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Abstract

The main result of the paper is a new formula for the number of conjugacy
classes of subgroups of a given index in a finitely generated group. As application of
this result a simple proof of the formula for the number of non-equivalent coverings
over surface (orientable or not, bordered or not) is given. Another application is a
formula for the number of non-isomorphic unrooted maps on an orientable closed
surface with a given number of edges.
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1 Introduction

Let Mr(n) denote the number of subgroups of index n in a group I'; and Nr(n) be the
number of conjugacy classes of such groups. The last function counts the isomorphism
classes of transitive permutation representations of degree n of I' and hence, also the
equivalence classes of n-fold unbranched connected coverings of a topological space with
fundamental group I

M. Hall [4] determined the numbers of subgroups Mr(n) for a free group I' = F,
of rank r. Later V. Liskovets [9] developed a new method for calculation of Nr(n) for
the same group. Both functions Mp(n) and Np(n) for the fundamental group I' of a
closed surface were obtained in [15] and [16] for orientable and non-orientable surfaces,
respectively. See also [17] and [3] for the case of the fundamental group of the Klein
bottle and a survey [8] for related problems. In all these cases the problem of calculating
of Mr(n) was solved essentially by using representation theory of symmetric groups,
contributed by Hurwitz and Frobenius, as the main tool ([6],[7]). The solution for
the problem to finding Nr(n) was based on the further development of the Liskovets
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method ([9], [10]). In [11] and [12], these ideas were applied to determine Mp(n) for the
fundamental groups of some Seifert spaces. Asymptotic formulas for Mrp(n) in many
important cases were obtained in series of papers by T. W. Miiller and his collaborators
([19],]20],[21]). An excellent exposition of the above results and related subjects is given
in the book [14].

In the present paper, a new formula for the number of conjugacy classes of subgroups
of given index in an arbitrary finitely generated group is obtained.

The main counting principle suggested in Section 2 of the paper is rather universal.
It can be applied to Fuchsian groups to calculate the number of non-equivalent surface
coverings (Section 3) as well as the number of unrooted maps on the surface (Section
4). Remark that the results of Section 3 were obtained in [9, 15, 16] by making use of
cumbersome combinatorial technique. In the present paper they are rederived as simple
consequences of Theorem 1 in Section 2. Another application of Theorem 1 is given in
Section 4 where a new approach to determination of the number of unrooted maps on
the closed oriented surface with given number of edges is suggested. Earlier, in more
complicated way this result was obtained in [18].

2 Counting conjugacy classes of subgroup

Denote by Epi(K, Z,) the set of epimorphisms of a group K onto the cyclic group Z; of
order ¢ and by |E| the cardinality of a set E.
The main result of this paper is the following counting principle.

Theorem 1 Let I' be a finitely generated group. Then the number of conjugacy classes
of subgroups of index n in the group I' is given by the formula

Ne(n) =+ 57 7 [Bpi(K, 7))

ln K<T

{m=n ™

where the sum Y is taken over all subgroups K of index m in the group I.
K<T

Proof:  Let P be a subgroup in I' and N(P,I') is the normalizer of P in the group I'.
We need the following two elementary lemmas.

Lemma 1 The number of conjugacy classes of subgroups of index n in the group I' is
given by the formula

Ne(n) = - S7 IN(P,T)/P).

pP<T
n

Proof:  Let E be a conjugacy class of subgroups of index n in the group I'. We claim
that
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> IN(P.T)/P| =n.

PeE

Indeed, let P’ € E. Then |E| = |I': N(P',T')| and for any P € E the groups N(P,T")/P
and N(P',T")/P" are isomorphic. We have

Z IN(P,T)/P| = |E||N(P',T)/P'| =|T': N(P',T)||N(P',T"): P'| =1|T": P'| =n.

PeE

Hence,

Zn—ZZ|NPI‘/P| > IN(P.T)/P|,

E PeE P<T
n

where the sum ) is taken over all conjugacy classes E of subgroups of index n in the
E
group I O

Lemma 2 Let P be a subgroup of index n in the group I'. Then

IN(PD)/PI=" Y ),

ln P<1K<F
tm=n %t

where ¢({) is the Euler function and the second sum is taken over all subgroups K of
index m in ' containing P as a normal subgroup with K/P = Z;. The sum vanishes if
there are no such subgroups.

Proof: Set G = N(P,T")/P. Since P < N(P,I') < T' and P < T, the order of any cyclic

subgroup of G is a divisor of n.
Note that there is a one-to-one correspondence between cyclic subgroups Z, in the
group G and subgroups K satisfying P P K < T', where {m = n.
0 m

Given a cyclic subgroup Z, < G there are exactly ¢(¢) elements of G which generate
Zp.
Hence,

Gl =) o(0) Zl—Zqé Z 1= 3 e

2< G K<T fln Pa4K<T
m

O
We finish the proof of the theorem by applying Lemma 1 and Lemma 2 for {m =n :
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2.0 2 )= ¢(f) =

P<F£|nP<1 K<T Z|nP<FP QK<
n

Z m

20 2. 2 o) =22 > [Epi(K,Z)|.

é|nK<FP<1K K\nK<F

The last equality is a consequence of the following observation. Given subgroup P, P 4 K

there are exactly ¢(¢) epimorphisms ¢ : K — Z,;, with Ker (/) = P. Indeed, any two
of them differ one from other by an element of the group Aut(Z,) consisting of ¢(¢)
elements. O

Denote by Hom(I', Zy) the set of homomorphisms of a group I into the cyclic group

Zy of order ¢. Following G. Jones [1] we note that [Hom(T", Z,)| = > |Epi(T', Z4)|. Hence,
dfe
by the Mobius inversion formula [2, §8.3, p. 148] we have the following result

Lemma 3

Bpi(r, 20| = 3 () Hom(T, )],
d| ¢

where p(n) is the Mdobius function.

This lemma essentially simplifies the calculation of |Epi(T", Z,)| for a finitely generated
group I'. Indeed, let Hy(I") = T'/[T", T'] be the first homology group of I'. Suppose that
Hi(T)=Zn, & Zm, ® ... D Zn, ®Z'. Then we have

Lemma 4

Bpi(L, 2| = 37 (5) (mr,d) (ma,d) . (md)
dle

where (m,d) is the greatest common divisor of m and d.

Proof: Note that |Hom(Z,,, Z4)| = (m,d) and |Hom(Z, Z,)| = d. Since the group Z, is
Abelian, we obtain

|Hom(T', Z;)| = [Hom(Hy(T"), Z4)| = (ma1,d) (ma,d) ... (ms,d)d".

Then the result follows from Lemma 3. O

In particular, we have
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Corollary 1
(i) LetF, be a free group of rankr. Then H,(F,) = Z" and |[Epi(F,, Z)| = Y pu(t)d".

g
(ii) Let @, = (a1, by,...,a4,b, 0 [[]as, b)) = 1) be the fundamental group of a closed
i=1
orientable surface of genus g. Then Hy(®,) = Z% and |Epi(®,, Z)| = > u(5) d*.
d|¢

p
(iii) Let A, = (a1, ag,...,a, : [[a? = 1) be the fundamental group of a closed non-
i=1

orientable surface of genus p. Then Hi(A,) = Z & ZP' and |Epi(A,, Z)| =
> u(g) (2,d)d .

dle

Note that the fundamental group of any compact surface (orientable or not, possibly,
with non-empty boundary) is one of the three groups F,, ®, and A, listed in Corollary
1. In the next two sections we identify the number of conjugacy classes of subgroups
of index n in the group I' and the number of equivalence classes of n-fold unbranched
connected coverings of a manifold with fundamental group T'.

3 Counting surface coverings

Recall that the fundamental group 7 (B) of a bordered surface B of Euler characteristic

=1—r,r>0,is a free group F, of rank r. An example of such a surface is the disc
D, with r holes. As the first application of the counting principle (Theorem 1) we have
the following result obtained earlier by V. Liskovets [9]

Theorem 2 Let B be a bordered surface with the fundamental group m (B) = F,. Then
the number of non-equivalent n—fold coverings of B is given by the formula

Ny =1 30 ST () s (m),

ln d|t
fm=n

where M(m) is the number of subgroups of index m in the group F,.

Proof: ~ Note that all subgroups of index m in F, are isomorphic to I';, = F(_1)m+1.
By Theorem 1 we have

N(n) :% S [Bpi(Ty, /)] - M(m).

L n
{m=n
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By Corollary 1(i) we get
’Epl ‘ o Z M r 1)m+1
dje

and the result follows. O
By the M. Hall recursive formula [4] the number of subgroups of index m in the group

tm T
F, is equal to M (m) = (m—_’l)!, where
m—1 1
tm’T:m!T_Z <7J/n—_1)<m_])'rt]»r7 tlv,r:l'
j=1

The next result was obtained in [15] in a rather complicated way.

Theorem 3 Let S be a closed orientable surface with the fundamental group m(S) =
®,. Then the number of non-equivalent n—fold coverings of S is given by the formula

-3 Zu(g)dQ(g‘l)”‘*QM(m),

fn d|e

fm=n

where M(m) is the number of subgroups of index m in the group ®,.

Proof:  Recall that any subgroup K,, of index m in the group ®, is isomorphic to ®,
where ¢’ and g are related by the Riemann-Hurwitz formula [6] 2¢' — 2 = m(2g — 2).
Hence, K, = ®(y—1)m+1. By the main counting principle (Theorem 1) we have

N(n) = = 3 [Bpi(K, 20)] - M(m)
ln

fm=n

where

|Ep1 ’_Z'u ng 1)m+2
e

is given by Corollary 1(ii) . O

Let N be a closed non-orientable surface of genus p with the fundamental group
7 (N) = A,. Denote by N, and N, an orientable and non-orientable m—fold coverings
of N, respectively and set I'}t = 7 (N,}) and ', = 71(N,,). For simplicity, we will refer
to I} and T, as orientable and non-orientable subgroups of index m in A, respectively.
By the Riemann-Hurwitz formula we get

2genus (N.7) — 2 =m(p —2) and genus (N,,) — 2 =m(p — 2),
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where p = genus (V). Hence '), = Pmp 91 and I, = App2)42-
By the main counting principle, the number of non-equivalent n—fold coverings of
N is given by the formula

N(w) == 37 (Bpi(T,, 2)] - M (m) + [Epi(T, 20)| - M (m).
ln

fm=n

where M*(m) and M~ (m) are the numbers of orientable and non-orientable subgroups
of index m in the group A,, respectively.
By Corollary 1(ii) and Corollary 1(iii), we have

[Epi(I7,, Zo)| = ZM dm(p 2+2 and |Epi(T,,, Zy)| = ZM (2,d) qmP=2)+1
dj ¢ a0

As a result, we have proved the following theorem obtained earlier in [16] by making
use of a cumbersome combinatorial technique.

Theorem 4 Let n be a closed orientable surface with the fundamental group m (N) =
A,. Then the number of non-equivalent n—fold coverings of N is given by the formula

S T () @A )+ (2,) A M (),

ln dL
fm=n

where Mt (m) and M~(m) are the numbers of orientable and non-orientable subgroups
of index m in the group A,, respectively.

For completeness note that ([15], [16]) if I' = ®, or A, then the number M (m) of sub-
groups of index m in the group I' is equal to

(-
Ry(m)=m | — Y BB B

s=1 z1+7,2+ —Hs—m
11,22, eyl >1

k! v . . . . .
where [, = > (ﬁ) , Dy is the set of irreducible representations of a symmetric

X€EDy,
group S, fX is the degree of the representation x, v =2g—2forI' = ®, and v = p — 2

for I' = A,,. Moreover, in the latter case, M*(m) = 0 if m is odd, M*(m) = Ry, (%) if
m is even, and M~ (m) = M(m)— M*(m). Also, the number of subgroups can be found
by the following recursive formula

M) = m B = 3 B M), M) =1
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4 Non-isomorphic maps on surface

In this section we deal with the problem of enumeration of oriented unrooted maps
of given genus g. From now on a surface is a connected, orientable surface without a
border. A map is a 2-cell decomposition of a surface. Standardly, maps on surfaces are
described as 2-cell embeddings of graphs. An embedded graph is a 4-tuple (D, V, 1, L),
where D and V' are disjoint sets of darts and wvertices, respectively, I is an incidence
function I : D — V assigning to each dart an initial vertex, and L is the dart-reversing
involution. Edges of a graph are orbits of L. Note that some edges may be incident
just with one vertex, such edges will be called semiedges. In what follows we shall deal
with the category of oriented maps, that means one of the two global orientations of the
underlying surface is fixed. Recall, that a map is called rooted if it has one distinguished
dart x called a root. An isomorphism between rooted maps takes root onto root. Recall
that if (M, z) and (M,y) are two rooted maps based on the same map with a dart set
D then the number of isomorphism classes for (M, z) and (M, y) is the same. There is a
1-1 correspondence between isomorphism classes of rooted maps defined in the category
of oriented maps, and isomorphism classes of rooted maps in the category of maps on
orientable surfaces as they are defined, for instance, in monograph [13, page 7].

We fix the set of darts D and consider different maps based on D. We will determine
the number of isomorphism classes of (unrooted) maps with n darts and of given genus
g. This number will be denoted by NUM,(n).

Denote by Orb(S,/Z;) the set of all orbifolds arising as cyclic quotients under some
action of Z, on maps on a surface of genus g and by NRMp(m) the number of rooted
quotient maps for a given orbifold type O which lift onto maps on a surface of genus g,
having n = ¢m darts. We note that if the map contains no semi-edges then the number
of darts n = 2 e, where e is the number of edges of the map.

Let S; be an orientable surface of genus g and Z; be a cyclic group of automor-
phisms of S,;. Denote by (v;mi,ma,...,m,), 2 < my < myg < ... < m, </, the
signature of orbifold O = S,;/Z,. That is, the underlying space of O is an oriented sur-
face of genus v and the regular cyclic covering S, — O = S;/Z; is branched over r points
of O with branch indices my,ma, ..., m,, respectively. W.J. Harvey [5] obtained neces-
sary and sufficient conditions for an existence of a cyclic orbifold S,/Z, with signature

(v;my,ma,...,m,).

Given orbifold O of the signature (7;my, ma, ..., m,) define an orbifold fundamental
group m(O) to be an F-group generated by 27 generators ay, by, as, bs, . .., a, b, and by
r generators e;, j = 1,...,r satisfying the relations

Yy T

H[ai7bi] Hej =1, e’ =1forevery j=1,...,r

i=1 j=1

where [a, b] = aba='b7L.
An epimorphism 7 (O) — Z, onto a cyclic group of order ¢ is called order preserving
if it preserves the orders of generators e;, j = 1,...,r. Equivalently, an order preserving
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epimorphism m1(0O) — Z, has a torsion-free kernel. We denote by Epiy(m(O), Z;) the
number of order preserving epimorphisms 7 (0O) — Z,.

An elementary consideration based on Theorem 1 enables us to prove the following
theorem [18].

Theorem 5 With the above notation the following enumeration formula holds:

NUMg(n):% > > Epio(m(0), Z)NRMo(m).

Lin,n=0m O€OTb(Sy/Zy)

The number of rooted maps on the orbifold as well as the number of order preserving
epimorphisms are explicitly determined in joint paper with R. Nedela [18]. Numerical
tables for the number of non-isomorphic (unrooted) maps on closed surface of genus 1,
2 and 3 with up to 30 edges are also given in the paper.
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