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Abstract

We discuss various stochastic models (random walk, percolation, the
Ising and random-cluster models) on so-called bunkbed graphs, i.e., on any
graph that is obtained as a Cartesian product of the complete graphs on
two vertices and another graph. A new correlation inequality for the Ising
model on bunkbed graphs is presented.

Nous étudions divers modeles stochastiques (marche aléatoire, modele
de Ising et FK) sur les graphes dits ”a deux étages”, c-a-d sur tout graphe
obtenu par produit cartésien du graphe complet a deux noeuds par un autre
graphe. Une nouvelle inegalité de corrélation pour le modele de Ising sur
les graphes a deux étages est présentée.

1 Introduction

A major area of probability theory today is the study of stochastic models on
graphs, and in particular of how properties of the graph are reflected in the be-
havior of the stochastic models; see, e.g., Aldous [1], Woess [15], Haggstrom [10],
Lyons [13], and Lyons and Peres [14]. The graphs are usually finite or countably
infinite. Here, we shall for simplicity focus on finite graphs.

We shall also specialize to so-called bunkbed graphs. Given any graph
G = (V,E), we can define its corresponding bunkbed graph Gy = (V3, E3) as
follows. Imagine GG drawn in the plane, with an exact copy of it positioned straight
above it in the third coordinate direction, and with, for each v € V, an edge
connecting v to its copy right above it. In more precise language, Go = (Va, Es)
is obtained by taking

Vo=V x {0,1}

and
Ey = {{(u,1), (v,7)) : (u,v) € E,i € {0,1}}U{{(u,0),(u,1)) :uecV}.

An edge e € E, will be called horizontal if it is of the form ((u,i), (v,4)), and
vertical if it is of the form ((u,0), (u,1)). We shall always assume that G is
connected, so that (G5 is connected as well.
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Consider now two vertices (u,0) and (v, 0) downstairs in G, together with the
node (v, 1) sitting upstairs, right above (v,0). Is (u,0) “closer” to (v,0) than to
(v,1)? If we measure “closeness” in the usual graph distance, then the answer
is yes: the shortest path from (u,0) to (v,0) is precisely one step shorter than
the shortest path from (u,0) to (v, 1). Other definitions of closeness in graphs are
possible, but it is tempting to suggest that any reasonable (whatever that means!)
such definition should tell us (u,0) and (v,0) are closer to each other than are
(u,0) and (v, 1).

In this paper, we will discuss how this philosophy is reflected in various stochas-
tic models on bunkbed graphs. Most of this discussion has appeared earlier, but
only in Swedish; see Haggstrom [11].

It is reasonable to expect, given a nice stochastic model on G5, that the rele-
vant two-point quantities such as correlations or connectivity probabilities should
exhibit stronger relations between (u,0) and (v,0) than between (u,0) and (v, 1).
The (somewhat vague) hope is that if we can prove such things for bunkbed
graphs, then this may of lead to a better understanding of “closeness” on more
general graphs.

In the next section, we shall recall three of the most basic and important
stochastic models on graphs — random walks, percolation, and the Ising model —
with particular focus on how they behave on bunkbed graphs. A recent result
(Theorem 2.4) concerning the Ising model on bunkbed graphs is presented in the
end of that section. In Section 3, we shall recall the intimate relation between
the Ising model and a certain dependent percolation model known as the random-
cluster model. Finally, in Section 4, we prove Theorem 2.4.

2 Some stochastic models on graphs

2.1 Random walk

A random walk on a graph G = (V, F) is a Markov chain (X (0), X (1), X(2),...)
with state space V' and the following update mechanism. If X (n) = v, and v € V
has d neighbors wy, ..., wy in G, then X(n + 1) is chosen according to uniform
distribution on {wy,...,wy}. In other words, at each integer time the random
walker stands at a vertex, and chooses at random (uniformly) one of the edges
emanating from that vertex, in order to decide where to go next.

A much-studied class of problems for random walks concern hitting probabili-
ties. Given the initial value X (0) = u and two other vertices v, w € V, what is the
probability that the random walk hits v before hitting w? In other words, letting
T, = min{n : X(n) = v} and T, = min{n : X(n) = w}, we are interested in
P(T, < T,) where, as usual, P denotes probability. Calculating such probabilities
turns out to be equivalent to calculating voltages in a certain electric network on
GG, and this has turned out to be an extremely useful observation as it allows
results for electric networks, such as Rayleigh’s monotonicity principle, to come
into play in the study of random walks; see, e.g., the wonderful monograph by
Doyle and Snell [3]. For bunkbed graphs, Bollobds and Brightwell [2] exploited
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electrical network arguments in order to show that a random walk starting at
(u,0) satisfies
1
P(T(U,O) < T('U,l)) Z 57
in agreement with our general philosophy about bunkbed graphs.
A similar question is whether we for a fixed initial value X (0) = (u,0) and a
fixed time n have
P(Tl0 <n) 2 P(Tu) < ). (1)

Somewhat surprisingly, Bollobas and Brightwell found a counterexample demon-
strating that (1) is not true in general. If we take G = (V, F) with V' = {u,v,w}
and E = {(u,v), (v,w)}, and start random walk on the corresponding bunkbed
graph Gy at Xy = (u,0), then the reader will quickly be able to verify that
P(T(w0) < 3) < P(T(w,1) < 3), ruling out the hope that (1) might hold in general.
This example appears to be related to some sort of preiodicity of the random walk:
for instance, the random walk can only reach (w,0) at even time points. Such
periodicities do not occur if the random walk is defined in continuous time (which
can be done in a natural way). Bollobds and Brightwell therefore conjectured that
an analogue of (1) would hold for continuous time random walk. In Haggstrom
[9], this conjecture was proved.

2.2 Percolation

In standard bond percolation on a graph G' = (V, E), we fix the so-called retention
parameter p € [0,1], and let {X(e)}.ep be ii.d. (independent and identically
distributed) random variables with P(X(e) = 1) = p and P(X(e) =0) =1 —p.
The values 0 and 1 should be thought of as “absent” and “present”, respectively,
and we consider the random subgraph of GG obtained by throwing out all edges e
with X (e) = 0.

Percolation theory deals mainly with connectivity properties of this random
subgraph. By far the most studied cases are to take GG to be either a complete
graph (see Janson et al. [12]) or a regular lattice in two or more dimensions (see
Grimmett [8]). In the case with the complete graph, the theory deals mainly
with asymptotics when the number of vertices tends to oo, whereas in the lattice
case, the graph is usually taken to be infinte to begin with. In both cases, much
of the interest in the models arises from the fact that they exhibit a threshold
phenomenon: the probability of getting a very large connected component (one
which contains a nontrivial fraction of the original graph) is 0 or 1 depending on
whether p is above or below some critical value.

The random subgraphs we are considering are identified in the obvious way
with random elements of {0,1}”. Let ¢$ denote the probability measure on
{0, 1}¥ corresponding to the percolation model described above. For two vertices
u,v € V, and a {0, 1}F-valued random element X, we write u X v for the event
that there exists a path from u to v in the subgraph of GG corresponding to X.
The following conjecture concerning percolation on bunkbed graphs is along the
lines of our general intuition for stochastic models on such graphs.
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Conjecture 2.1 Let G = (V, E) be a graph, and let Gy = (Va, Ey) be the corre-
sponding bunkbed graph. Let p € [0,1], and pick a {0, 1}¥2-valued random element
X according to gbf?. We then have, for any u,v € V', that

P((u,0) <= (v,0)) = P((u,0) < (v,1)). (2)

I have been aware of this conjecture since the mid-1990’s, but have not been able
to trace its roots.

So far, we have only discussed the most basic percolation model, exhibiting
independence between edges. A wide variety of dependent models have been
studied as well. The most studied and perhaps also the most important one is
the so-called random-cluster model (also known as the Fortuin—Kasteleyn or FK
model) which is defined as follows.

Definition 2.2 Given G = (V, E) and & € {0,1}F, define k(§) as the number of
connected components (including isolated vertices) in . For p € [0,1] och ¢ > 0,
we define the random-cluster measure (bgq as the probability measure on {0,1}¥
which to each & € {0,1}F assigns probability
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where qu = X ere{0,1}F " eer p£ @1 — p)'=€© s a normalizing constant.

Note that taking ¢ = 1 yields standard bond percolation. Other choices of ¢
yield intricate dependencies between edges. The main reason why this particular
generalization has received so much attention is the intimate relation between the
case ¢ = 2 and the Ising model (to be outlined in Section 3) and the corresponding
ralationship between the cases ¢ = 3,4, ... and the so-called Potts model. See
Georgii et al. [7] for more on these relationships, and how they are exploited to
obtain results concerning the phase transition behavior in Ising and Potts models.

For the random-cluster model on bunkbed graphs, it is reasonable to conjecture
that the inequality (2) is valid not only for ¢52 but also for ¢5? with arbitrary
choice of p and ¢q. A priori, this seems harder for dependent cases ¢ # 1 than
for the i.i.d. case ¢ = 1, and it may therefore seem strange that we have a proof
of the conjecture for ¢ = 2 (see Corollary 4.1 below) while not for ¢ = 1. The
explanation for this surprising situation lies in the aforementioned connection
between the ¢ = 2 random-cluster model and the Ising model.

2.3 The Ising model

The Ising model gives a way of assigning the values —1 and 1 (called spin values)
to the vertices of a graph G = (V, E), in a random but correlated manner. The
corresponding probability measures on {—1,1}" are called Gibbs measures, and
their definition is as follows.



Definition 2.3 For a graph G = (V, E), we define the Gibbs measure ,ug for the
Ising model on G at inverse temperature 3 > 0 as the measure on {—1,1}" which
to each configuration n € {—1,1}V" assigns probability

1

pug (n) = 56 P (6 > n(x)n(y))
B (zy)eE

where ZﬂG 18 a normalizing constant making ,ug a probability measure.

Note that we could alternatively write

1
Hg () = =g exp (—25 > I{n(x#n(y)}) (3)
B (zy)€E

with a different normalizing constant ZﬁG

In the case = 0, the values at different vertices become i.i.d. with distribution
(3,4) on {—1,1}. Taking 8 > 0 retains the marginal distribution (1, 1) at a single
vertex (because the model is invariant under global interchange of —1’s and 1’s),
but the values at different vertices become dependent, due to fact that ug favors
configurations with agreement along many nearest-neighbor pairs in the graph. In
the extreme situation where we let § — oo, we will in the limit have probability
% for the two configurations —1Y and 1V in which all vertices agree about their
spin value.

The graph G is most often taken to be (a large portion of) some periodic
lattice in 2 or 3 dimensions. In the asymptotics as the lattice size tends to oo,
the following very interesting threshold or phase transition phenomenon happens,
which is related to the threshold phenomenon for percolation mentioned in the
previous subsection. There is a critical value 5. € (0,00) (depending on the
lattice) such that for 8 < ., the fraction of vertices with spin value 1 will tend to
% in probability, while for § > . the “desire” to have aligned values at nearest-
neighbour pairs is strong enough to break this global symmetry, and yields a
substantial majority of either —1’s or 1’s. This phase transition phenomenon is
the main reason for the Ising model being a much-studied object in probability and
statistical mechanics; see e.g. [7] for an introduction. Physically, the vertices may
be thought of as atoms in a ferromagnetic material, the values —1 and 1 are two
possible spin orientations of the atoms, while % is the temperature, and the phase
transition phenomenon means that the material is spontaneously magnetized at
low but not at high temperatures.

Another interesting property of the Ising model is that if Y € {—1,1}V is
chosen according to the Gibbs measure ,ug, then, for any u,v € V', we have that
Y (u) and Y(v) are positively correlated. Because of the +1-symmetry of the
model, this is the same as saying that

E[Y (u)Y (v)] 2 0. (4)

This is a special case of the famous FKG inequality, proved by Fortuin et al. [6],
and we shall see a simple proof in the next section, Corollary 3.3.



It is reasonable to expect that, for fixed 3 , the correlation between Y (u)
and Y (v) should be greater, the“closer” u and v are to each other. For bunkbed
graphs, we have the following result, first proved in [11].

Theorem 2.4 Let G = (V, E) be a graph, and let Go = (Va, Es) be the corre-
sponding bunkbed graph. Fiz 3 > 0, and pick Y € {—1,1}"2 according to the
Gibbs measure ugg. We then have, for any u,v € V', that

E[Y ((u,0))Y ((0,0))] = E[Y ((,0))Y((v,1))].

See Section 4 for the proof.

3 Ising and random-cluster models: the connec-
tion

That the random-cluster model has intimate connections to the Ising model was
realized already by its inventors Fortuin and Kasteleyn [5]. Today, the best way
to understand this connection is via the following explicit coupling.

Theorem 3.1 Fizp € [0,1), let G = (V,E) be a graph, and pick X € {0,1}*
according to the random-cluster measure qbz%. Then pickY € {—1,1}V as follows.
For each connected component of X, let all vertices in the component take the same
value, —1 or 1, determined by a fair coin toss. Do this independently for different
connected components. Then Y is distributed according to the Ising model Gibbs
measure pu§, with § = —3log(1 — p).

This was proved by Edwards and Sokal [4] by means of a simple but ingeneous
counting argument. The reader will be able to reconstruct it by working out the
sum in the right hand side of

PY=n= > PX=¢(Y=n)
£€{0,1}F

where the first thing to do is to check which summands are nonvanishing for a
given 7. Alternatively, consult the literature, for instance [7].
A useful consequence of Theorem 3.1 is the following.

Corollary 3.2 Let G = (V,E) be a graph, fix 8 > 0, and pick Y € {—1,1}V
according to the Ising model Gibbs measure ,ug. Also pick X € {0,1}¥ according
to the random-cluster measure gng withp = 1—e~25. Then, for arbitrary u,v € V,
we have

E[Y ()Y (v)] = P(u <2 v) . (5)

Proof: We may assume that Y was obtained as in Theorem 3.1. The event
(u <> v) then implies that Y (u)Y (v) = 1. Conditional on —(u <> v), we have



that ¥ (u)Y (v) is —1 and 1 with probability § each. Hence,

(u = 0)] + P(=(u = ) E[Y ()Y (v) [ ~(u < v)]
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Since the right hand side in (5) is nonnegative, the well-known correlation in-
equality (4) pops out as an immediate consequence of Corollary 3.2:

Corollary 3.3 Let G = (V, E) be a graph, fix 3 > 0, and pick Y € {—1,1}V
according to the Ising model Gibbs measure ug. Then, for any u,v € V, we have

E[Y(u)Y(v)] > 0.

4 Proof of the new correlation inequality

In this section we give the proof of Theorem 2.4, and finish with a simple corollary
for the random-cluster model.

Proof of Theorem 2.4: We wish to show that
E[Y (v, 0)(Y((v,0)) = Y((v,1)))] 2 0.
For obvious symmetry reasons, we have that
E[Y((u, 1))(Y((v,1)) = Y((v,0)))] = E[Y'((u, 0))(Y((v,0)) = Y((v,1)))]
whence
E[(Y((,0)=Y ((u, 1)) (Y ((v,0)) =Y ((v,1)))] = 2E[Y((«,0)) (Y ((v,0)) =Y ((v, 1)))] -
We are therefore done if we can show that
E[(Y((v,0)) = Y((u, D)(Y((v,0)) = Y((v,1)))] 2 0. (6)

Given Y € {—1,1}"2, define W € {—1,0,1}" by letting W(w) = (Y ((w,0)) —
Y ((w,1))) for each w € V. Define also the (random) graph Gy = (Vy, Ey) by

setting
Vy = {weV: Ww)e{-1,1}}

and
By ={e=(w,z) e E: w,z€ Vy}.

Write W (Vy ) for the spin configuration {WW(v)},evs , and note that the triple
{GY7 {Y(wv Z.)}MQVy,iE{O,l}u W<VY)}

uniquely determines Y. We now make the following claim:
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Claim A: Given Gy and {Y (w, ) }wgvy ic{o,1}, the conditional distri-
bution of W (Vy) is given by the Gibbs measure ug;g.

For the purpose of proving this, we make the following definitions. For Y &
{—1,1}"2, take n(Y") to be the number of “unhappy” edges, i.e.,

n(Y) = [{{u,v) € By : Y (u) # Y (v)}].
Then decompose n(Y) into
n(Y) =n,(Y) +np(Y) + n.(Y)

where n,(Y’) is the number of vertical unhappy edges, n,(Y) is the number of
horizontal unhappy edges with at least one endpoint incident to a happy vertical
edge, and n.(Y) is the number of horizontal unhappy edges with both enpoints
incident to an unhappy vertical edge. Also let n*(W(Vy)) denote the number
of unhappy edges in Gy. A moment of thought reveals that if we fix Gy and
{Y(w,7) }wgvy icfo,1y, then ng(Y) and ny(Y) are also fixed. Furthermore, each un-
happy edge in Gy corresponds to a pair of unhappy edges in G5 (one upstairs and
one downstairs) in the category counted by n.(Y), so that n.(Y) = 2n*(W(Vy)).
Together with (3), this implies that for fixed Gy and {Y (w, 1) }wgvy ic{o1} and two
different configurations n,n’ € {—1,1}"Y we get

PW(Wy) =n|Gy,{Y(w,i):w¢& Vy,i € {0,1}}) B () —n" ()
PW (W) =n'|Gy {Y(w,i):w¢Vy,i€{0,1}}) '

This, in view of (3) and normalization, proves Claim A.
Now, Claim A in conjunction with Corollary 3.3 implies that

E[W ()W (y) | Gy, {Y (w,1) }ugy ictony] = 0 (7)

whenever x,y € Vy. If, on the other hand, at least one of the vertices x and y
is not in Vi, then the left hand side in (7) is obviously 0. Integrating over all
possible outcomes of Gy och {Y (w,i) : w & Vy,i € {0,1}} gives

E[W (z)W(y)] = 0

for any x,y € V. Recalling the definition of W, we get
E[(Y((4,0)) = Y ((u,1)))(Y((v,0)) = Y ((v, 1)))] = 4E[W(2)W (y)] = 0,
and (6) is established, which is what we needed. O

The following result for the random-cluster model follows immediately from The-
orem 2.4 combined with Corollary 3.2.

Corollary 4.1 Let G = (V, E) be a graph, and Gy = (Va, Ey) the corresponding
bunkbed graph. Let p € [0,1], and pick X € {0,1}F2 according to the random-
cluster measure gzﬁfé Then

P((u,0) <= (v,0)) = P((1,0) < (v,1))

for any u,v € V.
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