
1

Inheritance, overriding
& abstract type

2

Sub-typing / polymorphism

● The idea behind sub-typing and polymorphism
is that:
– A behavior (method) depends on the kind of object

effectively contained in the receiver identifier
● Printing an Object differs from printing a Pixel and differs

from printing a Person
● But all of these objects could be printed...
● All of them provide the « method » toString()
● It is the same with methods equals(), hashcode()...

3

Sub-typing

● Essentially, we want to have types
– On which some methods are available

(functionalities)
– But whose precise definition (behavior) depends

on the sub-type
– The method finally executed will be as precise as

possible
– Example: all Shape has a surface, but computing

surface of a square differs to computing surface of
a circle...

4

How to define sub-types
– Some conversions are possible between primitive

type values => this is not sub-typing
– byte < short < int < long < float < double
 char < int

– It’s a mater of data representation

– Sub-typing only relies on types (not on stored data)
– We already saw that any class A implicitly extends

class Object, and thus defines a type A which is a
sub-type of type Object

● This is sub-typing, whatever the data stored in A

5

How to define sub-types
– Inheritance defines sub-types:

● Either explicitly:
class Student extends Person { ... }

● Or implicitly :
Pixel or int[] extends Object

– Implementation of interface also defines sub-types
● An interface declares methods available on objects of

any class implementing it
● A class implements an interface by defining its methods:

class Carre implements Mesurable { ... }

6

Inheritance
● Consists in defining a class,

known as sub-class,
from another class,
known as super-class,
by automatically retrieving
in the sub-class
all members
of the super-class,
potentially completed
by new members

Pixel

x:int

y:int

moveTo(int,int)

ColoredPixel

rgb:byte[]

getRed():byte

getGreen():byte

getBlue():byte

7

Inheritance

public class Pixel {
private int x;
private int y;
public void moveTo(int newX, int newY) {

this.x = newX;
this.y = newY;

}
}

public class ColoredPixel extends Pixel {
private byte[] rgb;
public byte getRed() { return rgb[0]; }
public byte getGreen() { return rgb[1]; }
public byte getBlue() { return rgb[2]; }

}

Pixel

x:int

y:int

moveTo(int,int)

ColoredPixel

rgb:byte[]

getRed():byte

getGreen():byte

getBlue():byte

8

What are the objects of a sub-class?

● All object of a sub-class is firstly considered as
being an object of its super-class
– A colored pixel « is » firstly a pixel

● All object of a sub-class « accumulates » the
fields of the super-class with those defined in its
own class
– There is a int x and a int y in any object of class

ColoredPixel

9

What are the objects of a sub-class?

public static void main(String[] args) {
Pixel p = new Pixel();
p.moveTo(1, 1);

ColoredPixel cp = new ColoredPixel();
cp.moveTo(2, 2);

cp.getRed(); // compiles, but raise NullPointerException
 // because the array has not been allocated

}

#1
#1

#2

@class Pixel

#2

x : 1

y : 1

@class ColoredPixel

x : 2

y : 2

rgb : null

10

All the fields are inherited
● They could be handled if allowed by their

accessibility
● if x is not private in Pixel, we could use this.x in

ColoredPixel
● Usually, we avoid non private fields

public class Pixel {
int x;
private int y;

 // ...
}

public class ColoredPixel extends Pixel {
private byte[] rgb;
void test() {

System.out.println(this.x); // 0
System.out.println(this.y); // did not compile !

// field Pixel.y is not visible
}

}

11

All the fields are inherited
● They could be hidden by other field definition in

the sub-class that have the same name
● Warning : they are « hidden » and not « override » as for

methods...

public class Pixel {
int x;
private int y;

 // ...
}

public class ColoredPixel extends Pixel {
private byte[] rgb;
private String x;
void test() {

System.out.println(this.x); // ??
}

}

Same name (?!)
but two fields

12

All the fields are inherited
– if String x is declared in ColoredPixel, this field is

concerned in this class when using this.x
– it is possible to manipulate the hidden field (if

accessible) through the notation super.x
– super has the same value as this at run time

but is has the type of the super-class (here Pixel)

public class Pixel {
int x;
private int y;

 // ...
}

public class ColoredPixel extends Pixel {
private byte[] rgb;
private String x;
void test() {

System.out.println(this.x); // null
System.out.println(super.x); // 0

}
}

13

Field resolution
● The « resolution » is the process of identifing

which field to use, in order to know where
finding its value at run time

● Field resolution is done by the compiler, based
on the declared type of the identifier containing
the reference

public static void main(String[] args) {
ColoredPixel cp = new ColoredPixel();

 // declared type of cp is ColoredPixel
System.out.println(cp.x); // null

Pixel p = cp;
// declared type of p is Pixel, even if the reference
// contained in p is those of a ColoredPixel

 System.out.println(p.x); // 0
}

14

Hidden fields
● Usually, having a field with the same name as a

field of a super-class is a bad idea
– super, is this considered with

the type of the super-class
– super.super.x doesn’t exist...

– Neither
ref.super
nor ref.super.x...

● Nevertheless, cast
allow to access any field
by changing the declared
type of the reference ref

 class A {
 int x = 1;
 }

 class B extends A {
 String x = "zz";
 }

class C extends B {
 boolean x = true;
 public static void main(String[] args) {
 C c = new C();
 System.out.println(c.x); // true
 System.out.println(((B)c).x); // zz
 System.out.println(((A)c).x); // 1
 }
}

15

Constructors and inheritance
● construction (initialization) of any instance of

any class always starts by construction
(initialization) of an instance of Object
– Indeed, all constructor starts by a call to the

constructor of its super-class: super()

public class Pixel {
private int x;
private int y;
public Pixel(int x, int y) {

this.x = x;
this.y = y;

}
 // ...
}

public class ColoredPixel extends Pixel {
 private byte[] rgb;
 public ColoredPixel(int x, int y) {
 super(x, y); // note that x and y are private!
 rgb = new byte[3];
 }
}

16

Constructors and inheritance
● super()

● Must be the first instruction of the constructor
● The implicit constructor (generated by the compiler) call

the constructor without argument of the super-class

● Constructors are not inherited

public class Pixel {
private int x;
private int y;
public Pixel(int x, int y) {

this.x = x;
this.y = y;

}
 // ...
}

public class ColoredPixel extends Pixel {
 private byte[] rgb;
 public ColoredPixel() { // Do not compile !
 // super(); // Constructor Pixel() is undefined
 }
}

17

Constructors and initializations
● A call to the constructor of a class is a step the

initialization process of an object of this class:
● It starts initializing the fields of the object « as an instance of

the super-class »: this is the call to super()
● Next it initializes its own fields (as an instance of the sub-

class)
● The call to super() cannot use fields whose existence or

value would depend on the instance of the sub-class

public class ColoredPixel extends Pixel {
 private int v = 0;
 private static int s = 0;
 public ColoredPixel() {
 // super(v,v);
 // error: cannot reference v before supertype constructor has been called
 super(s,s); // OK
 }
}

18

Inheritance of methods
– In addition to fields, as « members », the sub-class

inherits the methods of the super-class
– Only constructors are not inherited

● They stay local in their own class

– Warning: the code (semantics) of a super-class
method could become wrong in the sub-class

● Pixel::moveTo() is correct in ColoredPixel but
Pixel::equals() or Pixel::toString() aren’t!

– Often, it is necessary to give a new definition for
the inherited method in the sub-class

19

Inheritance => sub-typing
– A ColoredPixel “is a kind” of Pixel
– Everywhere a Pixel is expected, it is possible to use a

ColoredPixel
– What sense (semantics) methods must have?

public static void main(String[] args) {
ColoredPixel cp = new ColoredPixel(1,2);
cp.setRed((byte) 100);

Pixel p = cp; // inheritance => sub-typing

System.out.println(p); // ?

System.out.println(p.equals(new ColoredPixel(1,2))); // ?
}

20

Overriding methods
– Give a new definition for an inherited method:
– Same name, same parameters, distinct code
– Annotation @Override ask the compiler for verifying

that we actually override an inherited method
public class ColoredPixel extends Pixel {
 private byte[] rgb;
 // ...
 @Override
 public String toString() {
 return super.toString()+"["+rgb[0]+":"+rgb[1]+":"+rgb[2]+"]";
 }
 public static void main(String[] args) {
 ColoredPixel cp = new ColoredPixel(2,2);
 System.out.println(cp); // (2,2)[0:0:0]
 Pixel p = new Pixel(5,5);
 System.out.println(p); // (5,5)
 Object o = new ColoredPixel(2,2);
 System.out.println(o); // (2,2)[0:0:0]
 }
}

21

Inheritance is...

… three indivisible things:
● You want to get (inherit) all members (fields,

methods) from the super-class (even private)
● You must override all methods that haven’t

the correct semantics in the sub-class
● You want the sub-class defining a sub-type

of the super-class

if you don’t want one of these three things, then
then you shouldn't use inheritance.

22

Inheritance and Object class
● In Java, all classes extends Object

– Either directly

compiler add “extends java.lang.Object”
– Or indirectly

ColoredPixel extends Pixel, that extends Object

=> all class are sub-types of Object
● You have to override equals() / hashCode() /

toString() if needed !

23

Overriding (methods) versus
hiding (field)

● All fields defined in all super-classes are present in an object
of a sub-class

– Even with same name and same type

– A field of the immediate super-class could be reached with super.x

– Field resolution depends on the declared type of the identifier

– This allows us to reach any field, through a type cast of the identifier

● For methods, only one remains in the sub-class!

– We could reach those of the immediate super-class with super.m()

– Method resolution is done in two steps

● Compile-time: looking for a solution wrt declared identifier types
● Runtime: looking for the most precise implementation of this

solution, given the « actual » type of the receiver
– Other methods (of super-classes) are no more reachable

24

Override vs Overload
● If the signature of the method differs between

the super-class and the sub-class, this provides
us with overloading rather than overriding:
– In this case, both methods coexist in the sub-class

class A {
 void m1() { ... }
 void m2() { ... }
 Pixel m3() { ... }
 void m4(Pixel p) { ... }
}
class B extends A {
 @Override void m1() { ... } // override
 void m2(int a) { ... } // overload
 @Override ColoredPixel m3() { ... } // override
 @Override void m4(Pixel p) { ... } // override
 void m4(ColoredPixel p) { ... } // overload
}

25

Overriding principles
● Let B a sub-type of A and m() defined in A
● We override method m() in B in order to give a

more precise definition (better suited for B)
● For a method call a.m()

on an identifier a declared of type A,
the compiler agrees since m() is defined in A

● We want the overridden version to be used at run-
time if a actually contains an object of sub-type B

26

Overriding principles
● Compiler is supposed to avoid bad surprises

(i.e. find out problems at run-time)
● This governs the main rules

– An instance method cannot override a static method
– Overriding cannot restrict accessibility
– return type of a overridden method cannot be of a

super-type
– exceptions raised by an overridden method cannot be

of a super-type of those thrown by the original method

27

Method equals()
● Just like method toString() of class Object, that any sub-class

would override...

● … class Object provides a method equals(Object obj) whose
« contract » is clearly established by the documentation

– By default, it tests primitive equality of references
– You must override it

public class Pixel {
 private int x, y;
 // ...
 @Override
 public boolean equals(Object obj) {
 if(!(obj instanceof Pixel))
 return false;
 Pixel p = (Pixel) obj;
 return (x==p.x) && (y==p.y);
 }
}

public class ColoredPixel extends Pixel {
 private byte[] rgb;
 @Override
 public boolean equals(Object obj) {
 if(!(obj instanceof ColoredPixel))
 return false;
 ColoredPixel cp = (ColoredPixel) obj;
 return super.equals(obj) &&
 rgb[0]==cp.rgb[0] &&
 rgb[1]==cp.rgb[1] &&
 rgb[2]==cp.rgb[2];
 }
}

28

Specification of method equals()
– Defines an equivalence relation on non-null object references

● reflexive

– for any non-null reference value x, x.equals(x) should return true
● symmetric

– for any non-null reference values x and y, x.equals(y) should return true if and
only if y.equals(x) returns true

● transitive

– for any non-null reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.

● consistent

– for any non-null reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return false, provided no information
used in equals comparisons on the objects is modified.

● For any non-null reference value x, x.equals(null) should return false.
● Note that it is generally necessary to override the hashCode method whenever this

method is overridden, so as to maintain the general contract for the hashCode
method, which states that equal objects must have equal hash codes.

29

Symmetric property...
– Ask a Pixel in (2,2) for being equals to a

ColoredPixel in (2,2)… it will answer YES!
● It only check coordinates...

– But ask a ColoredPixel magenta in (2,2) for being
equals to Pixel en (2,2), it will answer NO!

● It is supposed to check the color that a simple Pixel hasn’t...

– You could find this code acceptable... or not
public class ColoredPixel extends Pixel {
 // ...
 public static void main(String[] args) {
 Object o1 = new Pixel(2,2);
 Object o2 = new ColoredPixel(2,2);
 System.out.println(o1.equals(o2)); // true
 System.out.println(o2.equals(o1)); // false
 }
}

30

Method hashCode()
● This method is used in hash tables, such as java.util.HashMap

● It specifies a « contract » (together with equals())

31

 @Override
 public boolean equals(Object obj) {
 if(obj == null) return false;
 if(obj.getClass() != getClass())
 return false;
 ColoredPixel cp = (ColoredPixel) obj;
 return super.equals(obj) &&
 Arrays.equals(this.rgb, cp.rgb);
 }

 @Override
 public boolean equals(Object obj) {

if(obj == null) return false;
if(obj.getClass() != getClass())

 return false;
 Pixel p = (Pixel) obj;
 return (x==p.x) && (y==p.y);
 }

To be more strict...
● You must consider that two

objects of distinct classes
cannot be equals

– instanceof is not sufficient

– you need to know the
« class » of the object
(at runtime)

– method Class getClass()
of class Object

 public static void main(String[] args) {
 Object o1 = new Pixel(2,2);
 Object o2 = new ColoredPixel(2,2);
 System.out.println(o1.equals(o2)); // false
 System.out.println(o2.equals(o1)); // false
 }

In Pixel :

In ColoredPixel :

Warning: with this solution, two objects of two distinct classes that extends Pixel would no
more be able to be equals… without completely overriding equals (without using super.equals)

32

hashCode() and equals()

● Sets and Maps use both hashCode() and equals()

● If equals() is overridden but hashCode is not, this is what
happens:

import java.util.HashSet;

public class Pixel {
 // ...
 public static void main(String[] args) {
 Pixel zero = new Pixel(0,0);
 Pixel def = new Pixel();
 HashSet<Pixel> set = new HashSet<>();
 set.add(zero);
 System.out.println(zero.equals(def)); // true
 System.out.println(set.contains(def)); // false
 System.out.println(zero.hashCode()); // 1808253012
 System.out.println(def.hashCode()); // 589431969
 }

}

inconsistency
between

equals() and
hashCode()

33

hashCode() example for our pixels

public class ColoredPixel extends Pixel {
 private byte[] rgb;
 // ...
 @Override
 public int hashCode() {
 // return super.hashCode() ^ Integer.rotateLeft(rgb[0],16)
 // ^ Integer.rotateLeft(rgb[1],8) ^ rgb[0];
 return super.hashCode() ^ Arrays.hashCode(rgb);
 }
}

public class Pixel {
 // ...
 @Override
 public boolean equals(Object obj) {
 if(!(obj instanceof Pixel))
 return false;
 Pixel p = (Pixel) obj;
 return (x==p.x) && (y==p.y);
 }
 @Override
 public int hashCode() {
 return Integer.rotateLeft(x,16) ^ y;
 }

public static void main(String[] a){
 Pixel zero = new Pixel(0,0);
 Pixel def = new Pixel();
 HashSet set = new HashSet();
 set.add(zero);
 set.contains(def); // true
 zero.hashCode(); // 0
 def.hashCode(); // O
 zero.equals(def); // true
}

34

Classes and methods « final »
● The key-word final exists for methods:

– It means that this method cannot be overridden in a
sub-class

– This could be useful to ensure that no other
definition will replace the original one (security)

● The key-word final exists for classes:
– It is then impossible to extends this class
– Methods behave as if they were final

35

Interfaces
● A class defines:

– A type
– A data structure for its objects (their fields)
– Some methods with their code (their definition)

● An interface defines:
– A type
– Some methods without their code

(abstract methods) – but Java 8 : default

● => No fields, no object, no state

36

Interfaces
● An interface cannot be instanciated
● It is supposed to be « implemented » by classes

– These classes will get the type of the interface
– These classes will provide definitions (code) for each

declared method of the interface
● The idea for an interface is a « promise » :

– when declaring a identifier with the type of the interface,
you can call on this identifier any method promised by
(declared in) the interface

– the compiler ensures that any reference contained in
this identifier points to an object of a class providing an
implementation for the method

37

The point of interfaces
● To give a common type to distinct classes I

order to use them in a same way
● Example: handle arrays of « trucs », each of

truc having a surface
– Summing surfaces

of trucs in this array

public class AlgoOnTrucs {
 public static double totalSurface(Surfaceable[] array) {
 double total = 0.0;
 for(Surfaceable truc : array)
 total += truc.surface();
 return total;
 }
}

public interface Surfaceable {
 public double surface();
}

38

Using interfaces
● Two main advantages:

– The algorithm for method
totalSurface(Surfaceable[] array)
is implemented independently of the real class of
objects stored in array:

this is provided by sub-typing
– Each method surface() actually called on objects in

the array will be most precise possible, with respect
to the real type of each object:

this is polymorphism

39

Using interfaces

public class AlgoOnTrucs {

 public static double totalSurface(Surfaceable[] array) {
 ...
 }

 public static void main(String[] args) {
 Rectangle rectangle = new Rectangle(2,5);
 Square square = new Square(10);
 Circle circle = new Circle(1);
 Surfaceable[] t = {rectangle, square, circle};
 System.out.println(totalSurface(t));

// 113.1415926535898
 }
}

40

Interface implementation
public class Square implements Surfaceable {
 private final double side;
 public Square(double side) {
 this.side = side;
 }
 @Override
 public double surface() {
 return side * side;
 }
}

public class Rectangle implements Surfaceable {
 private final double height;
 private final double width;
 public Rectangle(double height, double width) {
 this.height = height;
 this.width = width;
 }
 @Override
 public double surface() {
 return height * width;
 }
}

public class Circle implements Surfaceable {
 private final double radius;
 public Circle(double radius) {
 this.radius = radius;
 }
 @Override
 public double surface() {
 return Math.PI * radius * radius;
 }
}

41

members of interfaces
● Public method declarations

– All methods in interface are
abstract public

● Even if not specified, except default (see later)

public interface Surfaceable {
 double surface(); // equivalent to
 public abstract double surface();
}

42

members of interfaces
● Public constant fields

– All fields in interface are
public final static

● Compiler adds these key-words

public interface I {
 int field = 10; // equivalent to
 public final static int field = 10;
}

43

Interface implementation
and sub-typing

● A class can implements an interface
– key-word implements

– Class Rectangle defines a sub-type of
Surfaceable

public class Rectangle implements Surfaceable {
 ...
}

Surfaceable s = null;

s = new Rectangle(2,5);

44

members of interfaces
● It is not possible to instantiate an interface,

that is, impossible to create an object
– You only could declare identifiers with its type
– Such identifier will be able to store references to

objects of classes implementing the interface

45

Interface implementation
and sub-typing

● An interface cannot implement another
interface
– How to implement methods?

● But an interface can extend another interface
● Same extends key-word as for classes

– Paintable is a sub-type of Surfaceable

public interface Paintable extends Surfaceable {
 double paint(byte[] color, int layers);
}

Surfaceable[] array = new Surfaceable[3]; // arrays!
Paintable p = null;
array[0] = p; // OK: Paintable < Surfaceable
p = array[1]; // Cannot convert from Surfaceable to Paintable

46

Sub-typing between interfaces

● An interface can extends de several other
interfaces
– Separate super-types with comas

– Type SurfaceableAndMoveable define a sub-type
of both types Surfaceable and Moveable
(multiple sub-typing)

● SurfaceableAndMoveable < Surfaceable et
SurfaceableAndMoveable < Moveable

● But Surfaceable and Moveable are not related

public interface SurfaceableAndMoveable
 extends Surfaceable, Moveable {
 ...
}

47

Class inheritance and
interface implementation

● A class can both
● extends a single class

– (single inheritance)
● and implements several interfaces

– (multiple sub-typing)

48

public class SolidCircle extends Circle implements Paintable, Moveable {
 private final Point center;
 public SolidCircle(Point center, double radius) {
 super(radius);
 this.center = center;
 }
 @Override // To be able to implement Paintable
 public double paint(byte[] color, int layers) {
 // doThePaintingJob(color,layers);
 return layers * surface(); // SolidCircle < Circle < Surfaceable
 }
 @Override // To be able to implement Moveable
 public void moveTo(int x, int y) {
 center.moveTo(x,y);
 }
 public static void main(String[] args) {
 SolidCircle sc = new SolidCircle(new Point(0,0), 3);
 Circle c = sc; double d = c.surface(); // SolidCircle < Circle
 Paintable p = sc; p.paint(new byte[]{0,0,0},2);// SolidCircle < Paintable
 Moveable m = sc; m.moveTo(1, 1); // SolidCircle < Moveable
 }
}

49

Compiler verifications
● All (abstract) methods declared in all

implemented interfaces by a class must be
implemented in the class
– Defined with their code

● Accessibility modifier must be public
– Even if we give default (package) accessibility to

the interface, compiler adds public abstract

50

Compiler verifications
● What if several methods with same name and

same signature from distinct interfaces have to
be implemented in a single class?
– They are « promises » (functionalities), and not

implementations…
● Thus, they are (syntactically) compatible
● But it would be better if they were consistent!

51

Interface inheritance
another example

An interface extending other interfaces gather their
promises:

public interface ReadableIO {
 int length();
 int read(Buffer buffer);
}
public interface WritableIO {
 int length();
 int write(Buffer buffer);
}
public interface IO extends ReadableIO, WritableIO {
 // 3 methods: read, write et length
}

52

Single inheritance

● In Java (or C#), contrary to C++,
it is only possible to extend a single class
– There is no multiple inheritance of class

● And what if we want a class representing files
that are both readable and writable?

ReadableFile WriteableFile

ReadWriteFile

53

Why not multiple inheritance?

Since fields are represented by an index,
multiple inheritance would introduce conflicts
between index!

In C++, this problem is handled by base address offset, beurk !

ReadableFile

int fileDescriptor

WriteableFile

int fileDescriptor

ReadWriteFile

??

offset: 0offset: 0

offset: 0

54

The problem of multiple inheritance

It is not possible to have at the same time
– Multiple inheritance of classes
– A single header for an object (which is fairly

important for the GC)

There is no problem if there is no field!

Solution comes with interfaces and multiple
sub-typing

55

Summary : interface

An interface is a set of abstract methods
(or not since Java 8) but without fields!

An interface is an abstract type allowing us to
handle several distinct classes with a single
common code

56

Interface agreement

An interface specifies a contract that classes
implementing it must respect
– Classes must implement all abstract methods

An interface allows us to get sub-typing and
polymorphism without inheritance of fields and
methods
– can be seen as a simplified form of inheritance

57

multiple sub-typing

A class can implements several interfaces

ReadableFile

abstract void read(Buffer)

WriteableFile

abstract void write(Buffer)

ReadWriteFile

int fileDescriptor

void read(Buffer)
void write(Buffer)

58

Default implementation
of a method (Java 8)

A default method is a non-abstract method in
an interface

public interface Bag {
 public abstract int size();
 public default boolean isEmpty() {
 return size() == 0;
 }
}

59

Default implementation
of a method (Java 8)

A defaut method implementation (code) is
used when no other implantation is given

public class HashBag implements Bag {
 private int size;
 ...
 public int size() {
 return size;
 }
 // isEmpty default of Bag is used
}

60

default method and conflict

If two default methods are available, those of the sub-type – if any –
is chosen; else, compiler warns you:

public interface Empty {
 public default boolean isEmpty() {
 return true;
 }
}
public class EmptyBag implements Bag, Empty {
 // problem: 2 default methods isEmpty() are available
}

61

Default methods in interface
and toString, equals and hashCode

Since java.lang.Object always provides
methods toString, equals and hashCode,
its is useless to define en explicit default
method toString, equals or hashCode in an
interface.

The implementation of java.lang.Object will
always be chosen instead of the interface one

62

Resolving conflict

It could be necessary to help the compiler resolving a ambiguity

public interface Empty {
 public default boolean isEmpty() {
 return true;
 }
}
public interface Bag {
 ...
 public default boolean isEmpty() {
 ...
 }
}
public class EmptyBag implements Bag, Empty {
 public boolean isEmpty() {
 return Empty.super.isEmpty();
 }
}

SuperInterface.super allows to
points out a given default
implementation in an interface

63

Design: interface or inheritance
● We extend a class

– to create a new type that stands for « a kind of »
super-class’ type

● We define an interface and implement it
– For a transversal functionality

● Comparable, Closeable, Mesurable, Movable...

– In order to gather a set of functionalities that could
be implemented by classes that already implements
other interfaces, or that extends another class

64

Abstract class

● You can define a class in which some methods are abstract

– Useful to share (factorize)
some fields an code

● Classical design :

Public interface

Abstract class

Concrete class 1 Concrete class 2

Shared code

Shared fields

65

public class Car {
 private final String plateNumber;
 private final int maxGrossWeight;
 private final int passengers;
 public Car(String plateNumber, int maxGrossWeight, int passengers) {
 this.plateNumber = plateNumber;
 this.maxGrossWeight = maxGrossWeight;
 this.passengers = passengers;
 }
 public String getPlateNumber() {
 return plateNumber;
 }
 public int getTax() {
 return passengers * maxGrossWeight / 10;
 }
} public class Bike {

 private final String plateNumber;
 private final int maxGrossWeight;
 public Bike(String plateNumber, int maxGrossWeight) {
 this.plateNumber = plateNumber;
 this.maxGrossWeight = maxGrossWeight;
 }
 public String getPlateNumber() {
 return plateNumber;
 }
 public int getTax() {
 return maxGrossWeight / 2;
 }
}

66

Common type => interface

public interface Vehicle {
 String getPlateNumber();
 int getTax();
}

public class Bike implements Vehicle {
 ...
}

public class Car implements Vehicle {
 ...
}

public static void main(String[] args) {
 Vehicle[] array = {
 new Car("AA-111-AA", 1850, 5),
 new Bike("BB-222-CC", 450),
 ... };
 for(Vehicle v : array) {
 System.out.println(v.getPlateNumber() + " must pay " + v.getTax());
 }
}

getPlateNumber()
getTax()

Car Bike
plateNumber

maxGrossWeight
passengers

Vehicle

getPlateNumber()
getTax()

plateNumber
maxGrossWeight

getPlateNumber()
getTax()

67

Factorization of fields / code
=> abstract class

abstract class AbstractVehicle implements Vehicle {
 private final String plateNumber;
 private final int maxGrossWeight;
 public AbstractVehicle(String plateNumber, int maxGrossWeight) {
 this.plateNumber = plateNumber;
 this.maxGrossWeight = maxGrossWeight;
 }
 public String getPlateNumber() {
 return plateNumber;
 }
 int getMaxGrossWeight() { // package accessibility
 return maxGrossWeight;
 }
}

public class Car extends AbstractVehicle {
 private final int passengers;
 public Car(String plateNumber,
 int maxGrossWeight,
 int passengers) {
 super(plateNumber, maxGrossWeight);
 this.passengers = passengers;
 }
 public int getTax() {
 return passengers * getMaxGrossWeight() / 10;
 }
}

public class Bike extends AbstractVehicle {
 public Bike(String plateNumber,
 int maxGrossWeight) {
 super(plateNumber, maxGrossWeight);
 }
 public int getTax() {
 return getMaxGrossWeight() / 2;
 }
}

public interface Vehicle {
 String getPlateNumber();
 int getTax();
}

getPlateNumber()
getTax()

AbstractVehicle

Car Bike

plateNumber
maxGrossWeight

getPlateNumber()

Vehicle

getTax()

getTax()

passengers

68

Abstract class and instantiation

Just like an interface, an abstract class cannot
be instantiated
AbstractVehicle v = new AbstractVehicle();
doesn’t compile

An class can be declared abstract without
abstract method => this forbids its instantiation

If a method in a class is abstract, then the
class must be declared abstract

69

Abstract method and...

A method cannot be both abstract and static:
nonsense
– abstract: must be overridden
– static: impossible to override

A method cannot be both abstract and private:
nonsense
– abstract: must be overridden in sub-class
– private: not accessible outside (including sub-class)

70

Sub-class and protected

Accessibility protected means accessible
– Either from classes in same package
– Or by (extending) sub-classes in other packages

● This allows some methods to be accessible by
all sub-classes, but not public…

● You should not declare a field as protected,
because sub-classes could use it and then
avoid any (intern) modifications of your class

● Usually you must avoid abstract classes to be
public => only (intern) implementation purpose

71

Refinement of abstraction

From pure abstraction to implementation
– Interface

Only abstract methods (public)

– Interface with default methods
● Abstract and implemented methods (public)

– Abstract class
● Fields + abstract and implemented methods

– Class
● Fields + implemented methods

static methods can be defined anywhere

72

Restriction of sub-types : sealed

/!\ Preview feature version 15

– classes or interfaces sealed restrict/limit the set
of classes or interfaces allowed to extends them or
implement them

– Goal : control/limit the amount of code to
« manage », i.e. set of sub-types intended to
respect the « contract » of the super-type…

– Clause permits lists all sub-types « authorized »,
and forbids all other unknown sub-types...

73

Each sub-type listed by permits
– Must directly extends/implements the sealed type
– Must have explicitly one of the 3 modifiers

● final (one cannot extend it)
● sealed (specified – again – authorized sub-types)
● non-sealed (relax all constraints

 for sub-types)

public interface I { ... }

public sealed class C extends Object implements I
 permits C1, C2, C3 { ... }

public final class C1 extends C { }

public sealed class C2 extends C permits C2bis { }

public non-sealed class C3 extends C { }

public final class C2bis extends C2 { }

74

Sealed / permits
(preview feature Java15)

When key-word sealed is used to declare a
class or an interface
– You must add the key-word permits

● After clauses extends and implements
● With all authorized sub-types
● All authorized sub-types must be known at compile-time

public interface I {
void foo();

}
public sealed class C extends Object implements I permits C1, C2, C3 {

@Override
public void foo() {

System.out.println("foo() implementation in C");
}

}

75

Inference of “permits”
– Compiler can “infer” (guess) permits as long as all of

them are declared in the same file

public sealed class C extends Object implements I {
// permits C1, C2, C3 {
@Override
public void foo() {

System.out.println("foo() implementation in C");
}

}
final class C1 extends C { }
sealed class C2 extends C permits C2bis { }
final class C2bis extends C2 { }
non-sealed class C3 extends C { }

76

Same principle for interfaces
limit authorized sub-interfaces / sub-classes

A record can be part of the permits
● In this case, final key-word is not mandatory

public sealed interface I permits C, Rhi, J {
void foo();

}
record Rhi(int v1, int v2) implements I {

@Override
public void foo() {

System.out.println("foo() implementation in Rhi");
}

}

public sealed interface J extends I permits Rjay {
void bar();

}
record Rjay(String name, int value) implements J {

@Override
public void foo() {

System.out.println("foo() implementation in Rjay");
}

 @Override
public void bar() {

System.out.println("bar() implementation in Rjay");
}

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

