

Exceptions

Exception

Exceptions in Java are usually
misunderstood by developers (at least
beginners)

Probably because exception mechanism is
used for several distinct objectives

Why exceptions ?

Mechanism invented to represent an abnormal
mode of operation

Some programming languages have no
exceptions
– In C, we frequently use the return value to signal an

error… but what if all return values are correct? =>
modification of argument, passed by address :-(

C++, Java, Python, Ruby, etc. do have
exceptions

There are different kinds of exceptions

Exceptions hold for 3 different things
– Signal programming errors

Developer did not read the doc

Developer has trouble with null, bounds of array...

– Signal fatal errors
StackOverflowError, OutOfMemoryError, InternalError

– Signal errors that depend on external conditions
Typically Input/Output errors

Error handling is different

– programming errors
● Should only happen in dev phase, but not in production
● You should not try to pick up on the error, but rather fix the

bug that causes the exception to be launched.

– fatal errors
● Should happen because of a error of the dev or of the ops
● You should not try to pick up on the error

– external errors
● Independent of the state of the program
● You could pick up on the error, if a treatment allows the

program to continue normally, or at least to display a nice
error message for the user, stopping the application

In Java
These 3 types of errors have distinct types

● All sub-types of the general Throwable type

RuntimeException (you don't have to treat them)
● Programming errors

Error (you don't have to treat them)
● Fatal errors

Exception (you have to treat them)
● External error

There is two main problems
● Exception does not hold for all exceptions
● RuntimeException extends Exception

RuntimeException

Exception

Throwable

Error

IOException

Raise/throw an exception

JVM can raise exceptions by itself:
NPE, AIOOBE, CCE, OutOfMemoryError, etc.

Syntax throw allows us to raise an exception
throw new IllegalArgumentException("invalid value");

Exception go back in the execution stack until
been « catch » by a method, or by the JVM if
exception reach method main().

StackTrace

When created an exception (when its
constructor is called), JVM saves the stack of
method calls until the call to “new” ot this
exception

Exception creation has a cost in execution
time in order to create this « stack trace »

But throwing or catching an exception is cheap

a small cost enterring a “try” and one “instanceof”
for each “catch”

Checked Exception

Compiler requires to deal with all sub-types of
Exception that are not of type
RuntimeException
– These exceptions are called checked exceptions

There is two way do deal with a checked
exception
– Either declare that the method can raise such

exception with the key-word throws
– Or handling the exception with try-catch syntax

Key-word throws
Signal that the method can raise a checked-
exception

public static void sayHello(Writer writer)
 throws IOException {
 writer.write("hello");
}

public static void main(String[] args)
 throws IOException {
 sayHello(System.console().writer());
}

Compiler ignores throws on unchecked-
exceptions

try/catch syntax

Allow to specify a code to pick up on the error
public static void sayHello() throws IOException {
 writer.write("hello");
}

public static void main(String[] args) {
 try {
 sayHello(System.console().writer());
 } catch(IOException e) {
 System.err.println("can't write on console\n" +
 e.getMessage());
 System.exit(1);
 }
}

Multiple catch

You could write several catch blocks
try {
 writeOnHDOrNetwork();
} catch(IOException e) {
 // ...
} catch(NetworkException e) {
 // ...
}

If the same code fits both catch, both
exceptions can be gathered (with a '|')

try {
 writeOnHDOrNetwork();
} catch(IOException | NetworkException e) {
 // A single common code
}

Finally

A optional “finally” clause is possible
try {
 foo();
} catch(IOException e) {
 // executed if IOException is raised in try
} finally {
 // finally executed
}

Useful to perform some mandatory treatments, like
freeing resources

Throws or try/catch ?

When should we use throws and when should
we use try/catch ?
– If you can write something in the catch clause to

be able to pick up on the error, you could use
try/catch to apply corrective treatment
=> the program will continue as if no problem
happened

– If not, use throws, to signal the problem

statistically there is much more throws than
try/catch !

and only for checked-exceptions !

try/catch of the death

In Javan exceptions type hierarchy sucks
– RuntimeException extends Exception :-(
– Then, writing a catch(Exception) is not a good idea

=> it will not be easy to write a code that picks up
on error, because you don’t know if the error is a
programming one, or an external one...

● You will just pretend that everything is fine:-/

– Same problem with catch(Throwable)

Checked-exception and overriding

Compiler checks that an overriding method
cannot raise some checked-exception that are
not expected in the overridden method

public interface Runnable {
 public void run();
}

public class HelloRunnable implements Runnable {
 public void run() throws IOException {
 // does not compile !
 }
}

Exception tunneling
Sometimes, you can « wrap » a checked exception in an unchecked
exception, and then get it out with getCause()

public class HelloRunnable implements Runnable {
 public void run() {
 try {
 foo() ; // can raise IOException
 } catch(IOException e) {
 throw new UncheckedIOException(e); // wrap
 }
 }
}

● public static void main(String[] args) throws IOException {
 Runnable runnable = new HelloRunnable();
 try {
 runnable.run();
 } catch(UncheckedIOException e) { // get it out
 throw e.getCause(); // and raise it!
 }
}

Defensive Programming &
Contract programming

(design-by-contract programming)

Bug fixing

The latter a bug is discovered in the softwre
life cycle, the more expensive it is to fix.

=> defensive programming

All argument received by a public method
must be verified before to be used

=> contract programming

The job of constructor

Don’t trust argument values
– A field of an object is more often read than wrote
– OOP: the state of an object should always be valid

The, a constructor has to verify its arguments
before assigning their values into fields

Example
Awful code :(

public class Author {
 private final /*maybe null*/ String firstName;
 private final /*maybe null*/ String lastName;

 public Author(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public boolean equals(Object o) {
 if (!(o instanceof Author)) {
 return false;
 }
 Author author = (Author)o;
 return ((author.firstName == null && firstName == null) ||
 author.firstName.equals(firstName)) &&
 (author.lastName == null && lastName == null) ||
 author.lastName.equals(lastName)));
 }
}

Must check if null
at each read :((

Example

Better version of same code

public class Author {
 private final String firstName;
 private final String lastName;

 public Author(String firstName, String lastName) {
 this.firstName = Objects.requireNonNull(firstName);
 this.lastName = Objects.requireNonNull(lastName);
 }

 public boolean equals(Object o) {
 if (!(o instanceof Author)) {
 return false;
 }
 Author author = (Author)o;
 return author.firstName.equals(firstName) &&
 author.lastName.equals(lastName);
 }
}

Single check if null
at assignment write

Contract programming
All public method must document their contract
– What it does
– What are expected arguments
– What are possible return values
– What exceptions are raised and why ?

● Normally, dev should read this doc !
Practically, the doc is only read by the dev
when the behavior is not the one he expected :(

Javadoc
Java provides a documentation syntax and
format allowing to localize it directly in the
source code
– Eases a doc up to date with respect to the code

Do not confuse « code comment » and
« documentation comment »
– Documentation comment shows how to use the

method from a user's point of view.
– Code comment shows there is something unusual

in the code (it is intended for the developer)

Example
Source code to implement a stack...

public class IntStack {
 private final int[] array;
 private int top;

 public IntStack(int capacity) {
 array = new int[capacity];
 }

 public void push(int value) {
 array[top++] = value;
 }

 public int pop() {
 return array[--top];
 }
}

Defensive programming
public class IntStack {
 private final int[] array;
 private int top;

 public IntStack(int capacity) {
 if (capacity < 0) {
 throw new IllegalArgumentException("capacity < 0");
 }
 array = new int[capacity];
 }

 public void push(int value) {
 if (array.length == top) {
 throw new IllegalStateException("stack is full");
 }
 array[top++] = value;
 }

 public int pop() {
 if (top == 0) {
 throw new IllegalStateException("stack is empty");
 }
 return array[--top];
 }
}

Contract programming

public class IntStack {
 private final int[] array;
 private int top;

 /**
 * Create an integer stack with a maximum capacity.
 * @param capacity the capacity of the stack
 * @throws IllegalArgumentException if the capacity
 * is less than 0
 */
 public IntStack(int capacity) {
 if (capacity < 0) {
 throw new IllegalArgumentException("capacity < 0");
 }
 array = new int[capacity];
 }

 ...
}

Contract programming

public class IntStack {
 ...

 /**
 * Put the value on top of the stack.
 * @param value the value to push on the stack.
 * @throws IllegalStateException if the stack is full
 */
 public void push(int value) {
 if (array.length == top) {
 throw new IllegalStateException("stack is full");
 }
 array[top++] = value;
 }

 ...
}

Contract programming

public class IntStack {
 ...

 /**
 * Extract and return the value on top of the stack.
 * @return the value on top of the stack.
 * @throws IllegalStateException if the stack is empty
 */
 public int pop() {
 if (top == 0) {
 throw new IllegalStateException("stack is empty");
 }
 return array[--top];
 }

 ...
}

Contract programming

Whereas defensive programming consists in
testing pre-conditions...

One may also want to test if the code has
done its job by testing post-conditions and
invariants.

● Post-condition: output state of an algorithm
● Invariant: always true condition for the

implementation of the class.

assert syntax

assert syntax allows some code to be tested
while its execution
– assert i == j;
– assert i == j: "error message";

in Java, assert are only executed if JVM is run
with
java -ea Prog
(ea = enable assert) : then, on while dev
phase… and off in production

Invariants & post-condition
public class IntStack {
 private final int[] array;
 private int top;

 /**
 * Put the value on top of the stack.
 * @param value the value to push on the stack.
 * @throws IllegalStateException if the stack is full
 */
 public void push(int value) {
 if (array.length == top) {
 throw new IllegalStateException("stack is full");
 }
 array[top++] = value;
 assert array[top – 1] == value;
 assert top >= 0 && top <= array.length;
 }

 ...
}

invariant

post-condition

Contract programming
and unit testing

Unit testing like post-conditions and invariants
are also testing program execution

Post-condition and invariant
– Tests with any real data, inside the code

Unit testing
– Tests with data at boundaries, outside the code

Then, both are required !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

