
Object Oriented
Programming in Java

Etienne Duris

Université Gustave Eiffel – ESIPE - IGM

 Etienne Duris - Université Gustave Eiffel 2

Some good lectures

Java Language & Virtual Machine Specifications

https://docs.oracle.com/javase/specs/index.html

Doug Lea’s coding conventions

http://gee.cs.oswego.edu/dl/html/javaCodingStd.html

Effective Java, 2nd/3rd Edition (Joshua Bloch)

Crowedsourced Java questions

https://stackoverflow.com/questions/tagged/java

Rémi Forax home page (and support!)

http://www-igm.univ-mlv.fr/~forax/ens/java-avance/cours/pdf/

https://docs.oracle.com/javase/specs/index.html
http://gee.cs.oswego.edu/dl/html/javaCodingStd.html
https://stackoverflow.com/questions/tagged/java
http://www-igm.univ-mlv.fr/~forax/ens/java-avance/cours/pdf/

 Etienne Duris - Université Gustave Eiffel 3

Several programming styles

Imperative (Algol, FORTRAN, Pascal, C…)

Sequences of instructions describe (how the result is obtained by
manipulating the memory state (variables)

Declarative (Prolog, SQL…)

Statements of what you get or what you want, rather than how to achieve
the result

Applicative or functional (LISP, Caml, Haskel…)

Based on expression or function evaluations where the result does’nt rely
on memory state (no side effect)

Object Oriented (modula, Objective-C, Self, C++...)

Reusable units to abstract interactions and control side effects

 Etienne Duris - Université Gustave Eiffel 4

Why control / avoid side effects

A side effect is a memory state modification (or
input/output) that imply a change in a program behavior

Difficult to debug, since hard to reproduce

Requires an external synchronization mechanism if several
execution threads could reach a shared memory zone

When possible, avoid side effect

At least, try to control it

 Etienne Duris - Université Gustave Eiffel 5

Object oriented programming style

Objects are autonomous components with their own
resources and able to communicate with each other

These objects represent data that are modeled by
classes; these classes define types

 Like a typedef struct define a type in C

Types also define actions that objects can perform and
how they affect their state

 messages or methods

 Etienne Duris - Université Gustave Eiffel 6

Benefits of object oriented programming

Abstraction

Separation between definition (what) and implementation (how)

Unification

Data and code could be unified in a single model

Reusability

Class design leads to reusable components (distinguishing and
separating concepts)

Hide implementation details

Specialization (no so true in real life, actually)

Inheritance mechanism allows specialization in specific situations

 Etienne Duris - Université Gustave Eiffel 7

Modular programming

Class design, representing both data, actions and
responsibilities of this class objects, allows programmer
to distinguish and separate concepts

"Interface" definition (the way to communicate
with the world outside)",
hides implementation details and
avoid too strong dependencies

This promotes reusability and
composition / delegation:
the assembly of the components
with respect to their responsibilities

 Etienne Duris - Université Gustave Eiffel 8

What is an object?

It defines inside and outside

Outside should NOT know
how inside works.

inside = good (what is controled)

outside = evil (what is not controled)

Forbid direct access to inside
to avoid mistakes and strong dependances

softened view between objects of same type

Instead, use methods to perform actions

called from outside, they do have access to inside

inside
outside

methods

 Etienne Duris - Université Gustave Eiffel 9

From memory point of view

An object is stored in a memory area

It is usually handled through a reference

In Java, we do not talk about “pointer”
since no arithmetic is available on
references -- just access

In Java, each object knows its size

In Java, each object knows its class

ref

class

object

 Etienne Duris - Université Gustave Eiffel 10

Object = instance of a class

The memory area inside an object is formatted by its
class definition

Like a struct in C

All objects (instances) of a same class
are identically formatted in memory
but each has its own state
(distinct values)

p1

x=1
y=2

class Pixel

object

class Pixel {
int x; // signed int (32 bits, 4 bytes)
int y; // signed int (32 bits, 4 bytes)

}

p2

x=3
y=4

object

 Etienne Duris - Université Gustave Eiffel 11

Class and fields

A class defines the memory structure of its objects

Each field (attribute), with its type, implies a memory area,
size and layout

In Java, the order of the fields in memory is not necessarily
the same as the order of declaration (contrary to C)

The whole size of an object is often larger than the sum of
its field’s sizes

due to alignment in memory

and due to special fields, present in each object
(like a reference to its class)

 Etienne Duris - Université Gustave Eiffel 12

Class and methods

In addition to fields, a class defines the code that deals
with them, i.e. methods

A method is a function that is bound to a class,
and through the class, it is bound to
each object of this class

class Pixel {
int x;
int y;
double distance() {

return Math.sqrt(x*x + y*y);
}

}

p1.distance(); // 2.23606797749979
p2.distance(); // 5.0

p1

x=1
y=2

distance

class Pixel

object

p2

x=3
y=4

object

 Etienne Duris - Université Gustave Eiffel 13

Methods

In addition to fields, a class defines the code that deals
with them, i.e. methods

Methods allow objects to
interact each others

Outside should interact with
an object through its methods

They guard inside against outside

All the fields of an object are
reachable from methods of
its class

object

fields

methods

 Etienne Duris - Université Gustave Eiffel 14

Method and method call

The execution of a method is necessarily associated to
an object (an instance) of a class:
the receiver of the method call

We say that the method
is called “on” this receiver object

When the method is executed,
it has access to the values of this instance’s fields
(and only this one)

Pixel p1 = …
p1.distance();

Scanner sc = ...
sc.nextLine();

double distance() {
return Math.sqrt(this.x*this.x + this.y*this.y);

}
p1.distance(); // 2.23606797749979
p2.distance(); // 5.0

receiver

 Etienne Duris - Université Gustave Eiffel 15

A method is a function
with a hidden parameter

This hidden parameter stands for the receiver object
reference, known as this in Java

 When p.printXandY() is called, this refers to the value
of p in execution of the code of printXandY

class AnotherClass {
void foo() {

Pixel p = ...
p.printXAndY();

}
}

class Pixel {
 int x;
 int y;

 void printXAndY() {
 System.out.println(this.x + " " + this.y);
 }
}

 Etienne Duris - Université Gustave Eiffel 16

What a method call does

A method call copies arguments in parameter variables

The receiver object reference is copied into this

x=1
y=2

printXAndY

class Pixel

class AnotherClass {
void foo() {

Pixel p = ...
p.printXAndY();

}
... void main(...) {

AnotherClass ac = ...
ac.foo();

}
}

stack

m
ai

n
fo

o
pr

in
tX

A
nd

Y

ac

ac
p

p

foo

class
AnotherClass

main

heap

class Pixel {
 int x;
 int y;

 void printXAndY() {
 System.out.println(this.x

+ " " + this.y);
 }
}

 Etienne Duris - Université Gustave Eiffel 17

Sometimes there’s no this

printXAndY() is called on p (this value is those of p)
foo() is called on ac (this value is those of ac)

But on which reference main() is called?

main()’s execution does NOT rely on any object, any instance

it only relies on the class AnotherClass itself

this method is said to be static and is “called on” the class
rather than on an object (just like Math.sqrt())

The use of this is forbiden in its code

class AnotherClass {
public static void main(String[] args) { ... } // entry point

...
public final class Math {
 public static double sqrt(double a) { ... }
...

 Etienne Duris - Université Gustave Eiffel 18

The main method

In Java, a class defining a method main with the (exact)
following signature:

could be “executed”, i.e. called from command line

The java command starts a Java Virtual Machine (JVM)
and asks it to execute the method main of the class Pixel

user@home$ java Pixel

public class Pixel {
public static void main(String[] args) {

...
}

}

 Etienne Duris - Université Gustave Eiffel 19

But this could also be implicit

Either for field

 or for method call

class Pixel {
int x;
int y;
void printX() {

System.out.println(x);
// equivalent to
// System.out.println(this.x);

}
void printY() {

System.out.println(this.y);
}
void printXAndThenY() {
 printX();
 printY();
 // equivalent to
 // this.printX();
 // this.printY();
}

}

 Etienne Duris - Université Gustave Eiffel 20

Method call vs function call

In C, we wrote functions:
distance(p1,p2); // ask for distance between p1 and p2

Where should we define the function? who’s responsible?

In Java, we write methods:
p1.distance(p2); // ask p1 for its distance to p2

The method must be in the class Pixel (of p1), which is responsible for
calculating the distance to any another point

Since a method is bound to a class, it must be called
either on an object (of the class in which it is defined)

p1.printXAndY(); // display coordinates of p1

or on the class itself
 Math.sqrt(x*x + y*y)

 Etienne Duris - Université Gustave Eiffel 21

Example

public class Utils {

 static int sum(int[] array) {
 var sum = 0;
 for(var value: array) {
 sum += value;
 }
 return sum;
 }

 public static void main(String[] args) {
 var array = new int[] { 1, 2, 3, 4, 5 };
 System.out.println(Utils.sum(array)); // 15

 // Utils. could be implicit (not recommended)
 // System.out.println(sum(array));
 }
}

Note: since Java 10,
local variables could

be declared with “var”
keyword instead of a

true type: compiler infers
(guesses) the correct type

No instance
is required to

call the method

Class Utils is not intended to create instances; it is
rather a “container” for static methods.

 Etienne Duris - Université Gustave Eiffel 22

Naming conventions

Class names start with an UpperCase

method, field and variable names start with a lowercase

Names are build following the CamelCase convention
ThisIsAClass, thisIsAField, orALocalVariable,

orElseAParameter, andThisIsAMethod()

Underscore is only used for constant names
THIS_IS_A_CONSTANT

All names are in english!

Neither french, polish,
tamil nor sanskrit

 Etienne Duris - Université Gustave Eiffel 23

What is a class?

A compilation unit

compiling a file that contains a class of name Toto will
generate a new file Toto.class with its bytecode

A type definition

used to declare variables or fields like Toto t;
also defines which methods are available for this type

A mould / pattern for the creation of instances/objects of
this class

Based on the declaration of fields to be stored in its objects

It also defines the behavior (code) of methods

 Etienne Duris - Université Gustave Eiffel 24

Class structure

A class is defined by its complete name (FQDN)
Each class belongs to a package (no package = “default” package)
java.lang.String, java.util.List, fr.uge.imac.Example

A class contains three kinds of members
Fields, or attributes

Methods and constructors

Inner classes

Some members are static
They are related to the class itself, and not related to an object

Non static members cannot exist / have sense without an object

 Etienne Duris - Université Gustave Eiffel 25

package fr.upem.lecture;
public class Pixel {

public final static int ORIGIN = 0;
private int x;
private int y;
public Pixel(int x, int y) {

this.x = x;
this.y = y;

}
public void reset() {

x = ORIGIN;
y = ORIGIN;

}
public void printOnScreen() {

System.out.println("("+x+","+y+")");
}
public static boolean same(Pixel one, Pixel two) {

return (one.x==two.x) && (one.y==two.y);
}
public static void main(String[] args) {

var p1 = new Pixel(1,3);
var p2 = new Pixel(0,0);
p1.printOnScreen(); // (1,3)
System.out.println(Pixel.same(p1,p2)); // false
p1.reset();
System.out.println(Pixel.same(p1,p2)); // true

}
}

Belonging package

Constant

Fields

Constructor

(instance) methods

(class/static) methods(class/static) methods

(instance) methods

Local variables

Parameters

Arguments

 Etienne Duris - Université Gustave Eiffel 26

Pixel

class Pixel

reset

stack

m
ai

n
re

se
t

#p
x=1 → 0

heap

this=#p1

p1=#p1
p2=#p2

printOnScreen

same
main

#p1

#p

p1.reset()

y=ORIGIN

x=ORIGIN

y=3 → 0

When p1.reset() is invoked

its code is executed on the top of the stack, with this
being the value of p1 (#p1)
ORIGIN (static) is stored in the class itself (#s)

public void reset() {
x = ORIGIN;
y = ORIGIN;

}
// means

public void reset() {
this.x = Pixel.ORIGIN;
this.y = Pixel.ORIGIN;

}
// that is executed as
public void reset() {

#p1.x = #s;
#p1.y = #s;

}

ORIGIN=0#s

#p
x=0

#p2

y=0

 Etienne Duris - Université Gustave Eiffel 27

#p
x=0
y=0

Pixel

class Pixel

reset

stack

m
ai

n
sa

m
e

#p
x=0

heap

printOnScreen

same
main

#p1

#p2

#p

y=0

When Pixel.same(p1,p2) is invoked

its code is executed on the top of the stack
values of p1 and p2 are copied in one and two
No this parameter is involved (same() is static)

public static boolean
same(Pixel one, Pixel two) {
return (one.x==two.x)

&& (one.y==two.y);
}
// is executed as
public static boolean

same(Pixel one, Pixel two) {
return (#p1.x==#p2.x)

&& (#p1.y==#p2.y);
}

ORIGIN=0#s

one=#p1

p1=#p1
p2=#p2

same(p1,p2)

two=#p2

 Etienne Duris - Université Gustave Eiffel 28

Two main sorts of types in Java

Fields or local variables in Java are of one of two sorts

Primitive type: variable stores the value

declaration implies memory allocation to store its value
(depending on the type)

Reference type, or “object” type: variable stores
reference to the value (could be null)

declaration does NOT imply memory allocation for the value
(like a pointer)

int myIntValue; long myLongValue;

Pixel p1 = null;

y = 3

x = 1

#p1 @ class Pixel

p1=new Pixel(1,3); #p1

reference

object

 Etienne Duris - Université Gustave Eiffel 29

Primitive types in Java

Signed integer types (in two’s complement representation)
https://en.wikipedia.org/wiki/Two%27s_complement

byte: 8 bits [-128 .. 127]

short: 16 bits [-32768 .. 32767]

int: 32 bits [-2147483648 .. 2147483647]

long: 64 bits [-9223372036854775808 .. 9223372036854775807]

Unsigned character type (UTF-16 code units)
char: 16 bits ['\u0000' .. '\uffff']

Flotting point types (IEEE 754 representation)
https://en.wikipedia.org/wiki/IEEE_754

float: 32 bits
double: 64 bits

Boolean type
boolean: (true / false)

Default type
for integer literals

(1_000 is of type int, but
1_000L is of type long)

Default type for floating
point literals

(3.14 is of type double, but
3.14F is of type float)

https://en.wikipedia.org/wiki/IEEE_754

 Etienne Duris - Université Gustave Eiffel 30

All other types are “reference types”

API defined types (Application Programming Interface)

java.lang.Object, java.lang.String, java.util.Scanner…

String are different from C
and they are constant (immutable)!

“Hidden” types of the language

Arrays (of primitive or reference types)

User defined types

#2

#1 @class String

#1

t o t o \n#2

...
String s = "toto";

length = 4

#1
@class int[]

3

5

7

9

length = 2

#2
@class Pixel[]

null

null

#1

#2

null
int[] tab = {3,5,7,9};
String[] strings;
Pixel[] array = new Pixel[2];

Pixel p = new Pixel(0,0);

 Etienne Duris - Université Gustave Eiffel 31

The null value

When declaring a reference type variable, its default
value is null, a special value whose access is prohibited

Compiler try to avoid it

JVM throw an exception

Pixel p;
p.printOnScreen();

Compiler signals:
“The local variable p

may not have
been initialized

Pixel p = null;
p.printOnScreen();

Compiler is ok
but JVM throws

a NullPointerException

 Etienne Duris - Université Gustave Eiffel 32

Default value?

Local variables (or parameters) live in the stack
Their lifetime is the method call

Compiler requires they are initialized before to be used

Fields live in the heap
Their lifetime is those of their object

When an object is created/allocated, its field are initialized
by default to

0 (or 0.0) for primitive numeric types

false for booleans

null for any other reference type

This is the job
of the constructor

This is the job
of the “constructor”

(see later)

 Etienne Duris - Université Gustave Eiffel 33

Memory allocation

To assign a value other than null to a variable, we need
a “valid” reference (to a reserved memory part of the heap)

Such a valid reference is provided by the new operator

new needs to know the size to allocate (like malloc)

it’s given by the type name that follows the operator

Which is also the “constructor” name

For arrays, the number of elements is required

var p = new Pixel();

var array = new int[10];
var array = new Pixel[10];

Pixel class knows that 2 int
fields are required to store

each of its instances

Either 10 times the size of a
primitive (here int), or 10 times
the size of a reference (for any

other reference type)

 Etienne Duris - Université Gustave Eiffel 34

Memory (de-)allocation

The new operator delegates memory management to the JVM

Similarly, memory liberation is managed by the JVM (its Garbage
Collector or GC)

Memory of objects that are no more used could be recycled
and then available for new objects.

A variable stops to reference (use) an object when

we leave the block where it was defined on the stack: it dies,
disappears

It is assigned to an other value (either on the stack or the heap)

We could help the GC by explicitly assigning null to variable
referencing objects we do not use anymore

 Etienne Duris - Université Gustave Eiffel 35

Java execution model

From java source file, the compiler
produces bytecode (high level
assembly), independent from the
host execution system

This bytecode is interpreted
by any JVM for its host OS
A JIT (Just In Time compiler)
optimizes execution

JVM implementations
are provided for each
host execution system

Linux OSX Windows

JVM

(JIT)

JVM

(JIT)

JVM

(JIT)

Device Device Device

.java

.class

 Compile: (javac Point.java)

JVM (java Point) interpret the bytecode

 Etienne Duris - Université Gustave Eiffel 36

Encapsulation

“The only way to change the state of an object is to
use its methods”

=> Limits the access/modification of a field (object state) to
a small amount of code

Indeed, only methods of its class (in the same file!)

=> Helps programmer to guarantee invariant

For instance, field x is always positive

=> allows side effects to be controlled

 Etienne Duris - Université Gustave Eiffel 37

A founding principle of OOP

Helps design: one responsibility / one object

Helps debug: modifying code is local

Helps maintenance (correction/evolution)

Accessibility of the object’s inside is restricted
to the methods of its class

The interface of the object
(interaction with outside)
is the set of its public methods

 Etienne Duris - Université Gustave Eiffel 38

How to code encapsulation?

Declare all the fields with the keyword private

Prohibits their access outside the class

Declare a method with the keyword public iff it stands for
a required functionality (for outside)

private otherwise
avoid to give access to
something not required!

public class Pixel {
private int x;
private int y;
public double distance() {

return Math.sqrt(x*x + y*y);
}
private double theta() {

return Math.atan2(y, x);
}
...

}

If some internal
code requires

trigonometry stuff

 Etienne Duris - Université Gustave Eiffel 39

Three level of accessibility in Java

In the class: members (fields, methods, inner class) could be

private : accessible only in this class

default (no modifier): accessible from this package’s classes

protected : default + inherited classes in other packages

public : accessible from anywhere the class is accessible

In the package: classes could be

default : accessible only from this package’s classes

public : accessible from anywhere the package is accessible

A module explicitly exports accessible packages
http://tutorials.jenkov.com/java/modules.html

http://tutorials.jenkov.com/java/modules.html

 Etienne Duris - Université Gustave Eiffel 40

Constructor and object creation

An object (instance) is created in three steps:
var p1 = new Pixel(1,3);

The operator new asks for the JVM for a memory zone
(the size is known thanks to the following class name)

Each field is assigned to the default type value (0, false, null)

A initialization block could be executed

The class name is also the name of the constructor of
the class (kind of special method used to initialize the
object, based on potential parameters)

new returns the reference to the memory zone

 Etienne Duris - Université Gustave Eiffel 41

Allocation and initialization
are critical operations for objects

If initialization relies on a “init” method to be called after
allocation (like after malloc in C), it could be forgotten

public class Calc {
 private int divisor; // required invariant : « divisor!=0 »
 public void init(int divisor) { // simple method initialization
 if (divisor == 0) {
 throw new IllegalArgumentException("divisor cannot be null");
 }
 this.divisor = divisor;
 }
 public double divide(int value) {
 return value / divisor;
 }
} public static void main(String[] args) {

 Calc c = new Calc();
 c.init(3);
 var res = c.divide(15);
}

What if this call
is forgotten?

“default”
constructor

 Etienne Duris - Université Gustave Eiffel 42

Constructors allow initialization
to be guaranteed

Constructor is a compulsory entry point

Indeed, an object cannot be created without executing a
constructor of its class (contrarily to ‘init’ after malloc in C)

public class Calc {
 private int divisor; // required invariant : « divisor!=0 »
 public Calc(int divisor) { // constructor mandatory initialization
 if (divisor == 0) {
 throw new IllegalArgumentException("divisor cannot be null");
 }
 this.divisor = divisor;
 }
 public double divide(int value) {
 return value / divisor;
 }
}

public static void main(String[] args) {
 Calc c = new Calc(3);
 var res = c.divide(15);
}Initialization

cannot be forgotten

 Etienne Duris - Université Gustave Eiffel 43

Constructor

Kind of “special method”:

Same name as the class, no return type

Cannot be called without new operator

If none explicitly defined,
compiler adds one “default”

without parameter

If at least one is explicitly
defined, compiler does
not add anything

public class Box {
 private int field;
 public static void main(String[] a){
 Box b = new Box(); // OK
 }
}

public class Box {
 private int field;
 public Box(int field) {
 this.field = field;
 }
 public static void main(String[] a){
 Box b = new Box(); // undefined
 Box b = new Box(2); // OK
 }
}

 Etienne Duris - Université Gustave Eiffel 44

Constructor overloading (“surcharge”)

Several constructors could be defined

Overloaded to offer additional initialization services

Generally, one is the “most general”

the others should refer to
avoid code duplication

Use this() to call a constructor
from an other one

Do not use new
(no need to re-allocate!)

public class Pixel {
 private int x;
 private int y;
 public Pixel(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public Pixel() { // origin
 this(0,0);
 }
 public Pixel(int v) { // diagonal
 this(v, v);
 }
}

 Etienne Duris - Université Gustave Eiffel 45

final fields

To guarantee invariants after object creation, we could
ensure the fields will never change

If a field is declared final,
then compiler will check
that it is assigned
once and only once,
whatever the constructor
used

private and final are
recommended field
modifiers to prevent
side effects

public class Pixel {
 private final int x;
 private int y;
 public Pixel(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public Pixel() {
 // error: final field x may not
 // have been initialized
 }
 public Pixel(int v) {
 this(v, v);
 }
 public static void main(String[] a){
 Pixel p = new Pixel(1);
 p.x = 0; // error: final field x
 // cannot been assigned
 }
}

 Etienne Duris - Université Gustave Eiffel 46

private constructor

Some classes are not intended to create objects

Defining its constructor(s)
as private prevent any
object creation outside
the class

Also use when object creation must be performed by a
factory method…

The code of a constructor must be simple (assignments)

Difficult to debug something that is partially initialized

If complex initialization code is required, prepare it apart of
the constructor itself

public class Utils {
 private Utils() { }
 public static int sum(int[] array) { ... }
}

 Etienne Duris - Université Gustave Eiffel 47

Factory example

To avoid complex
computations in the
unstable initialization
phase of an object creation

public class Box {
 private int field;
 public Box(int param) {
 // oh no !!
 // a complex code that uses
 // param to compute field
 field = ...
 }
}

public static void main(String[] a) {
 var b = new Box(3);
}

 Etienne Duris - Université Gustave Eiffel 48

Factory example

To avoid complex
computations in the
unstable initialization
phase of an object creation

public class Box {
 private int field;
 public Box(int param) {
 // oh no !!
 // a complex code that uses
 // param to compute field
 field = ...
 }
}

public static void main(String[] a) {
 var b = Box.createBox(3);
}

Offer a public static
factory method that

prepares computations
and then calls the private

constructor to create object

public class Box {
 private int field;
 private Box(int field) {
 this.field = field; // cool
 }
 // factory method
 public static Box createBox(int param) {
 // a complex code that uses param
 // to compute field (in static context)
 var field = ...
 return new Box(field);
 }
}

 Etienne Duris - Université Gustave Eiffel 49

Encapsulation

[reminder] Encapsulation: the only way to change the
state of an object is to use its methods

class Point {
private int x;
private int y;
public void setX(int x) {

this.x = x;
}

}

class Circle {
private final Point center;
public Circle(Point center) {

this.center = center;
}

}

class Usage {
public void foo() {

var p = new Point(2,3);
var c = new Circle(p);

p.setX(4); // Oups!
}

}

center=#p1

stack

fo
o

se
tX

heap

this=#p1

p=#p1
c=#c1

#p1

#c1

p.setX(4)

x=2->4
y=3

x=4

 Etienne Duris - Université Gustave Eiffel 50

Side effect is the problem

No side effect => no problem. So, avoid side effects.
Object’s state modification should imply new object creation

class Point {
private int x;
private int y;
public void setX(int x) {

this.x = x;
}

}

class Circle {
private final Point center;
public Circle(Point center) {

this.center = center;
}

}

class Usage {
public void foo() {

var p = new Point(2,3);
var c = new Circle(p);

p.setX(4); // Oups!
}

}

center=#p1

stack

fo
o

se
tX

heap

this=#p1

p=#p1
c=#c1

#p1

#c1

p.setX(4)

x=2->4
y=3

x=4

Change of the circle state
without invoking any

of its method

mutablility?
sharing?

 Etienne Duris - Université Gustave Eiffel 51

Solution 1: make Point immutable

The fields of objects cannot change their value

class Point { // immutable
private final int x;
private final int y;
public Point setX(int x) {

return new Point(x,this.y);
}

}

class Circle {
private final Point center;
public Circle(Point center) {

this.center = center;
}

}

class Usage {
public void foo() {

var p = new Point(2,3);
var c = new Circle(p);
p = p.setX(4); // OK!

}
}

center=#p1

stack

fo
o

se
tX

heap

#p1

#c1

x=2
y=3

this=#p1

p=#p1->#p2
c=#c1

p=p.setX(4)

x=4

#p2

x=4
y=3

 Etienne Duris - Université Gustave Eiffel 52

Immutable class

A class is immutable if it does not allow its object state to
change

Unfortunately, in Java, it is not possible to enforce this by a
keyword or through the compiler

We have to write it down explicitly in the documentation

We could only enforce that (all) the fields could not be modified
(either of primitive type, or reference type). Not sufficient!

 Etienne Duris - Université Gustave Eiffel 53

Arrays (elements) are always mutable

Immutable reference type fields could
point to mutable memory zones

length = 4

#a
@class int[]

0

0

0→ -30

0

array = #a

#s
@class Stacks=#2

public class Stack {
 private final int[] array; // immutable field
 public Stack(int capacity) {
 array=new int[capacity];
 }
 public int[] asArray() {
 return array;
 }
 public static void main(String[] args) {
 Stack s=new Stack(4);
 s.asArray()[2]=-30; // impact array[2] !!!
 }
}

s.asArray()=#2

Immutable field

mutable
memory

zone

 Etienne Duris - Université Gustave Eiffel 54

Arrays (elements) are always mutable

We must prevent outside to access
(and modify) inside

length = 4

#a
@class int[]

0

0

0

0
array = #a

#s
@class Stacks=#2

public class Stack {
 private final int[] array; // immutable field
 public Stack(int capacity) {
 array=new int[capacity];
 }
 public int[] asArray() {
 return array.clone(); // Defensive copy
 }
 public static void main(String[] args) {
 Stack s=new Stack(4);
 s.asArray()[2]=-30; // OK
 }
}

s.asArray()=#2

Immutable field

length = 4

#c
@class int[]

0

0

0→ -30

0

defensive
copy

 Etienne Duris - Université Gustave Eiffel 55

How make a class immutable?

1. declare all its fields as final

2. arguments of the constructor(s) must be

either value of primitive type

or reference to an object of immutable class

or if a reference to a mutable class, then make a defensive
copy of this object/reference

3. If a field of a mutable class must be published outside,
then give a defensive copy of this object/reference

 Etienne Duris - Université Gustave Eiffel 56

Solution 2: with Point mutable

If class Point is mutable, class Circle must make
defensive copies each time it exchanges with outside
class Point { // mutable

private int x;
private int y;
public void setX(int x) {

this.x = x;
}

}

class Circle { // immutable
private final Point center;
public Circle(Point center) {

this.center=center.clone();
}

// publish only defensive copy
public Point getCenter() {

return center.clone();
}

}

class Usage {
public void foo() {

var p = new Point(2,3);
var c = new Circle(p);
p.setX(4); // OK

}
}

center=#p2

stack

fo
o

se
tX

heap

this=#p1

p=#p1
c=#c1 #p1

#c1

p.setX(4)

x=2->4
y=3

x=4

#p2

x=2
y=3

defensive
copy

 Etienne Duris - Université Gustave Eiffel 57

mutable or not?

Usually

Small objects could be immutable

Garbage Collector easily recycle them

Bigger objects (arrays, lists, hash tables…) are mutable

For efficiency reasons

And if a field f of a class C is mutable, use defensive copy on
f to make the class C immutable

Note: clone() requires some explanations… see later

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57

