) .

Proof. This claim is obtained from Theorem 6.3 by conjugating the shapes. Indeed,
(⋃

λ(i)
)′

=∑
(λ(i))′. �

For a skew shape λ/µ and a positive integer n, define s
〈n〉
λ
n

/ µ
n

:=
∏n

i=1 sλ{i,n}/µ{i,n} . In particular, if λ
n

and µ
n are partitions, then s

〈n〉
λ
n

/ µ
n

=
(
s λ

n
/ µ

n

)n

.

Corollary 6.5. Let c and d be positive integers and n = c + d. Let λ/µ and ν/ρ be two skew shapes.

Then s
〈n〉
cλ+dν

n
/ cµ+dρ

n

≥s s
c
λ/µ s

d
ν/ρ.

Theorem 6.1 is a special case of Corollary 6.5 for c = d = 1.

Proof. This claim follows from Corollary 6.4 for the sequence of skew shapes that consists of λ/µ
repeated c times and ν/ρ repeated d times. �

Corollary 6.5 implies that the map S : λ 7→ sλ from the set of partitions to symmetric functions satisfies
the following “Schur log-concavity” property.



Thomas Lam, Alexander Postnikov, and Pavlo Pylyavskyy

Corollary 6.6. For positive integers c, d and partitions λ, µ such that cλ+dµ
c+d is a partition, we have

(
S

(
cλ+dµ

c+d

))c+d

≥s S(λ)cS(µ)d.

This notion of Schur log-concavity is inspired by Okounkov’s notion of log-concavity; see [Oko].
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