VIETNAM NATIONAL CENTRE FOR NATURAL SCIENCE AND TECHNOLOGY

INSTITUTE OF MATHEMATICS

1 they

SOME PROPERTIES OF T-NORMS WITH THRESHOLD

Bui Cong Cuong, Le Ba Long Pham Van Loi and Dinh Trong Hieu Preprint 2001/30

Hanoi 11/2001

Some properties of t-norms with threshold

Bui Cong Cuong*, Le Ba Long**, Pham Van Loi*and Dinh Trong Hieu* *Institute of Mathematics. ** Institute of Post and Communication Technology e-mail: <u>bccuong@thevinh.ncst.ac.vn</u>

Abstract.

T-norm with threshold firstly is introduced by Dubois and Prade [4] and more considered by Inacu [5]. Then some new classes of t-norms with threshold, t-conorms with threshold and fuzzy implications with threshold are discussed in [6,7]. This paper is devoted to the definitions and some new properties of these operators.

1.Introduction

T-norms,t-conorms and fuzzy implications are basis connectives in fuzzy logic. Threshold is also an important natural concept in many realworld problems. A combination of these concepts should give a new approach to new problems of the intelligent systems.

T-norm with threshold firstly is introduced by Dubois and Prade [4] and more considered by Inacu [5]. Then some new classes of t-norms with threshold, t-conorms with threshold and fuzzy implications with threshold are discussed in [6,7].

In this paper we will give some new properties of these connectives . Some new operators have been added in Fuzzy ToolBox of the MatLab.

2. T-norm with threshold

Definition 2.1. T-norms are functions t: $[0,1] \times [0,1] \rightarrow [0,1]$ which satisfy the following conditions :

i/ t(1,x) = x, for any x

ii/ t(x,y) = t(y,x)

iii/ $t(x_1,y_1) \le t(x_2,y_2)$, if $x_1 \le x_2$, $y_1 \le y_2$ iv/ t(t(x,y),z) = t(x,t(y,z)), for any $0 \le x,y,z \le 1$

(see [1.p.30], [3, p.82]).

Some t-norms are the followings: .

- $\min(Zadeh)$ $t(x,y) = \min(x,y)$
- production t(x,y) = x.y
- Lukasiewicz: t(x,y) = max{x+y-1,0}

$$t(x, y) = min, (x, y) =$$

$$= \begin{cases} \min\{x,y\} & \text{if } x+y > l \\ 0 & \text{if } x+y \le l \end{cases}$$

drastic product t-norm

$$Z(x,y) = \begin{cases} \min\{x,y\} & \text{if} \quad \max(x,y) = 1\\ 0 & \text{if} \quad \max(x,y) < 1 \end{cases}$$

Let α be a threshold, i.e. $\alpha = (\alpha_1, \alpha_2)$, $0 \le \alpha_1, \alpha_2 < 1$.

Let $t_1(x,y)$, $t_2(x,y)$ be t-norms such that $t_2(x,y) \le t_1((x,y)$ for $0 \le x, y \le 1$.

Definition 2.2. A t-norm with threshold $T(x,y,\alpha)$ is defined on $[0,1] \times [0,1]$ by

$$T(x,y,\alpha) = \begin{cases} t_1(x,y) & \text{if } \alpha_1 \le x \text{ and } \alpha_2 \le y \\ t_2(x,y) & \text{if } x < \alpha_1 \text{ or } y < \alpha_2 \end{cases}$$

 $T(x,y,\alpha)$ is a t-norm with threshold of first type if

$$T(x,y,\alpha) = \begin{cases} \min(x,y) & \text{if } \alpha_1 \le x \text{ and } \alpha_2 \le y \\ t_2(x,y) & \text{if } x < \alpha_1 \text{ or } y < \alpha_2 \end{cases}$$

Let $t_2(x,y)$ be a t-norm such that $t_2(x,y) \le x.y$ for all x,y

 $T(x,y,\alpha)$ is a Larsen' t-norm with threshold if

$$T(x,y,\alpha) = \begin{cases} x.y & \text{if } \alpha_1 \le x \text{ and } \alpha_2 \le y \\ t_2(x,y) & \text{if } x < \alpha_1 \text{ or } y < \alpha_2 \end{cases}$$

Proposition 2.3. For any threshold α , $T(x,y,\alpha)$ have the following properties: i) $Z(x,y) \leq T(x,y,\alpha) \leq \min(x,y)$ for any x,y, ii) $T(x,y,\alpha)$ is monotone nondecreasing in x,y and monotone nonincreasing in α ,

and monotone nonincreasing in o.,

iii) $T(x,1,\alpha) = T(1,x,\alpha) = x$, for any x, iv) $T(x,0,\alpha) = T(0,x,\alpha) = 0$, for any x.

The commutativity and the associativity of the tnorm with threshold are not allways hold. We shall consider the following example.

Assume that $\alpha_2 < \alpha_1$. Let $x=(x_1, x_2)$ be a point such that $\alpha_1 < x_1 < 1$, $\alpha_2 < x_2 < \alpha_1$, Since $x_1 \ge \alpha_1$ and $x_2 \ge \alpha_2$, $T(x_1, x_2, \alpha) = t_1(x_1, x_2) = \min(x_1, x_2) = x_2$. But $x_2 < \alpha_1$, the t-norm with threshold $T(x_2, x_1, \alpha) = t_2(x_2, x_1)$. If we choose $t_2(x, y) = xy$, we have $T(x_2, x_1, \alpha) = x_1x_2 < x_2$. It means $T(x_1, x_2, \alpha) \neq T(x_2, x_1, \alpha)$.

For the associativity we consider the following example.

Assume $\alpha_1 = 0.5$, $\alpha_2 = 0.32$. (x,y,z) = (0.6, 0.4, 0.3). Then we choose $t_1(x_1,x_2) = \min(x_1,x_2)$, $t_2(x,y) = x.y$. $T(x,y,\alpha) = t_1(x_1,x_2) = \min(0.6,0.4) = 0.4$. Thus $T(T(x,y,\alpha),z,\alpha) = t_2(0.4,0.3) = 0.12$. But $T(y,z,\alpha) = T(0.4, 0.3, \alpha) = 0.12$ and therefore

 $\begin{array}{l} T(x, T(y,z,\alpha),\alpha) \ = t(\ 0.6,\ 0.12) = 0.6 \times 0.12 \\ = 0.072 \ \neq \ T(T(x,y,\alpha),z,\alpha) \ . \end{array}$

Now we denote $a = \min(\alpha_1, \alpha_2), b = \max(\alpha_1, \alpha_2)$. Denote

 $D^*(\alpha) = \{(x,y): b \le x, y \le 1\},\$

 $D_*(\alpha) = \{(x,y): 0 \le x \le a \text{ or } 0 \le y \le a \text{ or } a \le x, y \le b\}$

Proposition 2.4. The t-norm with threshold $T(x,y,\alpha)$ is commutative, i.e. $T(x,y,\alpha) = T(y,x,\alpha)$, if (x,y) belongs one of the following sets : $D^*(\alpha)$, $D_*(\alpha)$.

If $\alpha_1 = \alpha_2$, then $T(x,y,\alpha)$ is commutative on $[0,1] \times [0,1]$.

Example 2.5.

 $T(x,y,\alpha) = \begin{cases} \min(x,y) & \text{if } 0.2 \le x \text{ and } 0.4 \le y \\ \max\{x+y-1, 0\} \text{ if } x < 0.2 \text{ or } y < 0.4 \end{cases}$

3. t-conorm with threshold

Definition 3.1. t-conorms are functions s: [0,1]x $[0,1] \rightarrow [0,1]$ satisfying the following conditions :

 $\begin{array}{ll} i' & s(o,x) = x \text{, for any} & x \in [0,1] \\ ii' & s(x,y) = s(y,x) \\ iii' & s(x_1,y_1) \leq s(x_2,y_2) \text{, if } x_1 \leq x_2, y_1 \leq y_2 \\ iv' & s(s(x,y),z) = s(x,s(y,z)) \text{, for any } 0 \leq x,y,z \leq 1 \text{ .} \\ (\text{ see } [1,p.31], [3, p.82]) \end{array}$

Let β be a threshold, i.e. $\beta = (\beta_1, \beta_2), 0 \le \beta_1, \beta_2 \le 1$.

Let $s_1(x,y)$, $s_2(x,y)$ be t-conorms such that $s_1(x,y) \le s_2(x,y)$ for all x,y.

Definition 3.2. T-conorm with threshold $S(x,y,\beta)$ is defined by

$$S(x,y,\beta) = \begin{cases} s_1(x,y) & \text{if } x \leq \beta_1 \text{ and } y \leq \beta_2 \\ s_2(x,y) & \text{if } \beta_1 < x \text{ or } \beta_2 < y \end{cases}$$

A t-conorm with threshold of first type $S(x,y, \beta)$ is defined on $[0,1] \ge [0,1]$ by

$$S(x,y,\beta) = \begin{cases} \max(x,y) & \text{if } x \leq \beta_1 \text{ and } y \leq \beta_2 \\ s_2(x,y) & \text{if } \beta_1 < x \text{ or } \beta_2 < y \end{cases}$$

We denote $s_*(x,y)$ is the t-conorm, such that $s_*(x,y)=\max(x,y)$, if $\min(x,y)=0$, and $s_*(x,y)=1$, otherwise.

 $\begin{array}{ll} \mbox{Proposition 3.3. For any threshold} & \beta & , \\ S(x,y,\beta) \mbox{ have the following properties :} \\ i) \mbox{max}(x,y) \leq S(x,y,\beta) \leq s_*(x,y) \mbox{ for any } x,y \\ ii) \mbox{ S}(x,y,\beta) \mbox{ is monotone non-decreasing in } x,y \\ and \mbox{ monotone non-increasing in } \beta \\ iii) \mbox{ S}(0,x,\beta) = x = S(x,0,\beta), \mbox{ for any } x, \end{array}$

iv) $S(1,x,\beta) = 1 = S(x,1,\beta)$, for any x.

Analogously to the t-norm with threshold, the commutativity and the associativity of the tconorm with threshold are not allways hold.

Example 3.4.

 $S(x,y,\beta) = \begin{cases} max(x,y) & if x \le 0.6 \text{ and } y \le 0.6 \\ x+y-xy & if 0.6 < x \text{ or } 0.6 < y \end{cases}$

4. De Morgan triples

Definition 4.1. A function $n : [0,1] \rightarrow [0,1]$ satisfying conditions : n(0) = 1, n(1) = 0, nonincreasing is called a negation.. If n(n(x)) = x for all x, the negation is a strong negation. [2, p.100].

Let t be a t-norm, let s be a t-conorm and let n be a strong negation.

Definition 4.2. The triple (t,s,n) is called a De Morgan triple if n(s(x,y)) = t(n(x), n(y)) for all x,y.

Let $T(x,y,\alpha)$ be a t-norm with threshold. let $S(x,y,\beta)$ be a t-conorm with threshold.

Definition 4.3. The triple (T,S, n) is called a De Morgan triple with threshold if $n(S(x,y,\beta)) = T(x,y,\alpha)$ for all x,y.

Theorem 4.4. Let (t_1,s_1,n) , (t_2,s_2,n) be a De Morgan triple, n be a strong negation. Let T be a t-norm with threshold α and let S be a tconorm with threshold β and $\beta = n (\alpha)$, then the triple (T,S,n) is a De Morgan triple with threshold.

5. t-norm with threshold and genertors

Let t be a t-norm, let f be an order isomorphism, $f \in Aut(I)$ (see [2,p.87]).

Denote $t^2(a) = t(a,a)$, $t^3(a) = t(a,t^2(a,a))$, and so on. A t-norm is nilpotent if for $a \neq 1$, $t^n(a) = 0$ for some positive integer n, the n depending on a.. A t-norm is strict if for $a \neq 0$, $t^n(a) > 0$ for every positive integer n. (see [2,p.90]).

Theorem 5.1. Define T, by

 $T_f(x, y) = f^{-1}(t(f(x), f(y)))$ for $0 \le x, y \le 1$

The function T_f is an t-norm.

Moreover if t is a continuous, Archimedean, then T_f is also continuous and Archimedean.

Let $\alpha = (\alpha_1, \alpha_2)$ be a threshold. Define $\alpha' = (f^{-1}(\alpha_1), f^{-1}(\alpha_2))$.

Theorem 5.2. Let $T(x, y, \alpha)$ be a t-norm with threshold α . The function $T_f : [0,1] \times [0,1] \rightarrow [0,1]$ defined by

 $T_f(x, y, \alpha') = f^{-1}(T(f(x), f(y), \alpha))$ for $0 \le x, y \le 1$ is a t-norm with threshold α' .

Proof.

First, we suppose $x \ge f^{-1}(\alpha_1)$ and $y \ge f^{-1}(\alpha_2)$ Since f is an order isomorphism, we have

$$\begin{split} f(x) &\geq f\!\!f^{-1}(\alpha_1) \,, \qquad f(y) \geq f\!\!f^{-1}(\alpha_2) \,, \\ \text{i.e} & f(x) \geq \alpha_1, \qquad f(y) \geq \alpha_2 \,, \text{ then} \\ T_f(f(x), f(y), \alpha') &= f^{-1}(t(f(x), f(y), \alpha)) \\ &= f^{-1}(t_1(f(x), f(y))) \end{split}$$

Moreover, using theorem 5.1, the function $f^{I}(t_{I}(f(x), f(y)))$ is an t-norm.

If $x < f^{-1}(\alpha_1)$ or $y < f^{-1}(\alpha_2)$, then $f(x) < ff^{-1}(\alpha_1)$ or $f(y) < ff^{-1}(\alpha_2)$, i.e. $x < \alpha_1$ or $y < \alpha_2$

Therefore

 $T_{f}(x, y, \alpha') = f^{-1}(T(f(x), f(y), \alpha))$ = $f^{-1}(t_{2}(f(x), f(y)))$

Moreover the function $f^{-1}(t_2(f(x), f(y)))$ is a t-norm. Finally, we have

$$T_{f}(x, y, \alpha) = \begin{cases} f^{-1}(t_{1}(f(x), f(y))) & \text{if } x \ge f^{-1}(\alpha_{1}) & \text{an} \\ & y \ge f^{-1}(\alpha_{2}) \\ f^{-1}(t_{2}(f(x), f(y))) & \text{if } x < f^{-1}(\alpha_{1}) & \text{or} \\ & y < f^{-1}(\alpha_{2}) \end{cases}$$

Since for any $0 \le x, y \le 1$,

$$\begin{split} t_2(x,y) &\leq t_1(x,y) \text{ .Then} \\ t_2(f(x),f(y)) &\leq t_1(f(x),f(y)) \\ \text{Since } f \quad \text{is an order isomorphism} \\ f^{-1}(t_2(f(x),f(y))) &\leq f^{-1}(t_1(f(x),f(y))) \\ \text{It means that } T_f(x,y,\alpha') \quad \text{is a t-norm with} \\ \text{threshold } \alpha' &= (f^{-1}(\alpha_1),f^{-1}(\alpha_2)) \,. \end{split}$$

Corollary 5.3.

If

 $t(x, y, \alpha') = \begin{cases} \min(x, y) & \text{if } x \ge \alpha_1 & \text{and } y \ge \alpha_2 \\ t_2(x, y) & \text{if } x < \alpha_1 & \text{or } y < \alpha_2 \end{cases}$ then $T_f(x, y, \alpha')$ is a t-norm with threshold α' of type 1.

Indeed, if $t_1(x, y) = \min(x, y)$, then $f^{-1}(\min(f(x), f(y))) = \min(x, y)$

Corollary 5.4. If $T(x, y, \alpha)$ is a Larsen's type tnorm with threshold, then $T_f(x, y, \alpha')$ is also a Larsen's type t-norm with threshold α' if and only if $f(x, y) = f(x) \cdot f(y)$ for all $x \ge f^{-1}(\alpha_1)$,

 $y \ge f^{-1}(\alpha_2)$ Indeed, for each order isomorphism $f(x \cdot y) = f(x) \cdot f(y)$ is equivalence to $f^{-1}(f(x) \cdot f(y)) = x \cdot y$

This case is hold, for example for $f(x) = x^r$ for r > 0.

Now we generalize theorem 5.2 to Archimedean t-norms.

Definition 5.5. Let t be a t-norm such that t is continuous in each variable. t is called to be an Anchimedean if t(x, x) < x for all $x \in (0,1)$.

Let $0 \le a < 1$ and let f be an order isomorphism from [0,1] to [a,1]. This means that f is one-to-one and onto and $x \le y$ if and only if $f(x) \le f(y)$.

Denote $z_1 \lor z_2 = max(z_1, z_2)$, for $z_1, z_2 \in \mathbb{R}^1$. **Theorem 5.6**. Let *t* be an Archimedean t-norm. The function T_t is defined by

$$T_f(x, y) = f^{-1}(t(f(x), f(y)) \lor a)$$

 T_f is an Archimedean t-norm.

See [2, p.87, 88]

Let $t_1(x, y), t_2(x, y)$ be t-norms such that $t_2(x, y) \le t_1(x, y)$ for all $0 \le x, y \le 1$.

Let f be an order isomorphism $f: [0,1] \rightarrow [a,1]$.

Theorem 5.7. We define

$$T_{f}(x,y) = \begin{cases} f^{-1}(t_{1}(f(x), f(y)) \lor a & if \quad f(x) \ge \alpha_{1} \\ and \quad f(y) \ge \alpha_{2} \\ f^{-1}(t_{2}(f(x), f(y)) \lor a & if \quad f(x) < \alpha_{1} \\ or \quad f(y) < \alpha_{2} \end{cases}$$

If t_1 , t_2 are Archimedean then T_f is a t-norm with threshold

$$\alpha' = (f^{-1}(\alpha_1 \lor f(0)), f^{-1}(\alpha_2 \lor f(0))).$$

Proof.

Since theorem 5.6 the function on $[0,1] \times [0,1]$

$$f^{-1}(t_1(f(x), f(y) \lor a)), \quad f^{-1}(t_2(f(x), f(y) \lor a))$$

are Archimedean t-norms.

Using the order isomorphism f, we have

$$t_2(f(x), f(y)) \le t_1(f(x), f(y)) \quad \text{for all} \\ 0 \le x, y \le 1$$

$$f^{-1}(t_2(f(x), f(y) \lor a) \le f^{-1}(t_1(f(x), f(y) \lor a))$$

Moreover,

If
$$z_1 \ge f^{-1}(\alpha_1 \lor f(0))$$

 $f(z_1) \ge ff^{-1}(\alpha_1 \lor f(0) = \alpha_1 \lor f(0) = \alpha_1 \lor a$

Inverse $f(z_1) \ge \alpha_1$, and it is obvious $f(z_1) \ge a$ It implies $f(z_1) \ge z_1 \lor a$ then $f^{-1}(f(z_1)) \ge f^{-1}(\alpha_1 \lor a)$. It means that $z_1 \ge f^{-1}(\alpha_1 \lor a)$ Analogously $z_2 \ge f^{-1}(\alpha_2 \lor f(0))$ and it is

equivalent to $f(z_2) \ge \alpha_2$.

Definition 5.8. The t-norm with threshold is defined by

 $T(x, y, \alpha) = \begin{cases} t_1(x, y) & \text{if } x \ge \alpha_1 & \text{and } y \ge \alpha_2 \\ t_2(x, y) & \text{if } x < \alpha_1 & \text{or } y < \alpha_2 \end{cases}$ $T(x, y, \alpha) \text{ is called Archimedean if } t_1(x, y), t_2(x, y) \text{ are Archimedean t-norm.}$

Corollary 5.9. If t_1, t_2 are Archimedean t-norm, the function $T_f(x, y)$ defined in Theorem 5.7 is an Archimedean t-norm.

Corollary 5.10. Let $T(x, y, \alpha)$ be a t-norm with threshold of type 1. Let $f:[0,1] \rightarrow [a,1]$ be an order isomorphism. If $a \leq \min(\alpha_1, \alpha_2)$ then T_f given in Theorem 5.7. is a t-norm with threshold of type 1 with threshold $\alpha' = (f^{-1}(\alpha_1), f^{-1}(\alpha_2))$.

Corollary 5.11. Let $T(x, y, \alpha)$ be a Larsen's tnorm with threshold α . Let $f:[0,1] \rightarrow [a,1]$ be an order isomorphism. If $a \leq \min(\alpha_1, \alpha_2)$ then T_f given in Theorem 5.7. is a Larsen's t-norm with threshold $\alpha' = (f^{-1}(\alpha_1), f^{-1}(\alpha_2))$ if and only if $f(x, y) = f(x) \cdot f(y)$ for all $x \geq \alpha_1, y \geq \alpha_2$.

Corollary 5.12. Let $T(x, y, \alpha)$ be a t-norm with threshold α . Let $f:[0,1] \rightarrow [a,1]$ be an order isomorphism. If $\alpha \geq \max(\alpha_1, \alpha_2)$ then T_f defined in the Theorem 5.7 has the form

 $T_f(x,y) = f^{-1}(t_1(f(x), f(y) \vee a)),$

Let $f \in Aut(l)$, $t_p=x.y$, $t_L=max\{x+y-1,0\}$. We consider the following t-norms with threshold of first type:

$$t_{p}(x, y, \alpha) = \begin{cases} \min(x, y) & \text{if } x \ge \alpha_{1} \text{ and } y \ge \alpha_{2} \\ x.y & \text{if } x < \alpha_{1} \text{ or } y < \alpha_{2} \end{cases}$$
$$t_{L}(x, y, \alpha) = \begin{cases} \min(x, y) & \text{if } x \ge \alpha_{1} \text{ and } y \ge \alpha_{2} \\ \max\{x + y - 1, 0\} & \text{if } x < \alpha_{1} \text{ or } y < \alpha_{2} \end{cases}$$

Theorem 5.13. Let $T(x, y, \alpha)$ be a t-norm with threshold of first type. If $t_2(x, y)$ is a strict t-norm, then there is an isomorphism $f \in Aut(I)$ such that

$$\begin{aligned} &I(x, y, \alpha) = t_{pf}(x, y, \alpha) \\ &= \begin{cases} f^{-1}(\min(f(x), f(y)) & \text{if } x \ge \alpha_1 \text{ and } y \ge \alpha_2 \\ f^{-1}(f(x), f(y)) & \text{if } x < \alpha_1 \text{ or } y < \alpha, \end{cases} \end{aligned}$$

If $t_2(x,y)$ is a nilpotent t-norn then there is an isomorphism $f \in Aut(l)$ such that $T(x, y, \alpha) = t_{ij}(x, y, \alpha) =$

$$\begin{cases} f^{-1}(\min(f(x), f(y))) & \text{if } x \ge \alpha_1 \text{ and } y \ge \alpha_2 \\ f^{-1}(\max(f(x) + f(y) - 1, 0)) & \text{if } x < \alpha_1 \text{ or } y < \alpha_1 \end{cases}$$

6. Fuzzy implication with threshold

Definition 6.1. A fuzzy implication I is a function I: $[0,1] \times [0,1] \rightarrow [0,1]$ satisfying condition I₀: I(0,0) =1, I(0,1)=1, I(1.0)=0. I(1,1)=1. ([2].p.144)

For fuzzy implication one can consider following conditions:

 I_1 . I(0,y) = 1 for all y

 I_2 . I(x,1) =1 for all x

I₃. If $x_1 \le x_2$ then $I(x_1,y) \ge I(x_2,y)$ for all y I₄. If $y_1 \le y_2$ then $I(x,y_1) \le I(x,y_2)$ for all x.

(see [3],p.86).

These properties are required in different papres and they could be important also in some applications.

Let β be a threshold, i.e. $\beta = (\beta_1, \beta_2), 0 < \beta_1, \beta_2 \le 1.$

Let S be a t-conorm with threshold and let n be a negation.

Definition 6.2. An S-implication is a function I_S : [0,1] x [0,1] \rightarrow [0,1] of the form $I_S(x,y,\beta) = S(n(x),y,\beta).$ **Proposition 6.3.** An S-implication I_S is a fuzzy implication. Moreover, I_S satisfies conditions I_1, I_2, I_3, I_4 .

Definition 6.4. Let T be a t-norm with threshold α . An T-implication is a function

 $I_T: [0,1] \times [0,1] \to [0,1] \text{ of the form} \\ I_T(x,y, \alpha) = \sup \{ u: T(x,y, \alpha) \le y \}.$

A generalization of these implications is the following.

Let $I_1(x,y)$, $I_2(x,y)$ be implications such that $I_1(x,y) \leq I_2(x,y)$ for all x,y .

Definition 6.6. An implication with threshold $I(x,y,\beta)$ is defined by

$$I(x,y,\beta) = \begin{cases} I_1(x,y) & \text{if } (1-\beta_1) \le x \text{ and } y \le \beta_2 \\ I_2(x,y) & \text{if } x < (1-\beta_1) \text{ or } \beta_2 < y \end{cases}$$

Theorem 6.7.

An implication with threshold I(x,y, β) is a fuzzy implication. Moreover, if I₁(x,y), I₂(x,y) satisfy conditions I₁,I₂, I₃, I₄, then I(x,y, β) also satisfies these conditions.

S-implication $I_S\,$ and I-implication $I_T\,$ are implications with threshold, satisfying conditions $I_1,I_2,\,I_3,\,I_4\,$.

References

- H.J. Zimmermann, Fuzzy Set Theory and its Applications, Second Edition, Kluwer Acad. Pub., Dordrecht, 1991.
- Hung T. Nguyen and Elbert A. Walker, A First Course in Fuzzy Logic, Second Edition, Chapmam & Hall, London, 2000.
- 3 Fuzzy Systems, Neural Networks and Applications, Bui Cong Cuong and Nguyen Doan Phuoc (eds.), Science and Technique Pub., Hanoi, 2001 (in Vietnamese).
- D.Dubois and H. Prade, New results about properties and semantics of fuzzy set-

theoretic operators, in "Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems", P.P.Wang and S.K.Chang, eds., Plenum Press, NewYork, 1980, pp. 59-75.

- Ion Iancu, T-norms with thresholds, Fuzzy Sets and Systems, vol. 85, 1997, 83-92
- B. C. Cuong, t-norm with threshold and some related problems, *Preprint* 2000/12, Institute of Mathematics, Hanoi, 2000.
- B.C.Cuong and N.H.Phuong, t-norm with threshold and fuzzy reasoning methods, *Preprint* 2001/07, Institute of Mathematics, Hanoi, 2001.
- M. Mizumoto and H.J. Zimmermann, Comparison of Fuzzy Reasoning Methods, Fuzzy Sets and Systems, vol. 8, 1982, 253-283.