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Abstract. We define two deformations of the Full Transformation Semigroup
algebra. One makes the algebra “as semisimple as possible”, while another
leads to an eigenvalue result involving Schur functions.

Preliminaries

The Full Transformation Semigroup on n letters, denoted Tn, is the semigroup

of all set maps w : [n]→ [n], where [n] = {1, 2, . . . , n} and the multiplication is the

usual composition. Such maps can be depicted in several ways; we will most often

use one-line notation, for example w = 214442 denotes the map sending 1 to 2, 2

to 1, 3 to 4, etc.

Maps in Tn are indexed by triples (π, P, φ), where P is the image of the map,

π is the set partition of [n] whose blocks are the inverse images of the elements of

P , and φ is the permutation describing which block is mapped to which element

of the image. In what follows, π = {π1, π2, . . .} will always denote a set partition

of [n] with blocks ordered by increasing smallest element. Similarly in writing

P = {p1, p2, . . .} a subset of [n] we shall always intend p1 < p2 < . . .. Permutations

will be written in cycle notation.

With these conventions, we shall let wπ,P,φ ∈ Tn denote the map taking x ∈ πi
to pφ(i).

Example 1. For w = 214442 ∈ T6 we have π(w) = 16|2|345, P (w) = {1, 2, 4}, and
φ(w) = (12)(3), the transposition exchanging 1 and 2 and fixing 3. The permutation
φ is most easily visualized in the following diagram of w.

π:

P : 1 2 4

16 2 345

�
�@
@

The invertible elements of Tn, i.e., the bijective maps, form a subsemigroup

isomorphic to the Symmetric Group Sn. Thus the elements of Tn can be thought

of as generalized permutations, and we can ask which of the many combinatorial

aspects of the Symmetric Group can be extended in a meaningful way to the Full

Transformation Semigroup.

Let CTn denote the Full Transformation Semigroup algebra, consisting of com-

plex linear combinations of elements of Tn. CTn has a chain of two-sided ideals

CTn = In ⊇ In−1 ⊇ . . . ⊇ I1 ⊇ I0 = 0,

where for 1 ≤ k ≤ n, Ik as a vector space is the complex span of the maps of rank

less than or equal to k (the rank of a map is the cardinality of its image). For
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2 JOHN HALL

1 ≤ k ≤ n define the algebras An,k = Ik/Ik−1. We can think of An,k as being the

algebra spanned by the maps of rank k, where two maps multiply to zero if their

composition has rank less than k. The top quotient An,n is isomorphic to CSn, the

group algebra of the Symmetric Group, and is therefore semisimple. However An,k

is not semisimple for k < n, meaning that the radical
√

An,k is non-trivial.

It is known that the irreducible modules for An,k are indexed by partitions λ ` k.

In fact Hewitt and Zuckerman give a calculation in [5] that generates all irreducible

matrix representations for An,k. However, their methods are difficult to apply in

practice and do not even determine the dimensions of the representations. These

dimensions are known, thanks to a more recent character result of Putcha [8].

Regardless of the approach, it is clear that the non-semisimplicity of An,k causes

great difficulties. This has led us to define several deformations of An,k, with the

aim of making the algebra generically semisimple.

The first deformation

Let w1 = wπ,P,φ and w2 = wρ,R,ψ be two maps of rank k. Notice that in order

for the product w1w2 to be nonzero in An,k each element of R = P (w2) must lie in

a different block of π = π(w1). In this situation we can associate to the maps w1

and w2 the permutation τ ∈ Sk defined by the condition ri ∈ πτ(i).

Example 2. Let w1 = 214442 and w2 = 262225. Then P (w2) = {2, 5, 6} and
π(w1) = 16|2|345. The smallest element 2 of P (w2) is in the second block of π(w1),
the next-smallest element 5 is in the third block, and the largest 6 is in the first
block. Thus τ = (123), as can be seen in the following diagram.

π:

P : 1 2 4

16 2 345

�
�@
@

w1 = 214442

ρ:

R: 2 5 6

1345 2 6

����@
@

@
@

@
@�
� w2 = 262225

τ = (123)

Now define a new multiplication in An,k by

w1 ∗ w2 := xinv(τ)w1w2,

where inv(τ) is the number of inversions of τ . It is not difficult to show that this

multiplication is associative.

Example 3. Taking w1 and w2 as above we have

w1 ∗ w2 = x2w1w2 = x2121114.

Let An,k(x) denote the algebra with the multiplication ∗. Setting x = 1 recovers

the original multiplication in An,k. As we shall see, there is a sense in which An,k(x)

is “as semisimple as possible” for generic x.

Definition 1. Let A be an associative algebra. The Munn matrix algebra A =

M(A; m, n; Π) as a vector space is the set of all m× n matrices with entries in A.
Π is an n × m matrix over A, called the sandwich matrix, and multiplication is
defined by X · Y := XΠY .
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COMBINATORIAL DEFORMATIONS OF THE FULL TRANSFORMATION SEMIGROUP

Fact 1. An,k is isomorphic to the Munn matrix algebraM(CSk;
(

n

k

)

, S(n, k); Πn,k),

where Πn,k is the S(n, k)×
(

n

k

)

sandwich matrix

(Πn,k)π,P =

{

τ if pi ∈ πτ(i), 1 ≤ i ≤ k, and
0 otherwise.

Example 4. For n = 4 and k = 3 we have

Π4,3 =

















(id) (id) 0 0

0 (id) (id) 0

0 0 (id) (id)

(id) 0 0 (123)

(id) 0 (23) 0

0 (id) 0 (12)

















,

where the ordering on the columns is 123, 124, 134, 234, and the ordering on the
rows is 1|2|34, 1|23|4, 12|3|4, 14|2|3, 1|24|3, 13|2|4.

Note that the non-zero entries of Πn,k are precisely the permutations τ that arise

in the ∗ multiplication. Hence the first deformation preserves the Munn matrix

algebra structure.

Proposition 1. An,k(x) is isomorphic to the Munn matrix algebra
M(CSk;

(

n

k

)

, S(n, k); Πn,k(x)), where Πn,k(x) is the S(n, k)×
(

n

k

)

sandwich matrix
defined by

(Πn,k(x))π,P =

{

xinv(τ)τ if pi ∈ πτ(i), 1 ≤ i ≤ k, and
0 otherwise

When k = 1 the parameter x does not show up at all, and the semisimple part

of An,1 is only one-dimensional. For the remainder of this section we shall assume

k > 1.

Since we want our Munn matrix algebra to be semisimple, it is natural to ask in

what way the semisimplicity of A depends on the sandwich matrix Π. The following

result of Clifford and Preston ([2], Theorem 5.19) provides an answer.

Theorem 1. (Clifford and Preston) A Munn matrix algebra of the form A =

M(CG; m, n; Π) is semisimple if and only if Π is non-singular, i.e., if and only if
m = n and Π is a unit in the ring of m×m matrices over CG.

Note in particular that for semisimplicity we need the matrices to be square.

But our sandwich matrix is S(n, k)×
(

n

k

)

. What can we do?

One idea is to define the rank of Π to be the largest non-singular minor of Π.

(So, in particular, rank(Π) ≤ min(m, n).) A result of McAlister [7] implies that

this rank is intimately related to the size of
√
A. To state McAlister’s result we

first need to define a technical condition known as suitability.

Definition 2. Let P be an n × m matrix over A with rank r. Let R and S be
permutation matrices over A such that

RPS =

(

M P12

P21 P22

)

,

where M is an invertible r × r submatrix of P , and let

Q = S

(

M−1 0

0 0

)

R.
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4 JOHN HALL

Then we say that P is suitable if PQP − P ∈ (
√

A)n×m.

We note here in passing that the suitability condition is trivially satisfied when

a matrix has full rank.

Theorem 2. (McAlister) Let A =M(A; m, n; Π) be a Munn matrix algebra, and

let Π be suitable of rank r. Then A/
√
A ∼=

(

A/
√

A
)

r

, the algebra of all r × r

matrices with entries in A/
√

A.

The suitability condition does not hold for the undeformed algebra An,k. But

what about for An,k(x)? We show that An,k(x) has full rank for generic x, by

considering the submatrix formed by the rows corresponding to a special set of
(

n

k

)

partitions of [n].

Definition 3. A set partition π of [n] is cyclically contiguous if the blocks of π are
intervals, with the possible exception of the first block, which may be of the form
{1, 2, . . . , i} ∪ {j, j + 1, . . . , n}, i.e., the union of an initial segment and a terminal
segment. If the first block is also an interval, we say that π is contiguous. (Note
that contiguous implies cyclically contiguous, not the other way around.)

We use the term “cyclically contiguous” for such a partition π because if we

think of the elements of [n] as being arranged in (clockwise) order around a circle,

then in a sense all of the blocks of π are intervals. For example, π = 1256|3|4 is

cyclically contiguous, as shown in the following diagram.

&%
'$1

2

3

4

5

6

J
J






π = 1256|3|4
For k > 1 there is an obvious bijection between cyclically contiguous partitions

of [n] into k blocks and k-subsets of [n]. Let Πc(x) be the
(

n

k

)

×
(

n

k

)

submatrix of

Π(x) consisting of the rows corresponding to cyclically contiguous partitions. We

show that Πc(x) is nonsingular for generic x, and hence Π(x) is suitable of rank
(

n

k

)

. Thus we have

Theorem 3. For k > 1 and generic x, An,k(x)/
√

An,k(x) ∼= (CSk)(n

k)
.

Note that the rank of Π cannot be any larger than its width
(

n

k

)

. So no defor-

mation of An,k that preserves the Munn matrix algebra structure can be any more

semisimple than An,k(x).

Corollary 1. For k > 1,

dim

(

√

An,k(x)

)

=

(

S(n, k)−

(

n

k

)) (

n

k

)

k!.

Since this dimension formula is relatively simple one might hope to find a nice

combinatorial basis for
√

An,k(x), as Garsia and Reutenauer did in [3] for Solomon’s

Descent Algebra. So far we have found several families of elements in the radical,

but they are not in general independent, and do not form a spanning set.
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COMBINATORIAL DEFORMATIONS OF THE FULL TRANSFORMATION SEMIGROUP

Let Ac

n,k
(x) be the subalgebra of An,k(x) spanned by the maps whose partitions

are cyclically contiguous. Ac

n,k
(x) is also a Munn matrix algebra, with sandwich

matrix Πc(x).

Grood [4] has generalized the classical Specht-module construction for the sym-

metric group (see [6]) to describe the irreducible modules of the rook monoid Rn,

another semigroup containing the symmetric group. As it turns out, CRn has a

similar tower of ideals

CRn = Jn ⊇ Jn−1 ⊇ . . . ⊇ J1 ⊇ J0 = 0,

and defining Bn,k = Jk/Jk−1 we have Bn,k
∼= (CSk)(n

k)
. We have extended the first

deformation to an algebra An,k(x,y) with canonical isomorphisms Ac

n,k
(1,1) ∼=

Ac

n,k
and Ac

n,k
(1,0) ∼= Bn,k. We are currently attempting to modify Grood’s

approach to explicitly construct the irreducible modules for the generic algebra

Ac

n,k
(x,y).

The second deformation

There is another associative multiplication we can define on An,k. The symmetric

group Sk acts on the maps of rank k by

σwπ,P,φ := wπ,P,σφ.

Now define

w1 ◦ w2 :=
∑

σ∈Sk

pρ(σ)σw1w2,

where ρ(σ) ` k is the cycle type of σ, and pρ(σ) is the corresponding power-sum

symmetric function in the variables x1, . . . , xk .

Example 5. Let w1 = 1442 and w2 = 3134. Then w1w2 = 4142, and

w1 ◦ w2 = p134142 + p21(1412 + 2124 + 4241) + p3(1214 + 2421)

= (x1 + x2 + x3)
34142 + (x2

1 + x2
2 + x2

3)(x1 + x2 + x3)(1412 + 2124 + 4241)

+(x3
1 + x3

2 + x3
3)(1214 + 2421)

Note that if we choose values for the xi so that p1 = 1 and pi = 0 for all i ≥ 2,

we recover the original multiplication in An,k. Such a specialization of the xi must

exist because the pi are algebraically independent.

Let An,k(x) denote the algebra with the multiplication ◦. Explicit calculations

for small values of n and k suggest that An,k(x) is no more semisimple than An,k,

i.e., that even for generic values of the xi we have dim
√

An,k(x) = dim
√

An,k.

However something interesting does come out of this multiplication.

The following fact gives a useful characterization of the radical of an algebra.

Fact 2. Let A be a finite-dimensional associative algebra and {v1, . . . , vn} a basis
of A. Identify A as a vector space with C

n, and define the n× n Gram matrix M
for A by (M)i,j = tr(vivj). Then the nullspace of M is

√
A.

If we define Mn,k(x) to be the Gram matrix for An,k(x) we have

Proposition 2.

(Mn,k(x))i,j =







S(n, k)k!
∑

λ`k
k!
fλ χλ(µ)s2

λ
wiwj induces a permutation of cycle

type µ on the image of wi
0 otherwise.

177



6 JOHN HALL

Here for λ a partition of k, χλ is the corresponding irreducible character of Sk,
fλ = χλ(1) its dimension, and sλ the associated Schur function.

In the sequel we will always normalize the Gram matrix Mn,k(x) by dividing by

the constant S(n, k)k!.

In the semisimple case k = n one can use Frobenius’ factorization of the group

determinant (see [1]) to derive the following result about the normalized matrix

Mn,n(x).

Theorem 4. The eigenvalues of Mn,n(x) are ±
(

n!
fλ sλ

)2
, λ ` n, where the positive

values appear with multiplicity
(

f
λ+1

2

)

and the negative values appear with multi-

plicity
(

f
λ

2

)

.

Corollary 2. The algebra An,n(x) is semisimple if and only if the values of the
parameters xi avoid the zeros of the Schur functions sλ.

For k = 1 there is always a unique non-zero eigenvalue ns2
1, but the analogous

result for 1 < k < n is so far only conjectural.

Conjecture 1. The non-zero eigenvalues of Mn,k(x), k < n, are of the form cs2
λ

for λ ` k, where c is an algebraic scalar. The “multiplicity” of s2
λ
, i.e., the sum of

the multiplicities of the cs2
λ
, is (

(

n

k

)

fλ)2 for λ ` k, λ 6= 1k, and
(

n−1
k−1

)2
for λ = 1k.

This conjecture is difficult to check even by computer for n > 4. The following

table gives some sample data.

n k eigenvalues

3 2 (−12s2
12)

1, (−8s2
2)

2, (−4s2
2)

1, 05, (4s2
2)

3, (8s2
2)

2, (12s2
12)

3, (16s2
2)

1

4 2 (−32s2
12)

3, (−
√

448s2
2)

5, (−8s2
2)

10, 039, (8s2
2)

15, (
√

448s2
2)

5, (32s2
12)

6, (56s2
2)

1

(The conjectured multiplicities come from Putcha’s results; they are the dimen-

sions of the irreducible characters for An,k.)
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