SQUARE gq, t-LATTICE PATHS AND V(p,)

NICHOLAS A. LOEHR AND GREGORY S. WARRINGTON

ABSTRACT. The combinatorial q,t-Catalan numbers are weighted sums of Dyck paths introduced
by J. Haglund and studied extensively by Haglund, Haiman, Garsia, Loehr, and others. The ¢, t-
Catalan numbers, besides having many subtle combinatorial properties, are intimately connected
to symmetric functions, algebraic geometry, and Macdonald polynomials. In particular, the n’th
g,t-Catalan number is the Hilbert series for the module of diagonal harmonic alternants in 2n
variables; it is also the coefficient of si» in the Schur expansion of V(e,). Using g, t-analogues of
labelled Dyck paths, Haglund et al. have proposed combinatorial conjectures for the monomial
expansion of V(e,) and the Hilbert series of the diagonal harmonics modules.

This article extends the combinatorial constructions of Haglund et al. to the case of lattice paths
contained in squares. We define and study several g, t-analogues of these lattice paths, proving
combinatorial facts that closely parallel corresponding results for the g, t-Catalan polynomials. We
also conjecture an interpretation of our combinatorial polynomials in terms of the nabla operator. In
particular, we conjecture combinatorial formulas for the monomial expansion of V(py), the “Hilbert
series” (V(pn), hin), and the sign character (V(pr), sin).

1. INTRODUCTION

In 1996, A. Garsia and M. Haiman introduced a two-variable analogue of the Catalan numbers
called the g, t-Catalan numbers [7]. Garsia and Haiman’s definition of the ¢, ¢-Catalan, which arose
from their study of Macdonald polynomials and diagonal harmonics, was quite complicated. Several
years later, J. Haglund [8] conjectured an elementary combinatorial definition of the g, t-Catalan
numbers as weighted sums of Dyck paths relative to two statistics called area and bounce. Shortly
thereafter, Haiman proposed an equivalent combinatorial interpretation involving area and a third
statistic called dinv. Garsia and Haglund eventually proved that the two combinatorial definitions
were equivalent to the original definition of Garsia and Haiman [5, 6]. Haiman proved many of the
conjectures relating the g, {-Catalan numbers to the representation theory of diagonal harmonics
modules and the algebraic geometry of the Hilbert scheme [17, 18]. Meanwhile, various authors
studied the subtle combinatorial properties of the combinatorial ¢,t-Catalan numbers and their
generalizations [4, 9, 13, 14, 19, 20, 21, 22, 23, 24]. Surveys of different aspects of this research can
be found in [15, 16, 19], and especially [11].

This article discusses a generalization of the combinatorial ¢,t-Catalan numbers in which Dyck
paths are replaced by lattice paths inside squares. We develop the combinatorial theory of these
“square g, t-lattice paths,” which closely parallels the corresponding theory for the g¢,¢-Catalan
numbers. We also conjecture algebraic interpretations for our combinatorial generating functions
in terms of the nabla operator introduced by F. Bergeron and Garsia [1, 2, 3]. In particular, we
conjecture a combinatorial formula for the monomial expansion of V(py,) that is quite similar to a
formula for V(e,) conjectured in [13].

To motivate and organize our work on lattice paths inside squares, we begin by quickly reviewing
the combinatorial and algebraic results associated with the combinatorial ¢,t-Catalan numbers.

2000 Mathematics Subject Classification. Primary 05E10; Secondary 05A30, 20C30.
Key words and phrases. square lattice paths, diagonal harmonics, Catalan numbers, Catalan paths.
Both authors’ research was supported by National Science Foundation Postdoctoral Research Fellowships.

267



NICHOLAS A. LOEHR AND GREGORY S. WARRINGTON

The main body of the paper discusses the corresponding results and conjectures for our square
q, t-lattice paths.

1.1. Combinatorial Aspects of the ¢,#-Catalan Numbers. This section reviews the essential
definitions and combinatorial results involving the ¢, t-Catalan numbers. More details can be found
in [11, 19] and in various papers listed in the bibliography.

268

(1)

Lattice Paths and Dyck Paths. A lattice path in a ¢ X d rectangle is a path from (0,0) to
(¢, d) consisting of ¢ east steps and d north steps of length 1. Such a path can be represented
as a word w = wj - - - Weyq With d zeroes (encoding north steps) and c ones (encoding east
steps). Let R4 be the set of lattice paths from (0,0) to (c,d). A Dyck path of order n is a
lattice path in an n X n rectangle that never visits any point (z,y) with y < z. Let D, be
the set of Dyck paths of order n.

Statistics on Paths. In addition to a classical area statistic on Dyck paths, there are two
main statistics relevant to this paper: a dinv statistic introduced by Haiman and a bounce
statistic introduced by Haglund. We will refer to these three statistics throughout this
section, but omit their definitions as they arise as special cases of the corresponding statistics
introduced in §2.1 for square g, t-lattice paths.

Combinatorial q,t-Catalan Numbers. Haglund [8] defined the combinatorial g,t-Catalan
numbers by the formula

C,, (q’ t) _ Z qarea(D)tbounce(D)'
DeDy,

There exists a bijection « : D,, — D,, that maps the ordered pair of statistics (area, bounce)
to (dinv, area). Therefore, we have

C’n(q,t) — Z qdinv(D)tarea(D)’
DeD,

which is Haiman’s formula for the combinatorial ¢, ¢-Catalan numbers.
Univariate and Joint Symmetry. The existence of the bijection a implies that

Z qarea(D) _ Z qdinv(D) _ Z qbounce(D)

DeDy DeDy, DeDy

and that C,(q,1) = Cy,(1,q). This fact is called univariate symmetry of the g,t-Catalan
numbers. A stronger result called joint symmetry states that Cy(q,t) = Cy(t,q). This result
is a corollary of Garsia and Haglund’s long proof linking Cy, (g, t) to the nabla operator [5, 6];
there is no known direct bijective proof of joint symmetry.
Recursion. For 0 < k < n, let Dy, j, consist of all Dyck paths D € D,, ending with exactly k
east steps. It is equivalent to require that ho(D) = k. Set

Cn,k(q,t): Z qarea(D)tbounce(D).
DeDy, i

By considering the length r = h{(D) of H;(D) for paths D € D,, ;, Haglund [8] proved the
recursion

g PR |
Cn k(g t) = gFF=12n= [ ] Crirl(g,t) for 1 <k <n
=L k-1 ‘

with initial conditions Cy, o(g,t) = x(n = 0) for all n > 0. Since Cy(g,t) =t7"Cpy1,1(q, 1),
this recursion uniquely determines the ¢, {-Catalan numbers.
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(6) Fermionic Formula. By iterating the recursion, Haglund [8] derived an explicit “fermionic”
formula for C,,(g,t) as a sum over compositions of n:

s—1
3) TR S IELAD | { i
wo+--4ws=n, w;>0 i=0 W41, Wi — q

The summand indexed by (wy,...,ws) counts those Dyck paths D such that v;(D) = wj;
for 0 <3 <s.
(7) Specialization at t = 1/q. Using the recursion for Cy, x(g,t), Haglund [8] showed that

q@k%H%IM)ZE@{Qn_k_l]q“1W.
q

[nlg In —k,n—1
Later, Loehr [19, 24] gave algebraic and bijective proofs of the equivalent formula
n+1 2n—k—1 2n—-k-—1
4 (2) ="k Cn(a,1/q) = — g :
(4) q\ 2 nk(a,1/9) n— k1], q n—k-1ln),

Using Cp(g,t) = t7"Cp41,1(g,t) in these formulas, we obtain

5) q<’%>cn<q,1/q)—#[2"]q=[2”]q—q[ n ]

C[n+1]y 0 n,m n—1n+1

Garsia and Haiman proved (5) for their original definition of the ¢, -Catalan numbers, using
completely different methods [7].

(8) Statistics for Labelled Paths. The area and dinv statistics for Dyck paths extend naturally
to labelled Dyck paths, but we omit their definitions. A labelled Dyck path of order n is
a path D € D, in which each vertical step is assigned a label between 1 and n. We
require that the labels of vertical steps in the same column strictly increase from bottom
to top. Let P, denote the set of all such objects with distinct labels; let Q,, denote the
set of all such objects where labels may be repeated (subject to the increasing-column
condition). We can represent a labelled Dyck path Q € Q,, by a pair of vectors (¢(Q),7(Q)),
where ¢(Q) = (90(Q),-..,9n-1(Q)) is the area vector of the path (ignoring labels), and
(Q) = (ro(Q),-..,m-1(Q)) is the sequence of labels in @ from bottom to top. We call
7(Q) the label vector of Q. Define the content function for @) by letting cg(j) be the number
of j’s in the label vector r(Q).

area and dinv are easily extended to labelled Dyck paths. Haglund and Loehr [14] studied
the generating function

Hn(q,t) _ Z qarea(P)tdinv(P),
PeP,

obtaining a fermionic formula and other results. Later, Loehr [21] defined a third statistic
pmaj on P,, which generalizes Haglund’s bounce statistic to labelled paths. The pmaj
statistic was used to derive other results about H,(g,t), such as univariate symmetry, a
recursion for H,(g,t), and the specialization ¢"(" V/2H, (¢q,1/q) = [n + 1]2*1. The larger
collection of objects Q, was first introduced in [13]; its significance is discussed below.

(9) Combinatorial Extensions. Haglund’s basic idea of studying area, bounce, and dinv statis-
tics on Dyck paths has many fruitful combinatorial generalizations. Besides the labelled
Dyck paths just mentioned, one can introduce statistics for Schroder paths, lattice paths
inside triangles of different shapes, lattice paths inside trapezoids, labelled versions of these
paths, etc. These generalizations share many important properties, like univariate sym-
metry, joint symmetry (often conjectural), and nice specializations when ¢t = 1/q. Most
of the generalizations also have conjectured algebraic interpretations involving Macdonald
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polynomials. We will not enter into any details here but merely refer the reader to the
papers in the bibliography. Of course, the goal of the present paper is to introduce yet
another extension of the basic combinatorial setup to lattice paths inside squares.

1.2. Algebraic Aspects of the ¢,t-Catalan Numbers. This section reviews the principal the-
orems and conjectures connecting Haglund’s combinatorial ¢,¢-Catalan numbers (and their ex-
tensions) to the theory of Macdonald polynomials, diagonal harmonics modules, and symmetric
functions. We assume the reader is familiar with the basic definitions and results in symmetric
function theory and representation theory; see [25, 26] for more details. We begin by recalling some
necessary notation and definitions.

270

(1)

Partitions. Let pu = (pu1 > --- > ps > 0) be a partition. Define |u| = p1 + -+ -+ ps, p b n iff
lul =n, €(u) = s, n(p) =37 (¢ —1)ps, pi = 0 for all i > s, and write ' for the transpose
of u. If \,u b n, write A > p iff X dominates p iff Ay + -+ X; > py + -+ + p; for all
1. We draw the Ferrers diagram D of y in the first quadrant of the xy-plane, left-justified,
with the longest row appearing at the bottom. With this convention, for each cell ¢ € D
we define the arm, coarm, leg, and coleg of ¢ (denoted a(c), a’(c), I(c), and I'(c)) to be the
number of cells strictly east, strictly west, strictly north, and strictly south of ¢ in D. Also
define the following elements in the polynomial ring Q[q, t]:

M = (1-¢@1-1)
BH = Z qa‘l(c) tl' (C)

cep
I, = H (1-— qa'(c)tl'(c))
ceEn
(a’ (c),¥' (c))#(0,0)
T, = geen Q) peen ) = gn(u)ynin)
w, = H [(qa(c) _ tl(c)—l—l)(tl(c) _ qa(c)—f—l).]
ceEW

For example, if p = (3,2), then [u| = 5, £(p) = 2, n(p) = 2, p’ = (2,2,1), n(y') = 4,
B,=14+q+@+t+qt, I, =(1-¢q)(L - ¢*)(1—1t)(1 - gt), T, = ¢*t%, and

wy = (¢ = )¢ =) (1 = (g~ 1) (1 = )t~ )t — )1~ )(1 — ¢*)(1 — q).

Symmetric Functions. Let F be the field Q(g,t). Let A} denote the set of symmetric func-
tions homogeneous of degree n in the variables z1,...,zy (where N > n) with coefficients
in F. A% is an F-vector space whose bases are indexed by partitions of n. We will use the
five classical bases for A}, [25, 26]: the monomial basis {m, : p F n}, the homogeneous basis
{hy : pt=n}, the elementary basis {e, : p - n}, the power-sum basis {p, : p F n}, and the
Schur basis {s, : p F n}. The Hall scalar product is defined on A% by requiring that the
Schur basis be orthonormal. Then the power-sum basis is orthogonal relative to this scalar
product, and the monomial basis is dual to the homogeneous basis.

Macdonald Polynomials. Besides the five classical bases, there are also five “Macdonald-
type” bases for A% [25, 16, 15]: the Macdonald polynomials {P, : p + n}, the dual Macdonald
polynomials {Q, : p F n}, the integral Macdonald polynomials {J,, : u = n}, the transformed
integral Macdonald polynomials {H, : p = n}, and the modified Macdonald polynomials
{H u: pn}. We will only use the modified Macdonald polynomials, which can be defined
quickly as follows. Let ¢4 be the unique F-linear map on A% defined on the basis {p,} by

bq(py) = (Hf(:“ 1) [1 — ¢*])py. Similarly, define a linear map ¢; by requiring that ¢;(p,) =
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(Hf(:“l) [1 — t*])p,. Then there exists a unique basis {H, : pu F n} of A% characterized by
the axioms:

(1) ¢q(Hyu) =3 5>, arusx for some ay ), € F

(2) qﬁ,i(ﬁ”) = s bausa for some by, € F

(3) (Hy,sn) =1. N

Haglund recently conjectured an explicit combinatorial formula for H, [10], and this con-
jecture was proved by Haglund, Haiman, and Loehr by verifying the three axioms [12].

(4) Nabla Operator. The nabla operator, introduced by F. Bergeron and Garsia [1, 2, 3], is the
unique F-linear map on A% defined on the basis {H,} by V(H,) = T, H,.

(5) Diagonal Harmonics. For n > 1, define R,, = Q[z1,...,%n,Y1,--.,Yn). Define the diagonal
action of the symmetric group S, on Ry, by 7 - z; = Tr(;) and 7 - y; = yr(;) for m € S, The
Sp-module R, is doubly graded by total degree in the z-variables and total degree in the
y-variables. Define the module of diagonal harmonics to be

DH, = {f €R,: Y 0x}dyff =0 forall h,k with h+k > 1}.
=1
Define the module of diagonal harmonic alternants to be
DHA, ={f € DH, : 7- f =sgu(r)f for all m € S, }.

Both DH, and DHA, are bihomogeneous submodules of R,. For any bihomogeneous
submodule V' of R, let V"* denote the elements of V that are homogenous of degree h in
the z-variables and homogeneous of degree k in the y-variables. The Hilbert series of V is
defined to be
Hilb(V) = Y ¢"t* dim(V"*).
h,k>0

Writing each V?F as a direct sum of irreducible S,-submodules and replacing each such
submodule by the associated Schur function, we obtain the Frobenius series of V, denoted
Frob(V'), which is an element of A%. In symbols,

Frob(V) = > ¢"tFFrob(V™F),
h,k>0
where Frob(V"+*) is the image of the character of V»* under the classical Frobenius map.
We can now state some of the theorems and conjectures giving the algebraic significance of the
g,t-Catalan numbers and their extensions.
(1) Master Theorem for the q,t-Catalan Numbers: For all n > 1, the following five elements of
Q(g,t) are all equal (and are, therefore, elements of N[g, t]):
(a) 3 pep, girea(D)gbounce(D) (Haglund’s combinatorial formula)
(b) > pe dmv (D)garea(D) (Haiman’s combinatorial formula)
(c) (V(e ) sln) (nabla formula)
(d) X un T?MB,IL, /w, (Garsia-Haiman’s rational-function formula)
(e) Hllb(DHAn) (representation-theoretical formula)
The equality of (a) and (b) follows from the bijection ¢ mentioned earlier. Formula (d)
arises from the expansion of e, in terms of the basis {H,}, namely

(6) €n = Z(MBuHu/wu)ﬁIu
ukn

(Theorem 2.4 in [7]). Applying the definition of V and the fact that (H,,sin) = T}, it
follows that (c) equals (d). The equality of (d) and (e) follows from a difficult theorem
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of Mark Haiman giving a complete character formula for DH,, [17, 18]. The equality of
(a) and (d) is also a hard result, due to Garsia and Haglund, whose proof uses intricate
symmetric function identities and plethystic machinery [5, 6].

Hilbert Series Conjecture: For all n > 1, the following six elements of Q(g,t) are all equal
(and are, therefore, elements of Ng, t]):

(&) Xpep, qdinv(P)area(P) (first combinatorial formula)

(b) Xopep, q2ea(P)pmai(P) (second combinatorial formula)

(c) (V(en),hin) (nabla formula)

(d) Zuknujlm hin)T, M B,I1,, /w, (first rational-function formula)

(€) Yurny1 MILB [w), (second rational-function formula)

(f) Hilb(DH,,) (representation-theoretical formula)
At the time of this writing, the following equalities have been proved: (a)=(b) holds by
a bijection in [19, 21]; (c)=(d) follows easily from (6); (c)=(e) was proved by Haglund
in [9]; (d)=(f) follows from Haiman’s results on the character of DH,, [17, 18]. The open
conjecture states that the combinatorial formulas (a) and (b) equal the algebraic formulas
(c) through (f).
Shuffle Congjecture [13]: For all n > 1, the following five elements of A}, are all equal (and
are, therefore, Schur-positive):

(&) Doco, qdinV(Q)tarea(Q)zfQ(l) e zﬁQ(n) (combinatorial formula)

(b) V(en) (nabla formula)

(€) X urn H,T,MB,I1,/w, (Macdonald polynomial formula)

(d) Doarnsa (Zul—n—H MTI,B,sy [Bu]/wu) (rational-function Schur expansion)

(e) Frob(DH,) (representation-theoretical formula)
Here, sy[B,] denotes the value of the Schur function sy (z1,...,2,) at z; = q@ (e gl (ei),
where c1, ..., c, are the cells of 4 in any order. It is known that (b)=(c) by (6), (b)=(d) by
a result of Haglund [9], and (c)=(e) by results of Haiman [17, 18]. The conjecture states that
these four algebraic quantities are given by the combinatorial formula (a). If the conjecture
is true, then (a) gives the monomial expansion of V(e,). It has been proved that (a) is a
symmetric function in the variables z1,...,z, [13].

Eztensions of these Conjectures. Many of the algebraic conjectures and results extend to the
more general combinatorial objects mentioned earlier. For example, the generating functions
for g,t-Schroder paths are related to the polynomials (V(ey), eqhy,—g) [4, 9]- Generating
functions for unlabelled and labelled m-Dyck paths (paths from (0,0) to (mn,n) never
going below the line z = my) are conjectured to give information about the sign character
and monomial expansion of V™(e,,) [13, 19, 22, 23]. We again refer the reader to [11] and
the papers in the bibliography for more information.

2. COMBINATORICS OF SQUARE ¢, t-LATTICE PATHS

2.1. Statistics for Square Paths. A square lattice path of order n is a lattice path in an n x n
square. Let $Q,, denote the set of square lattice paths of order n. We now define three statistics
on paths in §Q, generalizing the area, dinv, and bounce statistics defined in §1.1.

272

(1)

Square area Statistic. Let S € §Q,. Set £ = £(S) to be the minimum possible value such
that S stays weakly above the line y = z — £. We call £ the deviation of the path S. Since
S begins at the origin and ends at (n,n), we see that 0 < £ < n. Define the area vector
9(S) = (go(S), ..., 9n-1(S)) by requiring that g;(.S)+mn —i be the number of complete boxes
in the 7’th row from the bottom between S and the line z = n. Note that the entries of this
vector can be negative, but that this area vector reduces to the area vector in §1.1 when
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S is a Dyck path. We define area(S) = 3.7°)'(¢ + ¢;(S)). This can be interpreted as the
number of complete boxes to the right of S and to the left of the line y = z — /.
(2) Square dinv Statistic. Suppose S € §Q,, has (go(S5),--.,gn—1(S)) as its area vector. Define

ainv(S) = 3 x(@i(S) - g5(8) € 10,1 + 3" x(ai(S) < ~1).
1<J %
If S is a Dyck path, then the condition g;(S) < —1 never holds, and this formula for dinv(.S)
reduces to the formula given in §1.1.
(3) Square bounce Statistic. Let S € SQ,, have deviation £. The break point of S, (£;(S), £y(S5)),
is the leftmost point along the path S lying on the line y = x — £.

We now proceed to define a bounce path bpath(S) in analogy with the bounce paths
defined for Dyck paths. The bounce path for S consists of two pieces: a positive part
located northeast of the break point, and a negative part located southwest of the break
point. First consider the positive part. A ball starts at (n,n) and makes an initial vertical
move V_; of length v_; = £ ending at (n,n — £). The ball then makes alternating horizontal
and vertical moves Hy, Vy, H1, V1, ..., Hg, V; until it reaches the break point. We let h; and
v; denote the length of the moves H; and V;, respectively. We determine h; and v; for each
1 > 0 as follows. First, the ball moves west h; units until it is blocked by the north step of
S ending at the horizontal level occupied by the ball. Second, the ball moves south v; = h;
units to return to the line y = z — £. As before, the steps that block the ball’s westward
motion are called blocking north steps.

The negative part of the bounce path traces the motion of a second bouncing ball that
starts at the origin and moves northeast towards the break point. This ball makes an initial
horizontal move H_; of length h_; = £ from (0,0) to (£,0). It then makes alternating ver-
tical and horizontal moves V_o, H_9,V_3,H_3,...,V,, H, until it reaches the break point.
For each 7 < —1, the ball moves north v; units until it is blocked by the east step of S ending
at the vertical line occupied by the ball. (Note that this is not just a reflected version of the
bounce algorithm in the positive part.) The ball then moves east h; = v; units to return to
the line y = x — £. The east steps that block the ball’s northward motion are called blocking
east steps.

Finally, we define the bounce statistic for any path S € §Q,. Let V,,..., Vs be the
nonzero vertical moves in bpath(S), where u < 0 < s. Set bounce(S) = Y7, (i — u)v;.
Also set bmin(S) = u and bmax(S) = s.

For a Dyck path D, the deviation £ is 0, the break point is (0,0), the positive part of the
bounce path coincides with the bounce path described in §1.1, and the negative part of the
bounce path is empty. In this case, we have bmin(D) = 0 (we ignore the zero moves V_;
and H_1), and the bounce statistic just defined reduces to the formula used in §1.1.

For example, Figure 1.1 illustrates a path S € SQ15 and its bounce path. For this path, £(S) = 3,
the break point is (8,5),

g(S) = (0’ _1’ _27 _]-a _17 _35 _25 _25 _25 _37 _25 _1a _]-1 07 ]-)a
area(S) = 25, dinv(S) = 52, bmin(S) = —4, bmax(S) = 2, (v_4,...,v2) = (h_4,...,h2) =
(1,2,2,3,3,2,2), and bounce(S) = 49.
2.2. Comparison of the Statistics.

Theorem 1. There exists a bijection ¢ : SQn, — SQpn such that area(¢(S)) = dinv(S) and
bounce(¢(S)) = area(S). The deviation of ¢(S) is the number of —1’s in g(S); the break point

of $(S) is
(£2(6(5)), £y (6(5))) = ({7 : g;(S) <O}, {s = g;(5) < —1}]);
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FIGURE 1. The lefthand picture is a path S in SQi5 (solid path) along with
bpath(S) (dotted path). The righthand picture is the image of S under ¢.

bmin(¢(S)) = min; g;(S); and bmax(4(S)) = max; g;(S). Moreover, ¢(S) ends with an east step
iff S begins with a north step, and ¢|p, : Dn — Dy, is the inverse of the bijection o from §1.1.

For example, let S be the path from Figure 1.1. Figure 1.2 shows ¢(S) along with its bounce
path. Note that g(S) has two —3’s, five —2’s, five —1’s, two 0’s, and one 1, so that

(v-3(4(5)); - -, v1(¢(5))) = (2,5,5,2,1).
Furthermore, area(S) = 25 = bounce(¢(S)) and dinv(S) = 52 = area(¢(S)).

2.3. Symmetry Properties. For all n > 1, define
Sn(q,t) _ Z qarea(S)tbounce(S) _ Sn(q,t) _ Z qdinv(S)tarea(S).
SeESQ, SeSQy,

(The second equality follows from the bijection ¢.) Letting ¢ = 1 or ¢ = 1 here, we obtain the
following univariate symmetry properties.

Z qdinv(S'): Z qbounce(S): Z qarea(S)_

SeS9, SeSQ, SeS9,

Corollary 2.

Conjecture 3. The joint symmetry property Sp(q,t) = Sn(t,q) holds for all n.

This conjecture has been confirmed by computer for 1 < n < 11.

Computing Sy, (g, t) for small values of n, one sees that the polynomial S, (g, t) is always divisible
by 2. Our next goal is to explain this property. Define SQ,]Y , S QE , NSQ,,, and ¥SQ,, to be the
paths in S@Q,, that end with a north step, end with an east step, begin with a north step, and begin
with an east step, respectively. Set

S;{(q,t) _ Z qarea(S)tbounce(S); 7Sn(q, t) _ Z qdinv(S)tarea(S)'
SesQy Se189Q,
for v € {E,N}. We will show that SY(q,t) = SZ(q,t) = Sn(g,t)/2. Since ¢ sends paths with
initial north steps to paths with terminal east steps and vice versa, it also follows that VS, (q,t) =
ES.(q,t) = Sn(g,t)/2. We call these identities pair-symmetries.

To prove the pair-symmetries, it suffices to construct a bijection 9 : S Qf - S in preserving
area and bounce. We begin by introducing a cyclic shift map cyc: §Q,, > SQ,,. Let S € §Q,, be
encoded by the word wiws - - - wa,, € {0,1}?". Define cyc(S) to be the path encoded by the word
WopW1wW2 *** Wop—1-

Lemma 4. For S € §Q,, area(S) = area(cyc’(S)) for all integers 1.
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Theorem 5. There is a bijection 1 : SQF — SQN preserving area and bounce. Consequently,

Sp'(a,) = 87 (¢,t) = Sn(a,)/2 = "Sn(a,) = “Su(a, ).

We close this section with an alternate formula for £5,,(q,t) = S, (q,t)/2.
Theorem 6. Let dinvo(S) = >, ; x(9i(S) — g;(S) € {0,1}) + 32, x(9i(S) <0). Then

ES,n (q’ t) — Z qdlnv(S) tarea(S) — Z qdll’lVO(U) ta,rea(U) .
SeEsQ, UESQE

2.4. Recursion for Square Paths. In §1.1, we saw that the generating functions Cy, 1(g,t) for
Dyck paths of order n with hy = k satisfied the recursion (2). Now we prove a similar recursion for
square ¢, t-lattice paths. The idea is to remove the “earliest” bounce in a square g, t-lattice path,
namely the negative bounce arriving at the break point.

Formally, for n > 0 and 1 < k < n, we set

Roi(g,t) = Y ¢EPomE)y (hynins) = k, £(S) > 0).
SeESQ,

The condition £(S) > 0 means that S is not a Dyck path, while hbmin(s) = k means that the last
horizontal move in the negative part of the bounce path (arriving at the break point) has length k.
To take care of the Dyck paths in SQ,,, we define R, o(q,t) = Cpn(g,t) =t "Chy1,1(g,t) for n > 0.
For k =n > 0, we have R, ,(gq,t) = q(g) since the only path that contributes is the one that goes
east n steps and then north n steps. Clearly, Sy, x(q,t) = > ;¢_o Rnk(q, 1)

Theorem 7. For 0 < k <mn,

n—k 7'+k nk: 'f"l‘k—].
(1) Ruxlg,t) = ¢t Z[ ] Crir(at) + a2t Z [r_l’k anfk,r(Qat)-

Note that recursions (2) and (7), and the initial conditions, uniquely determine the quantities
R, k(g,t) and Sy,(g,t) and provide an efficient method for computing them.

2.5. Fermionic Formula. We now obtain a fermionic formula for S,(g,t) in analogy with (3).

Theorem 8. Forn > 1,

s—1
®) Su(q,t) = 2¢(3) + 3 g T [wg .+ Wj1 — 1]

w; — 1w,
wo+-Fws=n §=0 J I
w; >0;8>1

s—1

Sz: POV {POw> [“’a + ’“’aH] aH [wj +wjt1 — 1] I1 [wj +wjp1 — 1]
q =0 4 j=a+1 q

o Wa, Wa+1 wj,wjy1 — 1 w; — L wj

where pow; = Z;:O (uéj), powy = Z;:o Jwj, and pows = pow; + 20§j<a Wy-

For 0 < k < n, there is a similar fermionic formula for R,, (q,t). We simply use the second
line of (8), summing over all (wy,...,ws) and all a such that wy + -+ + ws = n, w; > 0, s; > 1,
0 <a<s—1, and fixing wg = k.
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2.6. Specialization at ¢ = 1/¢g. Our next goal is to derive explicit formulas for R, x(g,1/q) and
Sn(gq,1/q) similar to the formulas for Cy, x(g,1/q) and Cy(g,1/q) from §1.1.

Theorem 9. For1 <k <mn,

n7k+1)7(k

) ) Orastasa = | T k[Q”"“‘lL.

n—l,n—kq n,n—k—1
2

For k=0, q( )Rn,o(q, 1/q) = q(g) Cr(q,1/q) is given by formula (5).

Theorem 10. For alln > 1,

¢2)5,(¢,1/q) :2[2n—1L 2 [%L'

n,n—1 - 14+4¢"|n,n

We remark that the methods in [24] can be used to mechanically translate the preceding algebraic
manipulations into bijective proofs of the same results. However, because of all the subtractions
involved, the bijections will be extremely complicated.

3. ALGEBRAIC CONJECTURES FOR SQUARE PATHS

We now give some conjectures connecting square ¢, t-lattice paths to Macdonald polynomials and
the nabla operator. These conjectures closely resemble the corresponding results for the ¢, t-Catalan
numbers from §1.2.

3.1. Unlabelled Paths. Master Conjecture for Square q,t-Lattice Paths: For all n > 1, the
following elements of Q(g,t) are all equal (and are, therefore, elements of N[qg, ¢]):

(a) ESESQN qarea(S) bounce(S)

)
)

(d) ZSEESQn qdinv(S)tarea(S)
) ESESQ,‘? qdinvo(S)tarea(S)
)
)

(s Zm—n(l - "1 - qn)HuTﬁ/wu = Z,ul—n MB(nn)HuTﬁ/wu
We have already seen that (a) through (e) are equal, using the bijections 1, ¢, and cyc ! To
see that (f) equals (g), we use the expansion of p,, in terms of the basis {H,}, namely

(10) pr= ((=1)"H(1 = ")~ ¢")u/wu) Hy.
pukn

This expansion follows immediately from Corollary 2.4 in [7] and the definition of plethysm. Ap-
plying V replaces each H, by T), H,, and taking the scalar product with sy» turns H, into another
factor T),. Hence, (f) equals (g). The main conjecture, asserting that (a) equals (f), has been tested
for 1 <n<8.

3.2. Labelled Paths. Fix n and N withn < N < co. Let SQF,, denote the set of all pairs (S, r),
where: S is a path in SQE (so that S ends with an east step); and r = r¢...7,_1 is a label vector
with r; € {1,2,..., N} such that g;1+1(S) = ¢;(S) + 1 implies r; < r;11. If we attach the labels r; to
the vertical steps of S as we did for Dyck paths, then the last condition means that labels in each
column must strictly increase from bottom to top. Let SQ#H, denote the subset of SOQF, such
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that ro...7rnp—1 is a permutation of {1,2,...,n}. Given (S,r) € SQF,, define area(S,r) = area(S)
and
dinvy(S,r) = Zx((gi(S’) —gj(S) =0and r; <r;) or
1<j
(9i(S) — g;($) =1 and r; > r5)) + > x(g:(S) < 0).
i

(It is equivalent to use all labelled paths beginning with an east step, replacing x(g;(S) < 0) by
x(gi(S) < —1) in the definition of dinvy.)
Hilbert series conjecture for square gq,t-lattice paths: For all n > 1,

(_1)n—1<v(pn)’ h1n> — Z qarea(S,r)tdinvo(S,r)_

(S,r)eESQH,
Frobenius series conjecture for square gq,t-lattice paths: For all n > 1,
n—1
(—1)”_1V(pn[Z1, zn]) = Z qarea(S,r)tdinvo(S,r) H .
(S,r)eSQF, i=0

Applying V to (10), we see that

(_1)n_lv(pn) = Z((l —t")(1 - qn)HuTu/wu)ﬁu-
ukn

We remark that the same arguments used in [13] show that the Frobenius series conjecture implies
both of the preceding conjectures, along with shuffle-type formulas for any scalar product of the
form (V(pp), hyey). It is an open problem to find a naturally occurring doubly-graded S,-module
M,, that has (—1)"~!'V(p,) as its Frobenius series. Since elements of SQH,, encode functions
f:{1,2,...,n} = {1,2,...,n} in the obvious way (f !({i}) are the labels in column 7), we should
have dim(M,,) = |SQH,| = n".

3.3. More Nabla Conjectures. So far, we have seen combinatorial formulas that are conjectured
to give the monomial expansions of V(e,) and (—1)""'V(p,). Since e, = mny and pp, = m(,,
these results suggest that V(m,) may have a nice monomial expansion for any x - n. In fact, an
even stronger statement appears to be true.

Conjecture 11. For all n > 1 and p,v F n,
(=)™ (VY (my), s,) € Nlg, t].

The conjecture has been tested for 1 < n < 8. If the conjecture is true, it readily follows that
V(mu)|m, € Nlg,t] for all g and v. In [3], Bergeron, Garsia, Haiman, and Tesler made the analogous
conjecture

L(N')<V(3u)a SU) € N[Qa t]a
where +(u) = (e(é‘)) + > i<—1) (@ — 1= pi). This second conjecture implies that V(s,)|m, € N[g,1]
for all ;4 and v. Because of the signs, it is not clear whether either conjecture easily implies the
other one.

REFERENCES

[1] F. Bergeron and A. Garsia, “Science Fiction and Macdonald Polynomials,” CRM Proceedings and Lecture Notes
AMS VI 3 (1999), 363—429.

[2] F. Bergeron, N. Bergeron, A. Garsia, M. Haiman, and G. Tesler, “Lattice Diagram Polynomials and Extended
Pieri Rules,” Adv. in Math. 2 (1999), 244—334.

[3] F. Bergeron, A. Garsia, M. Haiman, and G. Tesler, “Identities and Positivity Conjectures for some remarkable
Operators in the Theory of Symmetric Functions,” Methods and Applications of Analysis VII 8 (1999), 363—420.

277



[4]
[5]

[9]
[10]

[11]
[12)
[13)
[14]

[15]

[16]
[17]
18]
[19]
[20]
[21]
[22]
(23]
[24]

[25]
26]

NICHOLAS A. LOEHR AND GREGORY S. WARRINGTON

E. Egge, J. Haglund, D. Kremer, and K. Killpatrick, “A Schréder generalization of Haglund’s statistic on Catalan
paths,” Electronic Journal of Combinatorics 10 (2003), R16, 21 pages.

A. Garsia and J. Haglund, “A proof of the ¢,t-Catalan positivity conjecture,” LACIM 2000 Conference on
Combinatorics, Computer Science, and Applications (Montreal), Discrete Math. 256 (2002), 677—717.

A. Garsia and J. Haglund, “A positivity result in the theory of Macdonald polynomials,” Proc. Nat. Acad. Sci.
98 (2001), 4313—4316.

A. Garsia and M. Haiman, “A remarkable g¢,t-Catalan sequence and ¢-Lagrange Inversion,” J. Algebraic Com-
binatorics 5 (1996), 191—244.

J. Haglund, “Conjectured Statistics for the ¢, t-Catalan numbers,” Advances in Mathematics 175 (2003), 319—
334.

J. Haglund, “A proof of the g, t-Schréder conjecture,” Intl. Math. Res. Notices 11 (2004), 525—560.

J. Haglund, “A combinatorial model for the Macdonald polynomials,” Proc. Nat. Acad. Sci. USA, 101, 46 (2004),
16127-16131.

J. Haglund, The q,t-Catalan Numbers and the Space of Diagonal Harmonics. AMS University Lecture Series, to
appear.

J. Haglund, M. Haiman, and N. Loehr, “A combinatorial formula for Macdonald polynomials,”
arXiv:math.CO/0409538, 2004.

J. Haglund, M. Haiman, N. Loehr, J. Remmel, and A. Ulyanov, “A combinatorial formula for the character of
the diagonal coinvariants,” to appear in Duke Math. J.

J. Haglund and N. Loehr, “A Conjectured Combinatorial Formula for the Hilbert Series for Diagonal Harmonics.”
Proceedings of FPSAC 2002 Conference (Melbourne, Australia), to appear in Discrete Mathematics.

M. Haiman, “Notes on Macdonald Polynomials and the Geometry of Hilbert Schemes,” Symmetric Functions
2001: Surveys of Developments and Perspectives, Proceedings of the NATO Advaced Study Institute. Sergey
Fomin, ed. Kluwer, Dordrecht (2002) 1—64.

M. Haiman, “Combinatorics, symmetric functions, and Hilbert schemes,” CDM 2002: Current Developments in
Mathematics, Intl. Press Books (2003), 39—112.

M. Haiman, “Hilbert schemes, polygraphs, and the Macdonald positivity conjecture.” J. Amer. Math. Soc. 14
(2001), 941—1006.

M. Haiman. “Vanishing theorems and character formulas for the Hilbert scheme of points in the plane,” Invent.
Math. 149 (2002), 371—407.

N. Loehr, Multivariate Analogues of Catalan Numbers, Parking Functions, and their Eztensions. Ph.D. thesis,
University of California at San Diego, June 2003.

N. Loehr, “Trapezoidal Lattice Paths and Multivariate Analogues,” Adv. in Appl. Math. 31 (2003), 597—629.
N. Loehr, “Combinatorics of g, t-Parking Functions,” to appear in Adv. in Appl. Math..

N. Loehr, “Conjectured Statistics for the Higher ¢,¢-Catalan Sequences.” Preprint.

N. Loehr and J. Remmel, “Conjectured Combinatorial Models for the Hilbert Series of Generalized Diagonal
Harmonics Modules,” Electronic Journal of Combinatorics 11 (2004), R68.

N. Loehr, “The Major Index Specialization of the g, t-Catalan,” to appear in Ars Combinatoria.

I. G. Macdonald, Symmetric Functions and Hall Polynomials. 2nd ed. Oxford University Press, 1995.

B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions.
Wadsworth and Brooks/Cole, 1991.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA 19104
E-mail address: nloehr@math.upenn.edu

DEPARTMENT OF MATHEMATICS, WAKE FOREST UNIVERSITY, WINSTON-SALEM, NC 27109
E-mail address: warrings@ufu.edu

278



	Bouton59: 


