MAPS BETWEEN HIGHER BRUHAT ORDERS
AND HIGHER STASHEFF-TAMARI POSETS
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ABSTRACT. We make explicit a description in terms of convex geometry of the higher
Bruhat orders B(n,d) sketched by Kapranov and Voevodsky. We give an analogous
description of the higher Stasheff-Tamari poset Si(n,d). We show that the map f
sketched by Kapranov and Voevodsky from B(n,d) to S1([0,n + 1],d + 1) coincides
with the map constructed by Rambau, and is a surjection for d < 2. We also give
geometric descriptions of lkg of and lk(g n 41} of. We construct a map analogous to f
from Si(n,d) to B(n —1,d), and show that it is always a poset embedding. We also
give an explicit criterion to determine if an element of B(n — 1,d) is in the image of
this map.

RESUME. Nous décrivons explicitement ’esquisse de Kapranov et Voevodsky des
ensembles partiellement ordonnés “higher Bruhat” B(n,d), utilisant la géometrie con-
vexe, et nous démontrons qu’elle coincide avec la description de Manin et Schechtman.
Nous donnons aussi une description analogue des ensembles partiellement ordonnés
“higher Stasheff-Tamari” S;(n,d). Nous démontrons que la fonction f esquissée par
Kapranov et Voevodsky de B(n,d) & S1([0,n + 1],d + 1) coincide avec celle constru-
ite par Rambau, et qu’elle est sujective pour d < 2. Nous donnons des descriptions
géometriques de lkoof et lkjg n,y130f. Nous construisons une fonction analogue a
f de Si(n,d) & B(n — 1,d), et nous démontrons qu’elle est toujours un plongement
d’ensembles partiellement ordonnés. Nous donnons un critere explicite pour déterminer
si un élément de B(n — 1,d) est dans I'image de Si(n,d).

1. INTRODUCTION

The higher Bruhat orders B(n,d) were introduced by Manin and Schechtman [9]
in connection to discriminental hyperplane arrangements. They give a combinatorial
definition of B(n,d) which we shall review in the next section. The choice of name
stems from the fact that B(n, 1) is isomorphic to weak Bruhat order on the symmetric
group.

Shortly following the definition of the higher Bruhat orders, Kapranov and Voevodsky
wrote a paper [6] which presented two alternative interpretations for the higher Bruhat
orders, in terms of oriented matroids, and in terms of convex geometry. The oriented
matroid approach was later taken up by Ziegler [17]. The convex geometric approach
has not been significantly written about since. It is the focus of the first part of our
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The convex-geometric approach to the higher Bruhat orders is as follows. Consider
the n-cube [—1,1]". Let B(n,0) denote the set of vertices of the cube, with the usual
Cartesian product order, so that B(n,0) is a Boolean lattice. Its minimum element
is (=1,...,—1), and its maximum element is (1,...,1). Now let B(n, 1) be the set of
increasing paths along edges of the cube from (—1,...,—1) to (1,...,1). There are n!
of these, and they are naturally in bijection with S,,. We put an order on this set by
defining covering relations: ¢ > 7 if o and 7 coincide except on the boundary of some
2-face, where o uses the top two edges of the face, and 7 uses the bottom two edges.
(We will be more explicit about how to understand “bottom” and “top” in the next
section.) Under this order, the poset B(n, 1) is isomorphic to weak Bruhat order on the
symmetric group.

Now consider collections of 2-faces of the cube which form a homotopy from the
minimum path to the maximum path, and which are non-backtracking. (This non-
backtracking condition generalizes the “increasing” condition in the dimension 1 case.
We shall give more precise definitions in the next section.) These homotopies form the
elements of B(n,2). As before, the order on B(n,2) is defined by specifying covering
relations: ¢ > 7 if 0 and 7 coincide except on the boundary of a 3-face, where o uses
the top three facets, and 7 uses the bottom three facets. The other B(n,d) are defined
similarly. The first goal of this paper is to write down this description explicitly, and to
show that it is equivalent to the combinatorial definition of [9].

In order to describe the second goal of the paper, we must now turn to the higher
Stasheff-Tamari posets. In fact, there are two different Stasheff-Tamari posets structures
Si(n,d) and S3(n,d) defined on the same set of objects S(n,d). We shall only be
interested in the first of these posets, so we shall suppress the subscript. S(n,d) is
usually viewed as the set of triangulations of the cyclic polytope C(n,d). We will give
an equivalent definition, analogous to the one above for higher Bruhat orders where the
cube has been replaced by a simplex.

In order to define S(n,d), start with an n — 1-simplex, with vertices labelled from 1
to n. S(n,0) is the set of vertices, with the order given by the labelling. The objects
of S(n, 1) are the increasing paths from the bottom vertex to the top vertex. The order
is by reverse refinement: the bottom path is the path that includes every vertex, and
the top path is the one that uses only 1 and n. The objects of S(n,2) are the sets of
2-faces of the simplex which form a non-backtracking homotopy from the bottom path
to the top path. The order on S(n,2) is defined by specifying covering relations: S > T
if S and T coincide except on the boundary of a 3-simplex, where S contains the upper
faces and 7" the lower faces. The higher S(n,d) are defined similarly.

In [6], a map called f from B(n,d) to S([0,n + 1],d + 1) was described as follows.
(We write S([0,n + 1],d + 1) to indicate that the vertices are labelled by the numbers
from 0 to n+1.) There is a poset isomorphism from vertices of the n-cube (i.e. B(n,0))
to elements of S([0, 7 + 1], 1): namely, the coordinates of the vertex which are negative
tell you which vertices belong in the path in addition to 0 and n 4+ 1. Now, an element
of B(n, 1), which is a path through the n-cube, determines a sequence of vertices of the
cube. We apply the map from B(n,0) to S([0,n + 1],1) to each vertex in succession, to
get a sequence of paths through the n + 1-simplex. Two successive paths differ in that
one vertex which is present in the first path is not present in the second. To each pair of
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successive paths, we associate the triangle whose vertices are the removed vertex and its
two neighbours along the path. These triangles form a homotopy from the bottom path
(which contains all the vertices) to the top path (which contains only the end-points),
and hence define an element of S([0,n + 1],2). In the example below, the bold path
through the cube on the left gives rise to the triangulation shown on the right.

—++ +++

-+ +-+

++- 2

- +--

It is claimed in [6] that one can define a similar map f : B(n,d) — S([0,n+1],d+1)
for all d, and further that this map is surjective for all d. Rambau [10] constructed an
explicit map from B(n,d) to S([0,n + 1],d + 1), but he did not show that it coincided
with the map described in [6]. In the second part of the paper, we prove that the map
described in [6] does indeed coincide with that defined in [10], and that it is surjective
for d < 2.

In the second part of the paper, we also give geometric interpretations of two maps
associated to f. For S € S([0,n+1],d+1), lko(S) is the link of S at zero, which can be
viewed in a natural way as lying in S(n + 1,d). We can also take lk;o,11}(S); this lies
in S(n,d — 1). We show that, for 7 € B(n, d), Ik{on4+13(f(7)) coincides with the vertex
figure of 7 at (1,...,1) € [=1,1]". We also give a similar interpretation for lky(f(7)).

The third part of our paper consists of the construction of a map g : S(n,d) —
B(n—1,d). As already explained, S(n,0) is a chain of n elements which we view as the
vertices of an n — 1-simplex. We map vertex a to the corner of [—1,1]""! whose final
a — 1 coordinates are +1, and the others -1. An element of S(n,1) is mapped to an
increasing path through the n — 1-cube which passes through the vertices corresponding
to the vertices on the path through the n — 1-simplex. For S € S(n,2), g(5) is defined
as the unique homotopy from the minimal path through the cube to the maximal path
through the cube, which passes through all the paths corresponding to paths through
the n — 1-simplex along edges in S. An analogous statement holds for d > 2.

We give several equivalent definitions for g, including two which are explicit and non-
inductive. We also show that the map ¢ is a poset embedding, and we give an explicit
criterion to determine if an element of B(n — 1,d) is in the image of g. This amounts
to giving a new equivalent definition of S(n, d) without reference to convex geometry.

2. HIGHER BRUHAT ORDERS

We begin by recalling the definition of the higher Bruhat order B(n,d) for d < n
positive integers, given by Manin and Schechtman [9]. We write ([Z]) for the set of
subsets of [n] of size d. A d-packet consists of the subsets of size d of a set of d+1 integers.
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A total order on ([2]) is admissible if every d-packet occurs in either lexicographic order

or its reverse. The set of admissible orders on ([Z}) is called A(n,d).

Two admissible orders are said to be equivalent if they differ by a sequence of trans-
positions of adjacent elements not both lying simultaneously in any d-packet. If 7 is an
admissible order, we write [r] for its equivalence class.

B(n,d) is a poset whose elements are the equivalence classes of admissible orders
on ([z]). The order is given by specifying covering relations. Let m € A(n,d). Suppose
there is some d-packet which occurs consecutively in 7, and in lexicographic order. Let o
denote the (automatically admissible) order obtained by reversing this d-packet. Then
[7] < [o] in B(n,d). The order on B(n,d) is the transitive closure of these covering
relations.

There are two orders on ([Z]) which are clearly admissible. Let 0,4, 1, denote the class
in B(n,d) of the lexicographic order and its reverse respectively. It is clear that these
elements are minimal and maximal respectively in B(n, d); in fact, they are its minimum
and maximum elements, see [9].

There is a map I : A(n,d) — P((d[i]l)) which associates to any m € A(n,d) the set
of d-packets which occur in reverse order. I(m) is called the inversion set of w. This
generalizes the usual notion of inversion set for a permutation. It is clear that I is
constant on equivalence classes, and so passes to B(n,d). As a map from B(n,d), I is
injective.

A subset of ( d[J”r]l) is said to be consistent if its restriction to any (d+1)-packet consists
of either an initial or a final subset with respect to lex order. Ziegler showed in [17] that
a subset of ( d[z}l) is in the image of I iff it is consistent.

It will be convenient to define B(n,0) to be the set of subsets of [n], ordered by
inclusion. The inversion set of an element of B(n,0) is just the set itself. 1, = [n];
0o = 0.

We now give the convex-geometric definition of the higher Bruhat orders, formalizing
ideas from [6]. [—1,1]" will be our standard n-cube. We shall keep track of its faces
as maps from [n] to the set {—1, %, 1}, where a d-face will have x occurring in d places,
these being the dimensions in which the face extends. We will sometimes refer to a set
of faces of the cube when what we mean is the union of the set of faces.

For G a set, let Zg(z) = 1 if z € G and —1 otherwise. For X = {a;,...,a4}< C [n],
y & X, define:

1 Yy < a
p(y, X) =< (1) ai<y<ap
(_1)d ag <Y

Fix a € B(n,d). For each X € ([Z]), let
{ * 1€ X
p(i, X)Erm(X U{i}) i¢ X
Let K («) consist of the F'§ for all X.
We identify linear maps from R to R¢ with d x n matrices. We say that a map

T : R* — R? is totally positive if the determinants of all its minors are positive.
(Note that there are many totally positive matrices, for example, a Vandermonde matrix

F3 (i) =
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T = cé- with 0 < ¢; < --- < ¢,. The determinant of any minor of this matrix equals a
Vandermonde determinant times a Schur function, both of which are positive.)

We say that a collection of convex sets tiles a region if the region is the union of the
convex sets and the sets overlap only on boundaries.

We have the following proposition:

Proposition 2.1. For any o € B(n,d), the set K(«) of d-faces of the standard n-cube
is homeomorphic to a disk, has boundary K(0q_1) UK (14_1), and the image of the K ()
under any totally positive map T from R™ to RY forms a tiling of the image of the
standard n-cube under T

We divide the facets (maximal proper faces) of a polytope up into upper facets and
lower facets, depending on whether the polytope lies above or below the facet, with
respect to the final coordinate. When we refer to the upper or lower facets of [—1,1]"
or its faces, we mean those facets which are upper or lower in the image under a totally
positive map. Which facets are upper and which are lower does not depend on the
choice of map.

To describe the order relation on B(n,d) in terms of this description, we have the
following theorem:

Theorem 2.1. For 0,7 € B(n,d), o > 7 iff K(0) and K(7) coincide except on the
facets of a d + 1-cube, where K (o) contains the upper facets and K(7) contains the
lower facets.

3. THE HIGHER STASHEFF-TAMARI POSETS

As explained in the introduction, the usual way of thinking of the higher Stasheff-
Tamari posets S(n, d) is as a poset on the set of triangulations of a cyclic polytope. To
motivate the existence of a connection to the higher Bruhat orders, a different definition,
one analogous to the convex-geometric definition of B(n,d) given above, will be more
relevant. To avoid confusion, we shall give the poset we define in this manner a new
name, 7'(n,d), and then prove that 7'(n, d) coincides with S(n,d).

The standard n — 1-simplex, A,,_1, is the convex hull of the basis vectors in R". Its
d-faces are indexed by d + 1-subsets of [n], which designate which vertices lie on the
face.

If W : R* — R% let W be the linear map from R* to R*! defined by setting
W (e;) = (1, W(e;)). In terms of matrices, we can say that the matrix for W is obtained
from that for W by adding a first row of all ones. We say that W is affinely positive
if W is totally positive. When we speak of upper or lower facets of a face of A,,_1, we
mean facets which are upper or lower in the image of the face under an affinely positive
map. Which facets are upper and which are lower does not depend on the choice of
affinely positive map.

Definition of T'(n,d). An element S of T'(n,d) is a set of d-faces of A,_1, with the
property that under some (or equivalently any) affinely positive map W, the images under
W of the faces in S tile W(A,_1). The order on T'(n,d) is defined by giving covering
relations: S > T iff S and T coincide except on the boundary of a d + 1-simplex, where
S contains the upper facets of the simplexr and T contains the lower facets.
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We now define two elements of T'(n, d), 14 and 0y, as follows. Let W be an affinely
positive map from R” to R¢. The boundary facets of the image of A,, under W do not
depend on W, so let 1, consist of the faces of A,_; corresponding to upper boundary
facets of W (An_1), and let 04 consist of its lower boundary facets. We remark that 1,
is clearly a maximal element of T'(n,d), and 0y is clearly a minimal element. They are
in fact maximum and minimum respectively, which we know from [10] (once we know
that T'(n, d) coincides with S(n,d)).

We have the following proposition:

Proposition 3.1. If S € T'(n,d), the faces in S are homeomorphic to a disk, and their
boundary equals 0g_1 U 14 1.

Finally, we show that 7T'(n,d) coincides with the poset S(n,d) as conventionally de-
fined. We begin by reviewing the definition of S(n, d).

Fix d a positive integer. Let M (t) = (t,#%,...,t%). Choose n real numbers #; < --- <
tn- Let P be the convex hull of the M(t;). P is called a cyclic polytope.

Many combinatorial properties of P depend only on d and n, and not on the choice
of t;. Let I be a d-set contained in [n]. Then whether or not the M(t;) for i € I
form a boundary facet of P does not depend on the choice of i. (In fact, the boundary
facets are described by the well-known “Gale’s Evenness Criterion,” see [5].) Further,
let S C ( d[i] ) To each A € S, we can associate a simplex contained in P. And again,
whether or not this collection of simplices forms a triangulation of P does not depend on
the choice of the ¢;. Thus, we shall usually refer to “the” cyclic polytope in dimension d
with n vertices, and denote it C'(n,d). When we wish to emphasize the choice of some
particular ¢;, we speak of a geometric realization of C(n, d).

The partial order on S(n,d) is given by describing its covering relations. If one is
familiar with the language of bistellar flips, one can say that the covering relations
S < T are given by pairs S and 7" which are related by a single bistellar flip, where
bistellar flips are given a certain natural orientation to determine whether S precedes T’
or vice versa. The reader interested in a thorough explanation of this can consult [3].

More explicitly, we can define the covering relations as follows, following [10]. Let
M'(t) = (t,22,...,t%") e R¥*!. Pick ¢ < - -+ < t,,. This yields geometric realizations of
C(n,d+1) and C(n,d), where the map forgetting the last co-ordinate maps C'(n,d+1)
down to C(n,d). A triangulation S € S(n,d) defines a section I's C R over C(n, d)
by lifting its vertices M (t;) to M'(t;) and then extending linearly over the simplices of
S. Now, S < T precisely if I'g and 'z coincide except within the convex hull of d + 2
vertices, where I'g forms the bottom facets and I'y the top facets of a d + 1-dimensional
simplex.

Now we have the following proposition:

Proposition 3.2. The poset T'(n,d) and the poset S(n,d) coincide.
Since T'(n,d) and S(n, d) coincide, we shall use the conventional notation of S(n,d),

but the reader is advised that we will tacitly use the intuition that the elements of
S(n,d) can be considered as sets of d-faces of an n — 1-simplex.
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4. THE MAP FROM B(n,d) To S([0,n + 1],d+ 1)

We will now proceed to elucidate the poset map sketched in [6] from B(n,d) to
S([0,n 4+ 1],d 4+ 1). The definition is by induction.

Definition 1. If o € B(n,0), then fi(«) is the path whose vertices are the elements of
[0,n + 1] not in «, in increasing order.

Ford > 0, let m € A(n,d). Define o; € B(n,d — 1) by I(oy;) = Ins(m). Let S; =
flai) € S([0,n + 1],d). We claim that for all i, either S; and S;y1 coincide, or they
differ precisely in that S; contains the bottom facets of some d + 1-simplex A;y1, while
Siv1 contains its top facets. Then, fi([w]) consists of the collection of the A;1q1 for all i
for which S; and S;y 1 are different.

Because of the reliance on the claim mentioned, this definition doesn’t establish the
existence of f;. We shall now give an explicit definition of f5, essentially the map called
Tair in [10]. An induction argument will then show that f, satisfies Definition 1.

If X =A{ay,...,aq}< € ([Z]). Let x5 be the greatest positive integer less than a; such
that Fg(z%) = —1, and set 2§ = 0 if there is no such integer. Similarly, set z$ to be
the least integer less than or equal to n such that F'g(2%) = —1, and set 2§ =n+ 1 if
there is no such integer.

Definition 2. For d = 0, define fy as in Definition 1.

For d > 0, let « € B(n,d). Let X = {a1,...,a4}< € ([Z]). If, Yy ¢ X such that
a1 <y < aq, F¢(y) = 1, then we associate to X a simplexr {x%, a1, ..., aq,2%}. Define
fo(@) to be the set of simplices associated to some X.

We remark that it is by no means obvious that fs(«) forms a triangulation; this will
follow from the following theorem.

Theorem 4.1. The map fo satisfies Definition 1.

We shall denote by f the map defined by these two equivalent definitions. We now
have the following proposition:

Proposition 4.1. The map f: B(n,d) — S([0,n + 1],d + 1) is order-preserving.
For completeness we give yet another definition of f, also from [10].

Definition 3. Let 3 € B(n,d). Let I(8) = {Xi,..., X, } where the X; are ordered so
that every initial subsequence is also consistent. Set Ty = 04 € S([0,n+1],d). Define T;
by induction: if T; 1 contains the bottom facets of a simplex with vertices {x} U X;U{z}
for some x less than any element of X; and z greater than any element of X;, then
let T; consist of the facets of T;_1 with these bottom facets replaced by the simplex’s
corresponding top facets. Otherwise, let T; = T;_1. Then set f3(3) = T,.

Theorem 4.2 ([10]). The map f3 is well-defined and coincides with the map f.

It is claimed (without proof) in [6] that f : B(n,d) — S([0,n+ 1],d+ 1) is surjective
for all n and d. We cannot prove this in general.

When d = 1, the map f has been studied in other contexts: it is essentially a familiar
map from permutations to planar binary trees (see [13: 1.3.13, 1, 7, 16]). Let Y;, denote
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the planar binary trees with n internal vertices. For (ay,...,a,) a sequence of p distinct
numbers, let std(ay,...,a,), the standardization of (ai,...,a,), denote the sequence of
numbers from 1 to p arranged in the same order. Define ) : B(n,1) — Y,, inductively,
as follows: for n=0, ¢ applied to the empty permutation is an empty tree; and for
n>1, 7€ B(n,1), write m = (a; ... a, n by ... b,), and then let ¢)(7) be the tree
consisting of one parent node with left subtree 1 (std(ai,...,a,)), and right subtree
YP(std(bs,...,b,)). We recover the map f : B(n,1) — S([0,n + 1],2) by composing v
with a standard bijection € between triangulations of an n + 2-gon and planar binary
trees with n internal vertices.
We recall the following facts from the literature (see [7, 8, 1, 2]):

Proposition 4.2. The map f is surjective, and there are maps Min, Max : S([0,n +
1],2) — B(n, 1) such that the fibre of f over S € S([0,n+1],2) is the non-empty closed
interval [Min(S), Max(S)] in B(n,1).

When d = 2, we have the following proposition, which is new:
Proposition 4.3. f: B(n,2) — S([0,n + 1], 3) is surjective.

However, the fibres of f are not as simple in this case: explicit examples show that
the fibre of f over an element of S([0,n + 1],3) need not be a closed interval.
For larger d, no results have been proven.

5. INTERPRETATION OF lkgof AND lk{o 413 0f

Let S € S([0,n+ 1],d+ 1). Then lko(S) = {A\ {0} | 0 € A € S}, the link of S at
0. As was remarked in [3] and proved in [10], thinking of this link as describing faces of
the vertex figure of A, at 0, we see that lko(S) € S(n+1,d). Similarly, we can define
lk,+1(S) € S([0,7n],d). The map lkq is order-preserving; lk, 1 is order-reversing. (One
might wonder about taking links at other vertices. For d even, these other links are not
naturally elements of S(n + 1, d); for d odd one can define a link in a suitably labelled
S(n + 1,d) but this link map does not respect the poset structures.)

In this section, we give geometric interpretations of lkg o f and lkyon41}0f.

Proposition 5.1. Let m € B(n,d). Then a simplex A € kg i1y of iff F} contains
(1,...,1). In other words, ko ,11}(f(7)) is the vertex figure of K() at (1,...,1).

Let us write [—1, 1]% for the weakly increasing n-tuples from [—1,1]. This set forms
a simplex with n + 1 vertices, whose coordinates consisting of a string of —1s followed
by a string of 1s. We identify this simplex with the standard n-simplex by labelling the
vertex whose first a — 1 coefficients are —1 as vertex a.

Let us define a map:

W [-1,1]" = [-1, 1]%
W{(ai,...,a,) = (a1, max(ay, as), ..., max(a,as, ..., a,))

Proposition 5.2. Let 7 € B(n,d). Then a simplex A € lko(f (7)) iff dim(W (F7)) =
dim(F7). Consequently, lko(f(7)) = W(K(n)).
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6. COMBINATORICS OF S(n,d)

For the remainder of the paper, we shall need a combinatorial description of S(n, d)
introduced in [15]. We begin with some preliminary definitions.

For {aj,...,a441}< a subset of [n], let 7(a1,...,aq4+1) denote the subset of ([";1]
which consists of those d-sets consisting of exactly one element from [a;, a;11 — 1] for

1 <4 < d. Subsets of (I",') of this form are called snug rectangles. We say that a set

of snug rectangles forms a snug partition if each d-set in ([”;1]) occurs in exactly one of
the snug rectangles.

To S € S(n,d), we associate the collection of snug rectangles r(S) which consists of
the rectanges 7(a,--.,aqs1) for each simplex {a1,...,aq11}< in S. Then we have the
following theorem:

Theorem 6.1 ([15]). The map r defines a bijection from S(n,d) to snug partitions of
n—1
("2")-

We now describe an important feature of the combinatorics of S(n,d), namely, the
collapse maps, poset maps from S(n,d) to S(p,d) with p < n.

Let I be a subset of [n — 1]. Let my : [n] — I U{n} be the map defined by m;(a) =
min{i € TU{n},i > a}.

Consider the map from R* to R/Y{"} which takes e; to €m;(i)- Lhis defines a map from
Ap_y to Ay C RV} We define a map ¢; on faces of A,_;, which takes a face to its
image in Ay, or to () if its image is lower dimensional. Explicitly, if A = {a1,...,a441}<,
then

cr(4) = {m(a1), ..., m(as1)}
provided the m;(a;) are all distinct, and ¢;(A) = () otherwise.

Now, for S € S(n,d), define ¢;(S) to be the collection of non-empty c¢;(A) for A € S.
Then ¢;(S) € S(I U {n},d).

7. THE MAP g: S(n,d) — B(n —1,d)

In this section we define a map g : S(n,d) — B(n — 1,d), which is analogous to f in
ways which will be made clear later.

Observe that S(d + 2,d) consists of 2 elements, which, as usual, we denote 04 and
14. For S € S(n,d), let I(S) = {X € ([Z;i]) | ex(S) = 1}. We wish to define ¢(S) by
setting I(g(S)) = I(S). In order for this to make sense, we must prove the following
proposition:

Proposition 7.1. For S € S(n,d), I(S) C ([Z;i]) is a consistent set

Proof. The proof consists of a reduction to the case n = d+ 3. S(d + 3, d) is quite easy
to get a handle on. O

We can say more about I(S). Let us say that I C ([Z;}) is superconsistent if its

intersection with any d + 1-packet is either an initial segment of odd length or a final
segment of the same parity as d (or empty or full). Then for S € S(n,d), I(S) is
superconsistent. And more is true:
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Theorem 7.1. I C ([Zﬁ]) 1s superconsistent iff it is the inversion set of some S €
S(n,d). Equivalently, the image of g : S(n,d) — B(n — 1,d) consists of those elements

with superconsistent inversion sets.

Proof. The proof is an explicit construction of a triangulation corresponding to the
superconsistent set I. O

Next, we check certain properties of g. First, we have the following theorem:
Theorem 7.2. The map g : S(n,d) — B(n — 1,d) is order-preserving.

We now recall Rambau’s definition in [10] of the eztension map from S(n,d) to
S([0,n],d + 1) (with a trivial modification to suit our conventions). Let S € S(n,d).
Then by definition S, the extension of S, is

S={Au{0}|AecS}
U{($,$+1,a2,...,ad+1) | {ala"'aad+1}< EAaal sta2_2}

It is a nice application of the theory of snug partitions to check that S € S([0,n], d+1).
There is a simple geometrical idea motivating this definition. Let S € S(n, d), thought
of as triangulations of C(n,d). S defines a hypersurface I's in C(n,d + 1). Add a new
point on the moment curve which precedes all the vertices of C(n,d), and label it 0. All

the faces of ['g are visible from 0. S consists of all the simplices formed by joining 0 to
simplics of S, together with a canonical way to fill in the remainder of C([0,n],d + 1).
It is clear either from this description, or directly from the definition, that, as is shown

A

in [10], Iko(S) = S.
Proposition 7.2. For S € S(n,d), f(g(S)) = S.

Proof. One checks, using Definition 2 of f, that each of the simplices of S appears in
f(g(5)). O

Since both f and g are order-preserving, we recover the result from [10] that the map
S — §' is order-preserving.

Theorem 7.3. The map g : S(n,d) — B(n —1,d) is a poset embedding

Proof. Suppose that S,T € S(n,d), and g(S) > ¢(T') in B(n — 1,d). Then, since f is
order preserving, f(g(S)) > f(¢9(T))- So S >T,s0S =1kyS >1koT =T. Thus g is a
poset embedding. g

8. ALTERNATIVE DEFINITIONS OF ¢

In this section we show that g satisfies three alterative definitions, including analogues
of Definitions 1 and 3 of f.
We will have occasion to consider a special type of linear order on the elements of a

snug rectangle in ([";1]). We say that such an order is rectangular if

(.731,...,331',...,.7),1)>(l‘l,...,xi-i-]_,...,xd) if d — 1 is even
(xl,...,lii,...,l'd)<(wl,...,$i+1,...,1§d) if d — 7 is odd
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For S € S(n,d), a linear order on its simplices is said to be ascending if for any pair
of simplices sharing a facet, the simplex lying above the intersection facet follows the
simplex below the intersection. It is shown in [10] that there exist ascending orders on
the simplices of any triangulation of a cyclic polytope of arbitrary dimension.

The following proposition gives us an alternative definition of g:

Proposition 8.1. Let S € S(n,d). Fiz an ascending order on the simplices of S,
say, Ai,..., A.. Consider the order on ([”;”) which consists of the element of r(A;)
followed by the elements of r(As), etc., where the elements within any r(A;) are written

in a rectangular order. This order is admissible, and the element of B(n,d) which it

defines is g(95).
We now prove the equivalence of a definition of g analogous to the Definition 1 of f.

Proposition 8.2. Let d > 2, and S € S(n,d). Fizx an ascending order on the simplices
of S. Let 0 =Ty < Ty < --- < T, =1 be the corresponding chain in S(n,d —1). Refine
the chain ¢(0) < g(T1) < --- < g(1) to a mazimal chain in B(n —1,d —1). Then g(S)
is the element of B(n — 1,d) corresponding to that chain.

Interestingly, this definition fails for d = 0,1. Here, different refinements of the chain
of ¢(T;) yield different elements of B(n — 1,d) (though it is of course easy to specify
which refinement to use).

We now give a definition of g analogous to Definition 3 of f, in that it relies on the
choice of an unrefinable chain from 0 to S in order to define g(S).

Proposition 8.3. Let S € S(n,d). Choose an unrefinable chain 0y = Ty<T,<---<T, =

S. Let R; be the snug rectangle in ([’;j]) corresponding to the simplex where T;_1 and
T; differ. Then

I(S) = ORi.

9. FURTHER DIRECTIONS

We would like to understand the fibres of f better. Perhaps, as a first step, one might
study the fibres of lkyof, since the fibre of lkyof over S has a distinguished element,
namely ¢(S). (Contrary to what one might hope, ¢g(S) is neither always minimal nor
always maximal in the fibre.)

We would also like to see the question of the surjectivity of f settled.

The motivation for [6] was from the still-developing theory of n-categories. We hope
that our results may have some application in this area. In particular, according to
some definitions (see [6], [14]), there is an n-category A, associated to the n-simplex,
and an n-category I, associated to the n-cube. It appears that the map g defines a map
of n-categories from A,, to I,, (as the map f was shown in [6] to define a map from I,
to An—l—l)-

The order complex of B(n, d) is homotopic to a sphere of dimension n—d—2 [11]. The
order complex of S(n,d) is homotopic to a sphere of dimension n —d — 3 [4]. Thus, the
maps g and f o g induce maps between order complexes which are homotopy equivalent.
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It seems likely that these maps are homotopy equivalences. (The map f does not induce
a map on order complexes because it takes non-minimal elements to f))

We would also like to understand the homotopy type of intervals in these posets,
or, more restrictedly, the Mdbius functions of these posets. There is an interesting
conjectural description for both, see [12]. Perhaps the existence of the new map g will
help, at the very least, to connect the questions for the higher Stasheff-Tamari posets
and the higher Bruhat orders more closely together.
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