LATTICE STRUCTURES FROM PLANAR GRAPH
STEFAN FELSNER

ABSTRACT. The set of all orientations of a planar graph with prescribed out-
degrees carries the structure of a distributive lattice. This general theorem is
proven in the first part of the paper. In the second part the theorem is applied
to show that interesting combinatorial sets related to a planar graph have lat-
tice structure: Eulerian orientations, spanning trees and Schnyder woods. For
the Schnyder wood application some additional theory has to be developed.
In particular it is shown that a Schnyder wood for a planar graph induces a
Schnyder wood for the dual.

RESUME. L’ensemble de tous les orientations d’un graphe planaire sur lesquelles
on a fixé le dégrée sortant des sommets porte une structure de treillis distribué.
Ce théoreme général est démontré dans la premiere partie de ce papier. Dans
la seconde partie le théoréme est appliqué pour démontrer que des ensembles
combinatoires intéressantes qui sont liés a un graphe planaire ont une structure
de treillis : orientations Eulériennes, arbres couvrantes et foréts de Schnyder.
Pour application au foréts de Schnyder une théorie supplémentaire doit étre
développée. En particulier on montre qu’une forét de Schnyder d’un graphe
planaire induit une forét de Schnyder pour le graphe dual.
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1. INTRODUCTION

This work originated in the study of rigid embeddings of planar graphs and
the connections with Schnyder woods. These connections were discovered by
Miller [8] and further investigated in [3]. The set of Schnyder woods of a planar
triangulation has the structure of a distributive lattice. This was independently
shown by Brehm [1] and Mendez [9]. My original objective was to generalize this
and prove that the set of Schnyder woods of a 3-connected planar graph also has
a distributive lattice structure. The theory developed to this aim turned out to
work in a more general situation. In the first half of this paper we present a
theory of a-orientations of a planar graph and show that they form a distributive
lattice. As noted in [4] this result was already obtained in the thesis of Mendez [9].
Another source for related results is a paper of Propp [12] where he describes
lattice structures in the dual setting. The cover relations in Propp’s lattices are
certain pushing-down operations. These operations were introduced by Mosesian
and further studied by Pretzel [10] as reorientations of diagrams of ordered sets.

This is an extended abstract. The full paper (26 pages) is electronically available as:
http://page.inf.fu-berlin.de/ felsner/Paper/alpha-or.ps.gz
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The second part of the paper deals with special instances of the general result.
In particular we find lattice structures on the following combinatorial sets related
to a planar graph: Eulerian orientations, spanning trees and Schnyder woods.
While the application to Eulerian orientations is rather obvious already the ap-
plication of spanning trees requires some ideas. To connect spanning trees to
orientations we introduce the completion of a plane graph which can be thought
of as superposition of the primal and the dual which is planarized by introducing
a new edge-vertex at every crossing pair of a primal edge with its dual edge. The
lattice structure on spanning trees of a planar graph has been discovered in the
context of knot theory by Gilmer and Litherland [5] and by Propp [12] as an
example of his lattice structures. A closely related family of examples concerns
lattices on matchings and more generally f-factors of plane bipartite graphs. This
is related to a combinatorial correspondence between trees and matchings which
is used in [6].

To show that the Schnyder woods of a 3-connected plane graph have a dis-
tributive lattice structure some additional theory has to be developed. We prove
that a Schnyder wood for a planar graph induces a Schnyder wood for the dual.
A primal dual pair of Schnyder woods can be embedded on a completion of the
plane graph, i.e., on a superposition of the primal and the dual as described
above. In the next step it is shown that the orientation of the completion alone
allows to recover the Schnyder wood. As in the case of spanning trees the lattice
structure comes from orientations of the completion.

2. LATTICES OF FIXED DEGREE ORIENTATIONS

A plane graph is a planar graph G = (V, E) together with a fixed planar
embedding. In particular there is a designated outer (unbounded) face F* of G.
Given a mapping « : V — IN an orientation X of the edges of GG is called an
a-orientation if o records the out-degrees of all vertices, i.e., outdeg (v) = a(v)
for all v € V. We call « feasible if a-orientation of G exists. The main result of
this section is the following theorem.

Theorem 1. Let G be a plane graph and o : V. — IN be feasible. The set of
a-orientations of G carries an order-relation which is a distributive lattice.

2.1. Reorientations and essential cycles. Let X be an a-orientation of G.
Given a directed cycle C in X we let X¢ be the orientation obtained from X
by reversing all edges of C'. Since the out-degree of a vertex is unaffected by
the reversal of C' the orientation X¢ is another a-orientation of G. The plane
embedding of G allows us to classify a directed simple cycle as clockwise (cw-
cycle) if the interior, Int(C), is to the right of C or as counterclockwise (ccw-cycle)
if Int(C) is to the left of C. If C is a ccw-cycle of X then we say that X¢ is left
of X and X is right of X¢. It will turn out that the transitive closure of this
‘left of’ relation is the order relation which makes the set of a-orientations of GG
a distributive lattice.
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Let X and Y be a-orientations of G and let D be the set of edges with oppo-
sitional orientations in X and Y. Every vertex is incident to an even number of
edges in D, hence, the subgraph with edge set D is FEulerian. If we impose the
orientation of X on the edges of D the subgraph is a directed Eulerian graph.
Consequently, the edge set D can be decomposed into simple cycles C1, .., Ck
which are directed cycles of X. We restate a consequence of this observation as
a lemma.

Lemma 1. If X # Y are a-orientations of G then for every edge e which is
oppositionally directed in X and Y there is a simple cycle C with e € C and C
15 oppositionally directed in X and Y .

An edge of G is a-rigid if it has the same direction in every a-orientation. Let
R C E be the set of a-rigid edges. Since directed cycles in X can be reversed,
rigid edges never belong to directed cycles.

With A C V we consider two sets of edges, the set E[A] of edges with two ends
in A, i.e., edges induced by A, and the set Ec,[A] of edges in the cut (A, A),
i.e., the set of edges connecting a vertex on A to a vertex in the complement
A-V\A

Given A and a a-orientation X, then exactly ) ., a(v) edges have their tail
in A. The number of edges incident to vertices in A is |E[A]| + |Ecu[A]|. The
demand of A in X is the number of edges pointing from A into A.

Lemma 2. The demand of A is demy(A) = |E[A]|+ |Ecw|A]| =D ,ea (v), thus
dem,(A) only depends on « and not on X.

By looking at demands we can identify certain sets of rigid edges. If for example
dem,(A) = 0, then all the edges in Ecy[A] point away from A in every a-
orientation and, hence, Ecy,[A] C R in this case. Symmetrically, if dem,(A) =
|Ecut[4]|, then all the edges in Ec[A] point towards A and again Ec,.[A] C R.

The set of vertices in the interior of a simple cycle C' in G is denoted I¢.
Of special interest to us will be cycles C' with the property that Ecy[lc] C R.
In that case we say that the interior cut of C' 1is rigid. This means that the
orientation of all the edges connecting C' to an interior vertex is fixed throughout
all c-orientations. Note that the interior cut of a face cycle of G is always rigid
because Ecy[lc] = () in this case.

Definition 1. A cycle C' of G is an essential cycle if
e (' is simple and induced,
e the interior cut of C is rigid, i.e., Fcullc] C R,
e there exists an a-orientation X such that C is a directed cycle in X.

With lemmas 3-6 we show that with reorientations of essential cycles we can
commute between any two a-orientations. In fact reorientations of essential cycles
represent the cover relations in the ‘left of’ order on a-orientations.
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A cycle C' has a chordal path in X if there is a directed path consisting of edges
interior to C' whose first and last vertex are vertices of C'. We allow that the two
end vertices of a chordal path coincide.

Lemma 3. If C has a chordal path in an a-orientation X, then C' has a chordal
path in every a-orientation.

Lemma 4. A cycle C has no chordal path iff the interior cut of C is rigid.

Lemma 5. If C and C' are essential cycles then either the interior regions of
the cycles are disjoint or one of the interior regions is contained in the other and
the two cycles are verter disjoint.

Lemma 6. If C is a directed cycle in X, then X¢ can be obtained by a sequence
of reversals of essential cycles.

Lemma 7. If C is a simple directed ccw-cycle in X, then X¢ can be obtained by
a sequence of reversals of essential cycles from ccw to cw. Moreover, the set of
essential cycles of such a sequence is the unique minimal set such that the interior
regions of the essential cycles cover the interior region of C.

2.2. Interlaced flips in sequences of flips. A flip is the reorientation of an es-
sential cycle from ccw to cw. A flop is the converse of a flip, i.e., the reorientation
of an essential cycle from cw to ccw.

A flip sequence on X is a sequence (C1, .., Cy) of essential cycles such that C
is flipable in X, i.e., C; is a ccw-cycle of X, and C; is flipable in X¢1+Ci-1 for
1=2,.., k.

Recall that an edge e is contained in at most two essential cycles. If we think
of e as directed, then there can be an essential cycle CH® left of e and another
essential cycle C7(€) right of e.

Lemma 8. If (C, .., Cy) is a flip sequence on X then for every edge e the essential
cycles C"®) and C™®) alternate in the sequence, i.e., if iy < iy with C;, = C;, =
CH®) then there is a j with i1 < j < iy and C; = C™©) . The same holds with left
and right exchanged.

Lemma 9. For every edge e there is a te € IN such that for all a-orientations X
a flip sequence on X implies at most t, reorientations of e.

Lemma 10. The length of any flip sequence is bounded by some t € IN and
there is a unique a-orientation Xmin with the property that all cycles in Xmin are
cw-cycles.

From this lemma it follows that the ‘left of’ relation is acyclic. We now adopt a
more order theoretic notation and write Y < X if Y can be obtained by a sequence
of flips starting at X. We summarize our knowledge about this relation.

Corollary 1. The relation < is an order relation with a unique minimal element
Xmin-
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2.3. Flip-sequences and potentials. With the next series of lemmas we inves-
tigate properties of sequences of flips that lead from X to Xp;,. It will be shown
that any two such sequences contain the same essential cycles.

Lemma 11. Suppose Y < X and let C be an essential cycle. Every sequence
S = (Cy,...,Ck) of flips that transforms X into Y contains the same number of
flips at C.

For a given o let £ = £, be the set of all essential cycles. Given an c-orientation
X there is a flip sequence S from X to Xy, For C € € let zx(C) be the number
of times C' is flipped in a flip sequence S. The previous lemma shows that this
independent of S and hence a well defined mapping zx : £ — IN. Moreover, if
X #Y then zx # zy.

Definition 2. An a-potential for G is a mapping o : E, — IN such that
e |p(C)—p(C")| <1, if C and C" share an edge e.

e o(C) <1, if there is an edge e € C such that C is the only essential cycle to
which e belongs.

e If CY9 and C™® are the essential cycles left and right of e in Xmin then
p(C1)) < p(C).

Lemma 12. The mapping zx : £, — IN associated to an a-orientation X is an
a-potential.

Lemma 13. For every a-potential o : E, — IN there is an a-orientation X with
ZxX = -

Lemma 12 and Lemma 13 establish a bijection between «-orientations and -
potentials. With the following lemma we thus complete the proof of Theorem 1.

Lemma 14. The set of all a-potentials p : € — IN with the dominance order p <
o if p(C) < ¢'(C) for all C € € is a distributive lattice. Join o1V o and meet

©1/A\p2 of two potentials 1 and py are given by (p1Vp2)(C) = max{p:(C), p2(C)}
and (p1 A 2)(C) = min{p;(C), p2(C)} for all C € £.

Corollary 2. Let G be a plane graph and o : V — IN be feasible. The following
sets carry isomorphic distributive lattices

e The set of a-orientations of G.
e The set of a-potentials p : £, — IN.
o The set of Eulerian subdigraphs of a fized a-orientation X.
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3. APPLICATIONS

Distributive lattices are beautiful and well understood structures and it is
always nice to identify a distributive lattice on a finite set C of combinatorial
objects. Such a lattice structure may then be exploited in theoretical and com-
putational problems concerning C.

Usually the cover relation in the lattice Lo corresponds to some minor mod-
ification (move) in the combinatorial object. In our example the moves are re-
orientations of essential cycles (flips and flops). In most cases it is easy to find
all legal moves that can be applied to a given object from C. In our example
finding the applicable moves corresponds to finding the directed essential cycles
of an a-orientation. This task is easy in the sense that it can be accomplished in
time polynomial in the size of the plane graph G. By the fundamental theorem of
finite distributive lattices: there is a finite partially ordered set P such that the
elements of L¢, i.e., the objects in C, correspond to the order ideals (down-sets)
of Pr. The moves operating on the objects in C can be viewed as elements of Fp.
If C is the set of a-orientations the elements of Pr thus correspond to essential
cycles, however, a single essential cycle may correspond to several elements of Fp,
Figure 1 illustrates this effect. The elements of - can be shown to be in bijection
to the flips on a maximal chain from X, to X, in Lo. Consequently, in the
case of a-orientations of G' the order P, has size polynomial in the size of G and
can be computed in time polynomial in the size of G.

We explicitly mention three applications of a distributive lattice structure on
a combinatorial set C before looking at some specific instances of Theorem 1.

e Any two objects in C can be transformed into each other by a sequence of
moves. Proof: Every element of Lo can be transformed into the unique
minimum of L¢ by a sequence (chain) of moves. Reverting the moves in one
of the two chains gives a transformation sequence for a pair of objects.

e All elements of C can be generated /enumerated with polynomial time com-
plexity per object. The idea is as follows: Assign different priorities to the
elements of P. Use these priorities in a tree search (e.g., depth-first-search)
on L¢ starting in the minimal element. An object is output/count only
when visited for the first time, i.e., with the lexicographic minimal sequence
of moves that generate it.

e To generate an element of C from the uniform distribution a Markov chain
combined with the coupling from the past method can be used. This very
elegant approach gives a process that stops itself in the perfect uniform dis-
tribution. Although this stop can be observed to happen quite fast in many
processes of the described kind, only few of these processes have been an-
alyzed satisfactorily. For more on this subject we recommend the work of
Propp and Wilson [11] and [13].
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3.1. Eulerian orientations. Let G be a plane graph, such that every vertex
v has even degree d(v). An Eulerian orientation of G is an orientation with
indeg(v) = outdeg(v) for every vertex v. Hence, Eulerian orientations are just
the a-orientations with a(v) = @ for all v € V. By Theorem 1 the Eulerian
orientations of a planar graph form a distributive lattice.

Ficure 1. Left: A graph G with its minimal Eulerian orientation
and a labeling of the faces. Right: The ordered set P such that the
set of ideals of P is the lattice of Eulerian orientations of G.

3.2. The primal dual completion of a plane graph. For later applications
we need the primal dual completion of a plane graph G. With G there is the
dual graph G*, the primal dual completion G' of G is constructed as follows:
Superimpose plane drawings of G and G* such that only the corresponding primal
dual pairs of edges cross. The completion G is obtained by adding a new vertex
at each of these crossings. The construction is illustrated in Figure 2. If G has

G G* G

FIGURE 2. A plane graph G with its dual G* and completion G.

n vertices, m edges and f faces, then the corresponding numbers n, m and ffor
G can be expressed as follows:

e 7=n+m+ f. We denote the vertices of G originating in vertices of G, G*
and crossings of edges as primal-vertices, dual-vertices and edge-vertices.
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e m=4m.
° f: 2m: This follows since every face of Gisa quadrangle with a primal- and
a dual-vertex at opposite corners and edge-vertices at the remaining corners.

Thus, there is a bijection between angles of G and faces of G. The number
of angles of G is ), d(v) = 2m.

There is a subtlety with the notion of the dual and, hence, of the completion
when the connectedness of G is too small. If G has a bridge then G' has multiple
edges. In general, however, the completion is at least as well behaved as G. The
following implications hold:

e If G is connected and bridgeless —> G is 2-connected.
e If G is 2-connected => G is 3-connected.

Completions of planar graphs have a nice characterization.

Proposition 1. Let H be 2-connected, H 1is the completion of plane graph G iff
the following three conditions hold:

1. H 1s planar.
2. All the faces of H are quadrangles, in particular H is bipartite.

3. In one of the two color classes of H all vertices have degree four.

3.3. Spanning trees. We show that there is a bijection between the spanning
trees of a planar graph G = (V, E) and the a-orientations of the completion G of
G for a certain «. Together with Theorem 1 this implies:

Theorem 2. There is a distributive lattice of orientations of G which induces a
distributive lattice on the spanning trees of a planar graph G.

After having obtained this result we found that it was already known. Gilmer
and Litherland [5] arrive at such a lattice on spanning trees in the context of
knot theory. They also point out the equivalence to Kaufmann’s Clock Theorem.
Propp [12] describes a large class of distributive lattices related to orientations
of graphs. If GG is planar then the lattice of a-orientations of GG is isomorphic to
a Propp lattice of the dual G*. Propp discovered lattices on spanning trees as a
special case of his theory.

Let T' C E be the set of edges of a spanning tree of G. If T* is the set of dual
edges of non-tree edges (edges in E'\T), then T* is the set of edges of a spanning
tree of the dual graph G*. This is the natural bijection between the spanning
trees of G and G*. B

With a spanning tree T’ of G we associate an orientation of G. First we select
two special root vertices for G, a primal-vertex v, and a dual-vertex v;. Now
T and the corresponding dual tree 7™ are thought of as directed trees in which
every edge points towards the primal- respectively dual-root. The direction of
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edge e = (u,w) € TUT"* is passed on to the edges (u,v.) and (v, w) in G, where
v, is the edge-vertex of G corresponding to edge e. All the remaining edges of G
are oriented so that they point away from their incident edge-vertex. Figure 3
illustrates the construction. The orientation thus obtained is an «ap-orientation

U

FIGURE 3. A pair of spanning trees for G and G* and the corre-
sponding orientation of the completion G with roots v, and v}.

for the following ar:
e ar(v,) =0 and ar(vi) =0, i.e., the roots have outdegree zero.
e ar(v.) = 3 for all edge-vertices .

e ar(v) =1 for all primal- and dual- non-root vertices v.
A pair of root vertices v, and v} is legal if both are incident to some face of G.

Proposition 2. The spanning trees of a planar graph G are in bijection to the
ar-orientations of G with a legal pair of root-vertices.

Figure 4 shows the distributive lattice of the spanning trees of a graph with
two different choices of the primal-root. The dual-root for both examples is the
dual-vertex corresponding to the outer face.

It seems worthwile to understand the cover relation 7" < 7" between trees: The
two trees only differ in one edge 7" = T — e + €' and there is a vertex v # v,
such that e is the first edge of the v — v, path in 7" and €’ is the first edge of the
v — v, path in 7’. Moreover, in the clockwise ordering of edges around v edge
e’ is the immediate successor of e and the angle between e and €' at v belongs
to the interior of the unique cycle of T + €’ (this last condition is based on the
choice of v} as the dual-vertex corresponding to the unbounded face of G). The
characterization is illustrated in Figure 5.

3.4. Schnyder woods. Let G be a plane graph and let aq,as, as be three dif-
ferent vertices in clockwise order from the outer face of G. The suspension G°
of GG is obtained by adding a half-edge that reaches into the outer face to each
of the three special vertices a;. The closure G7, of a suspension G’ is obtained



10 STEFAN FELSNER

T ov

FIGURE 5. A typical flop between spanning trees 7' < 7" and their duals.

by adding a new vertex v, this vertex is used as second endpoint for the three
half-edges of G°.

Schnyder [14], [15] introduced edge orientations and equivalent angle labelings
for planar triangulations. He used this structures for a remarkable characteriza-
tion of planar graphs in terms of order dimension. The incidence order Pg of a
graph G = (V, E) is the order on V U E with relations v < e iff v € V, e € E and
v € e. Schnyder proved: A graph G is planar <= the dimension of its incidence
order is at most 3. Another important application of Schnyder’s labelings is a
proof that every planar n vertex graph admits a straight line drawing on the
(n—1) x (n—1) grid.

De Fraysseix and de Mendez [4] prove a bijection between Schnyder labelings
of a planar triangulation G’ and 3-orientations of G, i.e., a-orientations with
a(v) = 3 for every regular vertex and a(vy) = 0. Based on the bijection with
3-orientations de Mendez [9] and Brehm [1] have shown that the set of Schnyder
labelings of a planar triangulation G' has the structure of a distributive lattice.

In [2] the concept of Schnyder labelings was generalized to 3-connected planar
graphs. It was also shown that like the original concept the generalization yields
strong applications in the areas of dimension theory and graph drawing. The
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following definition of Schnyder woods is taken from [3] where it is also shown
that Schnyder woods and Schnyder labelings are in bijection.

Let G? be the suspension of a 3-connected plane graph. A Schnyder wood
rooted at a;,as, a3 is an orientation and labeling of the edges of G with the
labels 1,2, 3 (alternatively: red, green, blue) satisfying four rules. On the labels
we assume a cyclic structure so that 7 + 1 and 7 — 1 is defined for all 4.

(W1) Every edge e is oriented by one or two opposing directions. The directions
of edges are labeled such that if e is bioriented the two directions have distinct
labels.

(W2) The half-edge at a; is directed outwards and labeled i.

(W3) Every vertex v has one outgoing edge in each label. The edges ej, e, €3
leaving v in labels 1,2,3 occur in clockwise order. Each edge entering v in
label ¢ enters v in the clockwise sector from e; 1 to e;—;. (See Figure 6).

(W4) There is no interior face whose boundary is a directed cycle in one label.

FI1GURE 6. Edge orientations and labels at a vertex.

Unlike in the case of planar triangulations, the labeling of edges of a Schnyder
wood can not be recovered from the underlying orientation. However, orientations
of an appropriate primal dual completion of a suspended plane graph are in
bijection to Schnyder woods (Proposition 3).

The first step of the proof consists of showing that Schnyder woods of a sus-
pended plane graph are in bijection with Schyder woods of the (properly defined)
dual. Figure 7 exemplifies the duality. Actually, the figure illustrates much more:
With the primal and dual graphs and Schnyder woods it also shows a corre-
sponding orthogonal surface. We include this figure for two reasons. The duality
between primal and dual Schnyder woods becomes nicely visible on the surface.
Moreover, it was in this context of geodesic embeddings of planar graphs on or-
thogonal surfaces that the duality was first observed by Miller [8]. For details
on geodesic embeddings and the connections with Schnyder woods we refer to [8]
and [3].

The completion G of a plane suspension G’ and its dual G is obtained by
superimposing G° and G so that exactly the primal dual pairs of edges cross
(the half edge at a; has a crossing with the dual edge {b;,b;}, for {i,j,k} =
{1,2,3}). In the completion each crossing is represented by a new edge-vertex.
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%EZ/
Y

FIGURE 7. A suspended graph G? with a Schnyder wood, a cor-
responding embedding and the dual Schnyder wood.

The completion G is planar and has six half-edges reaching into the unbounded
face. Similar to the closure of a suspension we define the closure 57{.; of G by
adding a new vertex v, which is the second endpoint of the six half-edges.

A pair of corresponding Schnyder woods on G and G¢ induces an orientation
of 5‘5;; which is an a-orientation for the following ag:

e ag(v) = 3 for all primal- and dual-vertices v.
e ag(ve) = 1 for all edge-vertices v,.

e a5(vs) = 0 for the special closure vertex vy..

Proposition 3. The Schnyder woods of a planar suspension G are in bijection
with ag-orientations of G.

Combining Proposition 3 and Theorem 1 we obtain the main result of this
section.

Theorem 3. The set of Schnyder woods of a planar suspension G° form a dis-
tributive lattice.

In the case of Schnyder woods a full characterization of all possible essential
cycles seems to be a complex task. Unlike in the case of spanning trees or Eulerian

orientations it is not enough to consider faces of G7, as candidates for essential
cycles. The next lemma shows that still in some sense the essential cycles cannot
be too complicated.

Lemma 15. Let G be suspended plane graph. The possible length of essential
cycles for ag-orientations of G9, are 4, 6, 8, 10 and 12.
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e By

Ficure 8. Bold edges show non-trivial essential cycles for ag-orientations.
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