EXPECTED REFLECTION DISTANCE IN G(r,1,n) AFTER A
FIXED NUMBER OF REFLECTIONS

NIKLAS ERIKSEN AND AXEL HULTMAN

ABSTRACT. Extending to r > 1 a formula of the authors, we compute the expected
reflection distance of a product of ¢ random reflections in the complex reflection
group G(r,1,n). The result relies on an explicit decomposition of the reflection
distance function into irreducible G(r,1,n)-characters and on the eigenvalues of
certain adjacency matrices.

RESUME En tendant r > 1 une formule de I’auteur, nous calculons la distance de
rflexion attendue d’un produit de t rflexions alatoires dans le groupe de rflexions
complexe G(r,1,n). Le rsultat s’appuie sur une dcomposition explicite de la fonction
de distance de rflexion en irrductibles caractres G(r,1,n) et sur des valeurs Eigen
de certaines matrices adjacentes.

1. INTRODUCTION

Consider the graph G}, with the symmetric group &,, as vertex set and an edge
{m,7} if and only if 7 = 7t for some transposition ¢. In [3], the authors computed
the expected distance (in the graph-theoretic sense) from the identity after a random
walk on G, with a fixed number of steps. The motivation was that a random walk
on G, is a good approximation of a random walk on a graph originating from com-
putational biology: its vertices are the genomes with n genes and its edges correspond
to evolutionary events called reversals. Thus, a random walk on the latter graph is
thought to simulate evolution. Solving the inverse problem, to compute the expected
number of steps given a fixed distance, would then provide a measure for how closely
related two taxa are.

In this paper we generalise the mathematical results of [3]. More precisely, we
solve the problem described above with G,, replaced by the complex reflection group
G(r,1,n) and the transpositions replaced by the set of reflections.

Our approach is analogous to that in [3]. We view the random walk as a Markov
process with a certain transition matrix. This yields an expression for the expected
distance which involves two unknown parts, namely the eigenvalues of the said matri-
ces and the inner product of certain (virtual) G(r,1,n)-characters. The eigenvalues
are computed using the Murnaghan-Nakayama type formula for G(r,1,n) given by
Ariki and Koike [1].
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The inner product is computed using elements of the “symmetric functions” theory
of G(r,1,n)-representations, thereby generalising the corresponding result in [3] to
G(r,1,n).

The paper is organised as follows. In Section 2 we review some material about
the groups G(r,1,n) and define the appropriate graphs. Thereafter, in Section 3,
we give a brief sketch of the symmetric functions-like theory that governs G(r, 1, n)-
representations. We then describe the Markov chain approach and state the main
theorem in Section 4. We do not prove it until in Section 7, though, since the proof
relies on the computation of the eigenvalues and inner product described above; these
computations take place in Sections 5 and 6, respectively.

2. THE GROUPS G(r,1,n) AND THEIR REFLECTION GRAPHS

Choose positive integers r and n. Let ( be a primitive rth root of unity in C. We
will view G(r,1,n) as the group of permutations 7 of the set {¢%j | i € [r], j € [n]}
such that 7(¢"j) = ('n(j) for all 4 € [r], j € [n]. The special cases r = 1 and r = 2
yield the symmetric group &,, and the hyperoctahedral group B, respectively. Both
are real reflection groups. In general, G(r,1,n) is a complex reflection group, namely
the symmetry group of the regular complex polytope known as the generalised cross-
polytope S (see [6]). Also note that G(r,1,n) is isomorphic to the wreath product
7,1 6,.

An r-partition A of n, written A . n, is an r-tuple of integer partitions A =
(AL, ..., A") such that n = Y |X|. Consider 7 € G(r,1,n). It gives rise to an
r-partition type(m) = (A!,...,A") F, n as follows. Write down the disjoint cycle
decomposition of 7 and consider only the absolute values of the entries. This causes
some cycles to coincide; those that do belong to the same equivalence class called a
class cycle. Each class cycle ¢ corresponds to a part in \’, i being determined by the
requirement that 7%(j) = ¢*~!j for the smallest k¥ > 0 such that |7*(5)| = |j|, where j
is any entry in (a representative of) c. The size of the part is the number of entries in
c divided by r. It is straightforward to verify that 7 and 7 are conjugate if and only
if type(m) = type(r). Thus, the r-partitions of n index the conjugacy classes (and,
hence, the irreducible characters) of G(r, 1, n).

Example 2.1. Withr =n =4 and ( =1 =+/—1, the element
(1 —2)(i —20)(~12)(—i 20)(3 —4 —34)(3i —4i —3i 4i) € G(r,1,n)
contains two class cycles and has type (o, 0, o, D).

The element 7 is a reflection if \! has exactly n — 1 parts. We let R = R(n,7)
denote the set of reflections. Note that R(n,1) is just the set of transpositions in &,,.

Although an arbitrary ¢ € R is not in general conjugate to t~!, we still have ! € R.
Hence, there is no ambiguity in the definition we now give. We let G, be the graph
with the elements of G(r,1,n) as vertices and an edge {z,y} if and only if x = yt for
some ¢t € R. We call G.,, the reflection graph of G(r,1,n).
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It is well-known that the reflection distance w,,(7), i.e. the graph-theoretic distance
between the identity and 7 in G, is given by n minus the number of class cycles of
7 that contain exactly r cycles. In other words,

(1) Wy (M) =10 — L(A1).

Remark 2.2. In case r € {1,2}, the reflection graph is just the undirected version
of the Bruhat graph on the Coxeter group G(r,1,n) defined by Dyer [2].

3. IRREDUCIBLE CHARACTERS AND “SYMMETRIC FUNCTIONS”

In this section, we briefly review some of the theory of G(r, 1, n)-representations,
which in many ways resembles the theory of symmetric functions. We refer to Mac-
donald [5, Ch. I, App. B| for more details. Some knowledge of “ordinary” symmetric
functions will be assumed, see e.g. Stanley [7, Ch. 7] or [5].

The irreducible characters of G(r,1,n) are indexed by the r-partitions of n; we
write x* for the character indexed by \ I, n. They form an orthonormal basis of the
C-vector space R"(r) of class functions on G(r, 1 n) with respect to the inner product

Zf

Arn

where
1y, ... r
Zy = 2. ..zyre(’\ )T

For i € [r], let x; = (41, Zig, . .. ). Given Ak, n, we define
P)\—Hp,\z ECacl,...,acT],

where the p, are the ordinary power sum functions. Let A"(r) denote the C-span of
{P\}»r,n- It turns out that the characteristic map ch" : R"(r) — A™(r) given by
=2 % f(X) is a vector space isomorphism.

Polynomial multiplication turns A(r) = @, >, A"(r) into a graded algebra. The
same holds for R(r) = @, -, R"(r) (under a suitably defined multiplication whose
nature needs not concern us here). Taking the characteristic map on each component
then yields an isomorphism of graded algebras ch : R(r) — A(r) which we also call
the characteristic map.

Now, consider another set of variables: for i € [r], put Z; = (Z;1,Zs2,...). The
connection between the z; and the Z; is governed by the transformation rules

Z =T;,ipm(7;)

j€ 1‘]

331) = Z T—ﬂpm(jj)’
Je€[r]

and
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where T is the character table of Z,. In particular, adopting the convention that
the trivial Z,-character corresponds to the first row in 7" and the (conjugacy class
consisting of the) identity element corresponds to the first column, we have T;; =
T1; = 1 for all 7. Hence,

(2) Pm(T1) = Z %pm(xj)

Je€lr]

(3) pm(xl) = me(jj)'
J€lr]

The main reason to care about this second set of variables is the following. For
A, n, define

g)\ = H SAi(ji) € (C[Ii'l,.ig, .. .],

i€[r]

where the s, are the ordinary Schur functions. Then S, is the image of x* under the
characteristic map.

4. THE MARKOV CHAIN

We wish to view the walk on G}, as a Markov process. We can then use the
properties of the transition matrix to compute the expected reflection distance. Our
approach is analogous to the approach in [3].

Associated with the Cayley graph G, is its adjacency matrix M/, with rows and
columns indexed by the vertices in G}, and with entries indicating the number of edges
(one or zero) between the corresponding vertices. The probability that a random walk
on G, starting in the identity ends up in 7 depends only on the type of 7. Hence,
to reduce the size of the problem, we may group the permutations into conjugacy
classes, each indexed by its type. We then get the corresponding (multi-)graph G,
with adjacency matrix M,, = (m;;), the number m;; denoting the number of edges
from some permutation of type i to any permutation of type j.

Example 4.1. The group G(2,1,2) has 8 elements of 5 different types. If the latter
are ordered according to

(H’ @)’ (‘I" (0), (D’ D)’ (@,E), ((0":':')’

we get

M22 =

OO == O
NN O N
NN ODOO N
SO == O
S O NN O
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We view this adjacency matrix as a transition matrix in a Markov chain (after
normalising by the common row sum |R|). It is easy to see that the expected reflection
distance after ¢ reﬂections taken from a uniform distribution is given by (see for
instance [3]) e; M!, wl /|R|', where w,, is a vector containing the reflection distances
from the different types to the identity. The vector e; has 1 in the first position and
zeroes everywhere else.

In order to compute elen wl
that its eigenvalues are given by

() eig(Mrn3) = 3

we wish to diagonalise M,,. It follows from Ito [4]

i

for A k-, n. Here, n; is the number of elements of type i in G(r,1,n), and the sum is
taken over all reflection types i. For r = 1, the eigenvalues equal the contents

i=1

(see [3, 4]). We will compute the other eigenvalues in Section 5.

The eigenvector corresponding to eig(M,,, \) is given by the values of x* on the
various conjugacy classes, see [4]. Hence, viewing the character table C' as a matrix,
we can diagonalise: M,, = CTD(CT)~!, where D is the diagonal matrix with the
eigenvalues on the diagonal. Using the orthogonality of irreducible characters, we
compute (CT)~1; it is obtained from C by dividing each column by its corresponding
Z,. We obtain

€1M1'tn Wy, Z X’\((ln), 0,...,0)(eig(My, /\))t Z X/\(,U)Z—w

Abrn pErn

In Section 6, we decompose w,, () into a linear combination of irreducible G(r, 1, n)-
characters, thus obtaining an expression for the second sum.

Combining all parts, we obtain the main theorem, thus extending the corresponding
result for 7 = 1 in [3].

Theorem 4.2. Assume r,n € N and rn > 1. Then the expected reflection distance
after t random reflections in G(r,1,n) is given by

IS ”zm@zwam(r«w(;s;i“>+n> )

2 n

1SS, (020 L)

p=0
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Gy = (—1)P Pt (p—q+1)? <n> (n _p— 1)

(n—qg+1)*(n—p)\p q—1

(=14t p\ (n—p—1
p p q

The proof of this theorem is postponed until Section 7, since it uses the material
derived in the following two sections.

where

and

Example 4.3. Returning to the case n = r = 2, Myy diagonalises as

1 1 2 1 1 4 0 0 0 O 1 2 2 1 2
1 -1 0 1 -1 0 00 0 O 1 1 2 2 1 2
1 1 0 -1 -1 0o 0oo0o0 0} 2 0 0-=2 0
1 1 =2 1 1 0 00 0 O 8 1 2 =2 1 2
1 -1 0 -1 1 0 00 0 H4 1 =2 =2 1 2

We recognise the leftmost matriz in this expression; it is the transpose of the character
table of G(2,1,2).
Plugging n = r = 2 into Theorem 4.2, we get

3 1(-1), 1/(1 .1, N\ 5 (-1t 3,
24 ot o[ (-1)f =20t =20t ) == s
172 +2(2( V=3 1T T

The asymptotics are now fairly easy to deal with. For r = 1, 2 we have a dependence
on the parity of ¢ reflecting the bipartite nature of G,,,. For larger r, G, is no longer
bipartite, and this behaviour disappears.

Corollary 4.4. As t goes to infinity, the expected reflection distance in G(r,1,n)

approaches
n— - l
r k ’
k=1
where
(CL™0 ifr=1andt]i
ay i r=1andtis even,
% if r =1 and ¢ is odd,
5:<% if r = 2 and ¢ is even,
CO™ ifr =2 and ¢ is odd,
\O if r > 3.

Proof. The case r = 1 was carried out in [3], so suppose r > 2. Consider the expres-
sions inside the large brackets preceded by a,, and by, in Theorem 4.2; call them B,
and Bs, respectively. It is easily checked that |B;| < 1 for all p, ¢. Tt is equally simple
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to verify that [By| < 1 unless p = 0, ¢ = 1, r = 2 in which case we have By = —1.
Noting that bg; = (—1)"/n proves the corollary.
O

5. THE EIGENVALUES OF THE ADJACENCY MATRICES

To compute the eigenvalues of M,,, we use the following G(r, 1, n)-version of the
Murnaghan-Nakayama formula which can be found in Ariki and Koike [1].

Theorem 5.1 ([1]). For fized i and j, let ji} be the jth part of p* in p = (p', ..., u"),
and let ¢ be a primitive rth root of unity in C. Then

P=1|D|=p}

where the second sum runs over all rim hooks I' of size ,uj- in NP and ht(T) is one less
than the number of rows in I.

From (4), it follows that the eigenvalue corresponding to A -, n is

T‘(Z)X/\((Q’ 1n—2), (Z), ey Q)) r nX)\(ln—l’ Q)’ e, @7 1, (D, ceey @)
© (17, 0,...,0) 2 (17, 0,...,0) ’

=2

where, in the second sum, the ith argument of x* is 1.
We thus need to compute some entries in the character table of G(r,1,n).

Lemma 5.2. For any A = (\',...,\") k-, n, we have

T

1m0, ..., 0 :( " ) AN,
Xl 1= () LD

k=1
XM(2,1"72),0,...,0) =

! n—2 _ k k
S (i 2T 0

and

X A"L0,...,0,1,0,...,0) =

T A

n—1 i—1)(p—1 Ak Ak
Z(Mll,-..,lAp|—1,...,w|)<( T .

p=1 k=1
(In the last equation, the ith argument of x* is 1.)
Proof. For p= (1",0,...,0), the Murnaghan-Nakayama rule becomes
XA, 0) =D 0Dy M A (0 g ),

p=1 0O
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where the inner sum runs over all outer squares of \?. Thus, the character equals the
number of ways to remove one outer square at a time from the Ferrers’ diagrams of
A. This number is (IAILKIA’"I) [T, X (1), since x** (121 is the number of ways
to remove one outer square at a time from A

The two other equations follow similarly. When u = ((2,1%72),0,...,0), we first
remove a rim hook of size 2 from some \?, whereas for = (1"7%,0,...,0,1,0,...,0),

we start by removing the square corresponding to p.
d

We are now ready to compute the eigenvalues.

Theorem 5.3. Let A = (A, ..., \") b, n. The eigenvalue of M,, corresponding to \
1S given by
eig(Myp, A) =7 Zc(z\p) + 7|\ = n.
p=1

Proof. Combining equation (6) and Lemma 5.2, the eigenvalue becomes

IA” XM (21Y7) N R G-
TZ o+ e Y oo,
p=1 Jj=2

AP\ XM (2, 1M12)
(2 e (M, A7) = e(X),

and

Zc(jlpl Zg(jlpl) 1= r—1 lfp:L
-1 otherwise.

j=2 j=1

6. DECOMPOSING THE DISTANCE FUNCTION

Recall from (1) the distance function w,,, in the reflection graph of G(r,1,n). Being
a class function, it can be written as a linear combination of the irreducible G(r, 1, n)-
characters. In this section, we will make this decomposition explicit using the material
reviewed in Section 3. In [3], the symmetric group case (r = 1) was settled using a
similar approach. However, the fact that x; # Z; for larger r calls for greater care.

Before stating the main theorem we need some preliminary results. We feel that
the first is of independent interest.

Proposition 6.1. The complete symmetric functions satisfy

HZh ;) = (Zh )

i=1 n>0 n>0
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Proof. Throughout the proof, lower case Greek letters with or without superscripts,
such as p and p¢, will denote ordinary integer partitions.
First, we manipulate the left hand side a little to obtain

[[X o) = [[ 20— 5 plit)ewels)

. - u?"
i=1 n>0 i=1 p (TR

Turning to the right hand side, we get

(Z hn(51)>r = <Z @)T = (Z P (Z1) - ‘Z'puz(u) (il)>r

n>0 u 0]
T
- Z Hp“l 1) +pul(wr)
r Lpd)
- Z 2t ... 2y rr‘f )4 He(uT) H H ‘+Pug($r))-
(!seeo™) j=1 i=1

For appropriate coefficients K1 -, this expression can be written as

Z K o (21) . pur (7).
(7T

Fix Al ..., A". We must show that Ky = (2x1...25) 70

Cons1der the last expression for the rlght hand side above. For a term indexed by
(ut, ... 4", let fj be the number of parts that equal ¢ in /. Similarly, let eJ be the
number of parts that equal 7 in M/ and put N; = Y i€ . Clearly, the only terms that
contribute to K1, are those for which ) i fij = Ni for all 7. Below, the sums are
over all such p', ..., u" (so that, in particular, £(A')+---+£L(A\") = £(p') +- - -+ £(u")).

We get
1 1 N;
K)\l,.._,)\r = _TZ(A1)+...+£()\’“) Z Z1 ... ZNT H <@1’ ceey e".')
(utyer) H >1 !
_ 1 Z H;:l (H] ef') H ( Nz >
PLOD) A+ +L(X7) ) 2\l ... 2y H;ZI(H ) ff!) i>1 ezl, cee, 6:

1

To simplify this sum, consider the follovvlng situation: we have r boxes of distin-
guishable balls, the ith box containing N; balls, and we wish to paint the balls using
(at most) 7 colours. Of course, colouring the balls one by one, this can be done
in rZNi = pEAD+HO) wavs. Another way to colour the balls is this: first choose
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(u', ..., u") F, n with Z]. fij = N, for all 5. In box ¢, there will be fij balls with colour
J; this box can be coloured in ( flj_\_ff fr) ways. Thus,

1 1 L
Ky = PO ) _
" P+ ) 200 2y 21 ... 200

as desired. 0

Let L € R(r) be the function A — ¢(A\'). Sometimes, by abuse of notation, we will
let L denote its restriction to R"(r).

Lemma 6.2. We have

ch(L):%ann (x1 H(Zh a:l>

n>1 i=1 \m>0

3 |

Proof. Again, in this proof symbols such as p and p* will denote ordinary integer
partitions.
Letting the first ¢ y-variables equal one and the rest be zero in [7, 7.20] yields

t
o e n

Hence, letting ¢; be independent indeterminates,

[T o (S5 bt

=1 u i=1 n>1

Differentiating with respect to ¢;, we obtain

v v n d tz

(o ) [T e = 32 oy (323 ).
u “p i=2 v n>1 i m

which, after putting all ¢; = 1, becomes

Pul(ajl) Dy (xr) N pn(a: ) pm
' Z Zut - .zurrf(u1)+---+£(m)£(ﬂ ) = n exp Z _

(plseeu™) B n>1 i=1 m>1

Now, the left hand side is in fact rch(L). The fact that exp (3,5, 22) = 3,150 bm
concludes the proof. - B
(]

We are now in position to state and prove the main result of this section.
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Theorem 6.3. For all A\, n, L(A) =3, cux*(A), where

ZZ:l # lf :u’l = (n)a

(-t B i ut = (pg, 1MTY),
Cu =\ (=pr—Pa

r(n—p)
0 otherwise.

if u* = (p) and p* = (¢, 1" 7 9) for some i,

Proof. Passing to A™(r), we want to compute the coefficients ¢, in the expression

(L) = Xy Sy
Combining Lemma 6.2 and Proposition 6.1 yields

ch(L) = % > %pn(wl) Y (@),

which, with the aid of (3), becomes

(D)= 13T S pu(#) Y bl

n>1 i=1 m>0

Now, define coeflicients cfl by writing

m>0 n>1 n pken
so that rc, = 7, ¢}, For the rest of this proof, we let yu b, n be fixed.
First, we consider the case ¢ = 1. Using [7, 7.72], it is not difficult to show that
ZZ:I % if lul = (TL),

0 otherwise;

see the proof of [3, Thm. 3] for the details.
Now, pick 7 > 1. It is well-known that

n

Pn = Z(_l)n_qs(q,ln‘q)'

g=1
Hence, recalling that s,, = h,,, we obtain
_1\n—p—¢q . ; —p—
g S it = (p) and it = (g, 17779),
K 0 otherwise.

The result follows. U

What we really need is the decomposition of the distance function w,,, not L. It
is now easily obtained.
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Corollary 6.4. For all A\, n, wn(A) =D, dux* (), where

pbrn
RS v I e O}
H —cy otherwise.

Here, ¢, is as in Theorem 6.3.
Proof. We know that w,,, = nxiy — L, where Xy is the trivial character. Since the

trivial character is indexed by (n,,...,0), the result follows. O

7. PROOF OF THEOREM 4.2

We now turn to the proof of our main theorem. We have already shown that the
expected reflection distance after ¢ random reflections is given by

S 230%0,....,0) (elg %A) 3 2y

AFrn ubrn
eig(M,,, A
= Z X/\(ln, (b, ey @) (%) <X)‘, wm>.
AFrn

If we decompose wyy (1) = Y5, dax* (1) and use that the number of reflections is
IR| =r("}") — n, we obtain

t
ig(Myn, A)
d X)\(lnama"w@) (elgn7> :
2 (3 —n

The coefficients dy, are zero for most ), the exceptions being A\! = (n), \! = (p,q, 1" ?79)
and A = (p,0,...,0, (g, 177?~9), (2),...,0).

If \' = (n), we have dy =n— Y ;_, =, x*(1",
character) and eig(M,,,\) =7(3) + (r — 1)n =

0,
r(*
Mrna )‘
d,\X/\(ln,@,...,m) (elgn-l-l ) o Zrk
= (-

1 n—p— q+1 _ p—g+l
(n—g+1)(n—p)’

...,0) =1 (since x* is the trivial

)
‘; —n, SO we get
¢

Similarly, if A! = (p, ¢, 1"7P79), we obtain d

A/1n _ n'(p_q+1)
XD D = == i — ) — g+

“emn( o 71)6)

and eig(My,, \) = re(p, ¢, 1" P79 + (r — 1)n.
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(,1)n*p*q+1
r(n—p) 7

A 1" = n) (p) 1P (g,1"~P=1) 177) — (n) (n—p— 1)
G0 (PX (1%)x (1"7") P qg—1

()« () (1) )

Putting it all together yields the theorem.

Finally, if \! = (p) and \* = (¢, 1"7P7%), we have d) =
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