
Regularity and context-freeness over

word rewriting systems

Didier Caucal and Dinh Trong Hieu

LIGM, UMR CNRS 8049, Université Paris-Est, Marne-la-Valle, France
{caucal,dinh}@univ-mlv.fr

Abstract. We describe a general decomposition mechanism to express
the derivation relation of a word rewriting system R as the composition
of a (regular) substitution followed by the derivation relation of a sys-
tem R′ ∪ D, where R′ is a strict sub-system of R and D is the Dyck
rewriting system. From this decomposition, we deduce that the system
R (resp. R−1) preserves regular (resp. context-free) languages whenever
R′ ∪ D does. From this we can deduce regularity and context-freeness
preservation properties for a generalization of tagged bifix systems.

1 Introduction

A central problem in the reachability analysis of word rewriting systems is, given
a language L and a system R, to determine the set −→∗

R(L) of all words which
can be derived by R from some word in L. Though this set is not recursive in
general for L finite, a lot of attention has been devoted to the characterization of
rewriting systems whose derivation relation −→∗

R preserves classes of languages
with good decidability or closure properties. In particular, a system R is said to
preserve regularity (resp. context-freeness) if, for any regular (resp. context-free)
language L, −→∗

R(L) is also regular (resp. context-free).
Many classes of rewriting systems preserving regularity or context-freeness

can be found in the literature. For instance, it is well known that the prefix
derivation of any finite rewriting system preserves regularity [8, 9], and that the
so-called context-free systems (systems whose left-hand sides are of length at
most 1) preserve context-free languages and their inverse derivations preserve
regularity (see for instance [6]). In [13], Hofbauer and Waldmann proved that
the derivation of any finite deleting system preserves regularity and that its in-
verse derivation preserves context-freeness, thus completing a result by Hibbard
[12]. They provided a clever decomposition of the derivation relation into a fi-
nite substitution followed by the derivation of an inverse context-free system
and a restriction to the original alphabet. From this, they were able to deduce
many previously known preservation results. In [10], Endrullis, Hofbauer and
Waldmann gave a general decomposition of the derivation of any system into a
context-free system followed by an inverse context-free system with empty right
hand sides. The main contribution of our paper is to use this derivation decom-
position idea to extend the decomposition of [13] to infinite rewriting systems
with prefix and suffix rules.

Our construction is based on the following observation. Given a word u =
a1 . . . an, let us write←−u =←−an . . .←−a1 and −→u = −→an . . .−→a1 where←−a and −→a are fresh
letters for all a. Let R be a rewriting system and u→ v ∈ R be one of its rules,
and consider factors of the form ←−u1v

−→u2 with u1u2 = u. The intended meaning
is that as an effect of this rewrite rule, right-hand side v can be inserted at a
certain position i in a word provided that u1 can be erased to the left of position
i and u2 to the right. In other words, applying rule u → v to a word can be
simulated by first inserting some such factor ←−u1v

−→u2 at an appropriate position,
and then erasing factors of the form u←−u or −→u u. This double-phased procedure
described in [10] can be performed as a substitution followed by a normalization
using inverse context-free rules of the form −→a a → ε and a←−a → ε (constituting
what we call the Dyck rewriting system, see also [15]).

Under certain syntactical criteria, this simulation step can be used to elimi-
nate rewrite rules from the original rewriting system altogether. More precisely,
we are able to decompose the derivation of a system R into a (regular) substi-
tution h, whose role is to insert factors (as described above) corresponding to
some subset R′ of R, followed by the derivation according to a system S ∪ D,
where S is simply R−R′ and D denotes the Dyck system; we say that R can be
decomposed into S. As a consequence, the derivation of R (resp. R−1) preserves
regularity (resp. context-freeness) if the derivation of S ∪ D (resp. its inverse)
does. This remains true even for infinite systems, as long as the relation R′ is
recognizable.

This result can be used to characterize several families of systems whose
derivations preserve regularity or context-freeness. First, we observe that in the
case of deleting systems the decomposition yields an empty S (i.e. all rules can
be simulated and eliminated from R). Since the Dyck system is inverse context-
free, this indeed extends the result of [13] to infinite (recognizable) systems.
Moreover, contrary to [13] our decomposition only uses a single inverse context-
free system, namely D. Note however that many other systems can be directly
decomposed into the empty system, for instance the well-known prefix rewriting
systems (which encode pushdown system transition relations), their bifix variant,
and left-to-right systems; in the finite case, most of these systems can also be
simulated by deleting systems [13]. As an example, since multi-pushdown systems
as defined in [7] can be seen as left-to-right systems, we can recover from our
results that their transition relations preserve context-freeness and their inverse
preserves regularity.

Our main application concerns tagged systems, which generalize the notions
of prefix and suffix rewriting. Given a set of special symbols called tags, which
we separate into prefix and suffix tags, we consider rules of the form #u−→#

′v,
where #, #

′ are prefix tags and u does not contain any tags. We also allow suffix,
bifix, and untagged rules which are defined similarly. Since v may contain tags,
this strictly extends the earlier notions of tagged systems defined in [1]. If the set
of tagged rules is recognizable and the set of untagged rules is context-free, we
show that our decomposition result applies, which entails that the derivation of
such a system (resp. its inverse) preserves context-freeness (resp. regularity). This

result still holds when we do not partition the set of tags, at the cost of imposing
that tags in the left-hand side of a rule remain invariant in the corresponding
right-hand side. Both results extend previously known preservation properties
of simpler tagged systems [1].

The remainder of the paper is organized as follows. After some elementary no-
tations and definitions, Section 2 presents our derivation decomposition theorem,
and relates it to the class of deleting systems. Section 3 details several classes
of rewriting systems whose known preservation results can be recovered using
our technique (prefix, suffix and bifix systems in Section 3.1) or for which new
preservation results can be shown (left-to-right systems in Section 3.2, tagged
systems in Section 3.3).

2 Derivation decomposition

This section focuses on regularity and context-freeness preservation properties
for rewriting systems. After reviewing some known preservation results (Sec-
tion 2.2), we generalize the derivation decomposition of [13] to arbitrary rewrit-
ing systems (Section 2.3), which allows us to deduce new preservation properties.
We start by recalling some basic definitions and notations.

2.1 Notations

For ease of notation, a singleton {x} will often be identified with x. The image
by a binary relation R ⊆ E×F of a subset P ⊆ E by a binary relation R is
R(P) = {y | ∃x ∈ P, xR y}. Let N be a finite set of symbols (called an alphabet),
we write Alph(u) = {u(i) | 1 ≤ i ≤ |u|} the set of letters occurring in a word
u ∈ N∗ (whose u(i) the letter of u at position i). This is extended by union to any
language P over N : Alph(P) = {a | ∃u ∈ P, a ∈ Alph(u) }. The concatenation
of binary relations R,S on N∗ is R.S = {(ux, vy) | u R v∧xS y}, and the left and
right concatenation of R by a language P ⊆ N∗ is R.P = R.IdP = {(uw, vw) |
u R v ∧ w ∈ P} and P.R = IdP .R, where IdP = {(w,w) | w ∈ P} denotes the
identity relation on P .

A regular language over N is the language recognized by a finite automaton
labelled in N (or N∗). A substitution h over N is a binary relation on N∗ whose
image h(a) is defined for every letter a ∈ N and extended by morphism to words:
h(a1. . .an) = h(a1). . .h(an) for all n ≥ 0 and a1, . . ., an ∈ N . It is said to be
finite (resp. regular) if h(a) is a finite (resp. regular) language for all a ∈ N .
A recognizable relation R on N∗ is a finite union of binary products of regular
languages: R = U1×V1 ∪ . . . ∪ Up×Vp for some p ≥ 0 and regular languages
U1, V1, . . . , Up, Vp. A transducer A over N is an automaton labelled in N∗×N∗

whose language is interpreted as a binary relation, called a rational relation [4].
A word rewriting system (or just system) R over an alphabet N is a binary

relation on N∗ seen as a set of rules (u, v); we do not assume R to be finite.
Let Alph(R) be the set of letters of R. The rewriting relation (or single step
reduction) of R is thebinary relation −→R = N∗.R.N∗, i.e. xuy −→R xvy for

all u R v and x, y ∈ N∗; we also sometimes write xuy −→R,|x| xvy to denote
the position |x| where the rule is applied. Note that (−→R)−1 = −→R−1 . The
derivation relation (or reduction relation) −→∗

R of R is the reflexive and tran-
sitive closure (under composition) of −→R, i.e. u −→∗

R v if there exist n ≥ 0
and u0, . . . , un ∈ N∗ such that u = u0 −→R u1 . . .−→R un = v. Note that
(−→∗

R)−1 = −→∗
R−1 .

A context-free grammar over N is a finite relation R ⊆ M×(M ∪ N)∗ for
some alphabet M disjoint of N ; it generates from u ∈ (M ∪N)∗ the context-free
language L(R, u) = {v ∈ N∗ | u −→∗

R v}.

2.2 Preservation properties

A first and very well-known preservation result is that any rational relation R
(and its inverse) preserves regularity: the image R(L) of any regular language
L remains regular. It is also well-known in the field of language theory that the
family of context-free languages is also closed under rational relations [4].

Lemma 2.1. Any rational relation preserves regularity and context-freeness.

Since both recognizable relations and regular substitutions are special cases of
rational relations, it follows that regular and context-free languages are also
closed under direct and inverse recognizable relations and regular substitutions.

In this paper, we are concerned with the characterization of classes of rewrit-
ing systems whose derivation relations preserve regularity or context-freeness,
using a general decomposition mechanism detailed in the next subsection. A
simple way to simulate the application of a rewriting rule (uv, w) to a word x
is to insert, at the appropriate position in x, a factor ←−u w−→v whose intended
meaning is that at this position, right-hand side w can appear after applying the
rule if a factor u can be deleted on the left and v on the right. After this word
is inserted, appropriate deletions are performed using a single rewriting system
called the Dyck system. Therefore, the language preservation properties of that
rewriting system play a central role in our study.

Formally, let R ⊆ N∗×N∗ be a rewriting system, and consider a new alphabet←→
N =

−→
N ∪

←−
N consisting of two disjoint copies of N , with

−→
N = {−→a | a ∈ N}

and
←−
N = {←−a | a ∈ N}. This notation is extended to words over N as follows:

−−−−−→a1 . . . an = −→an . . .−→a1 and ←−−−−−a1 . . . an = ←−an . . .←−a1 for any n ≥ 0 and a1, . . . , an ∈ N .
The Dyck system D = N↓ ∪ ↓N defined over N = N∪

←→
N is the union of the right

and left Dyck systems N↓ = {(−→a a, ε) | a ∈ N} and ↓N = { (a←−a , ε) | a ∈ N}.
For any rule (uv, w) in R, the word xwy obtained by rewriting xuvy can

also be derived from the word xu←−u w−→v vy using D. Note that when u = ε (resp.
v = ε), it suffices to use N↓ (resp. ↓N). It is a classical and widely-used result that
the derivation relation of N↓ preserves regularity [3] but not context-freeness.
An example [14] is to take the context-free languages L and M solutions of the
equations L = −→a La∪M and M = b∪aMM−→a . So −→∗

N↓(L) is not context-free:

∗−→
N↓

(L) ∩ b∗ = {b2n

| n ≥ 0}

Furthermore the derivation of N↓−1 preserves context-freeness but not regularity:

∗−→
N↓−1

(ε) ∩ −→a ∗a∗ = {−→a nan | n ≥ 0}

which is not regular (but is context-free). We thus call the system N↓ reg/cf-
preserving, as defined below.

Definition 2.2. A system R is reg/cf-preserving if its derivation relation pre-
serves regularity and its inverse derivation preserves context-freeness.
A system R is cf/reg-preserving if R−1 is reg/cf-preserving.

One can extend the reg/cf-preservation of the (right) Dyck system to wider
classes of rewriting systems. We say that a binary relation R on N∗ is a context-
free system if R ⊆ (N ∪ {ε})×N∗ with R(a) a context-free language for all
a ∈ N ∪ {ε}. The system D−1 is a context-free system.

Proposition 2.3 ([5]). Context-free systems are cf/reg-preserving.

Another class of cf/reg-preserving systems is defined in [12]. A system R is
called context-limited if there exists a partial ordering < on N such that for any
rule (u, v) ∈ R, any letter of u is less than some letter of v: ∀ a ∈ Alph(u) ∃ b ∈
Alph(v) a < b. It is shown that the derivation relations of finite context-limited
systems preserve context-free languages [12]. Additionally, the inverse R−1 of a
context-limited system R is called a deleting system, and the derivation relation
of any finite deleting system preserves regularity [13].

Proposition 2.4 ([12, 13]). Finite context-limited systems are cf/reg-preserving.

This proposition follows from the decomposition [13] of the derivation relation
of any finite deleting system R into a finite substitution h over an extended
alphabet composed with the derivation of the inverse of a finite context-free
system S, and followed by a restriction to the original alphabet:

∗−→
R

=
(
h ◦

∗−→
S−1

)
∩N∗×N∗.

In the following section, we extend this reasoning to arbitrary rewriting system.
We will see in particular that in the case of deleting systems, S−1 can always be
chosen to be the Dyck system.

2.3 Decomposition

In this subsection we build up on the technical ideas behind Proposition 2.4
and propose a more general notion of derivation decomposition for arbitrary
rewriting systems. As already sketched in the previous section, the application
of a single rewriting rule (uv, w) to a word x can be simulated by inserting the
factor←−u w−→v inside x, and then deleting the extra letters using the Dyck system.
We make use of this idea by identifying sets of rules whose role in the derivation
can be accurately simulated by this process.

More precisely, for a given rewriting system R over some alphabet N , we
identify a subset of rules R′ ⊆ R such that

∗−→
R

=
(
h ◦

∗−→
(R−R′)∪D

)
∩N∗×N∗

where h is a substitution inserting factors of the form←−u w−→v . This decomposition
is performed by eliminating left or right recursion from the system. Formally,
for any R ⊆ N∗×N∗ and M ⊆ N , we define the sub-system

RM = {(u, v) ∈ R | Alph(u, v) ∩M 6= ∅}

consisting of all the rules of R with a letter in M ; hence R−RM is the maximal
sub-system of R over N−M . We want to decompose the derivation of R into the
composition of some substitution h together with the derivation of the system
(R−RM) ∪D for suitable subsets M of N .

Definition 2.5. A set M ⊆ Alph(R) is called a prefix sub-alphabet of R if

R ⊆ MN∗ ×M(N −M)∗ ∪ N∗ × (N −M)∗.

This definition means that for each rule (u, av) ∈ R with a ∈ N , v has no
letter in M , and if a ∈M then u must begin by a letter in M (see Example 2.8).
Note that the set of prefix sub-alphabets of R is closed under union and we
can compute its maximal element (with respect to inclusion). For any prefix
sub-alphabet M of R, we define over N the language

P = {←−u w−→v | uv R w ∧ u ∈ (N −M)∗ ∧ v ∈MN∗}

and the substitution hM : N −→ 2N
∗

with hM (x) = P ∗x if x ∈M and hM (x) =
x otherwise. Both the language P and the substitution hM are regular whenever
RM is recognizable. When M is a prefix sub-alphabet of R, we can decompose
−→∗

R by removing RM from R.

Lemma 2.6. For any prefix sub-alphabet M of R and for any u ∈ N
∗
,

∗−→
R∪D

(u) ∩N∗ = ∗−→
(R−RM)∪D

(
hM (u)

)
∩N∗.

Proof. Let us write S = (R−RM) ∪D and h = hM .
⊇: We first establish two preliminary observations.

First, whenever a factor −→v (resp ←−v) can be removed during a derivation by
R∪D, one can always rearrange the derivation steps so that at some point factor
v appears immediately to the right (resp. left) of −→v (resp.←−v), and the resulting
factor −→v v (resp. v←−v) is deleted using D. Formally, for any u, w ∈ N

∗
and any

v, z ∈ N∗,

w−→v u
∗−→

R∪D
z =⇒ ∃ w, u

∗−→
R∪D

vw ∧ ww
∗−→

R∪D
z,

u←−v w
∗−→

R∪D
z =⇒ ∃ w, u

∗−→
R∪D

wv ∧ ww
∗−→

R∪D
z.

This can be proven by induction on derivation length. For any R ⊆ N∗×N∗, let

←→
R = {←−u w−→v | (uv, w) ∈ R}

We have
∗−→

R∪D

(
u[
←→
R]

)
∩N∗ ⊆ ∗−→

R∪D
(u) for any u ∈ N

∗
,

meaning that even randomly inserting factors from
←→
R in u does not increase the

set of words in N∗ obtained by derivation using R∪D. In other words, the specific
positions at which h inserts factors is only relevant for the converse inclusion
(which is proven below). The proof is done using the previous observation and
for some word x ∈ u[

←→
R], by induction on the minimal number of insertions of

words of
←→
R which must be performed in order to obtain x from u.

Now let u ∈ N
∗
, since h(u) ⊆ u[

←→
R] and S ⊆ R ∪ D and by the above

inclusion we obtain

∗−→
S

(h(u)) ∩N∗ ⊆ ∗−→
R∪D

(
u[
←→
R]

)
∩N∗ ⊆ ∗−→

R∪D
(u).

⊆: Let u −→∗
R∪D v with u ∈ N

∗
. Let us show that h(v) ⊆ −→∗

S

(
h(u)

)
. To

prove this inclusion, we need to make sure that the insertion process performed
by h does not prevent any of the words originally derivable from u using R ∪D
to be also derivable from h(u) using S. Intuitively, this is guaranteed by the
definition of the set P and the substitution hM which only inserts factors at
specific positions.

By induction on the length of the derivation of v from u, it remains to
check the inclusion for u −→R∪D v. Let u = xu0y and v = xv0y for some
(u0, v0) ∈ R ∪D. We distinguish the three complementary cases below.

Case 1: (u0, v0) 6∈ RM ∪ D. By definition u0, v0 ∈ (N − M)∗. This means
that neither u0 nor v0 is affected by h: we have h(u) = h(x)u0h(y) and
h(v) = h(x)v0h(y). Hence

h(v) = h(x)v0h(y) ⊆ −→
{(u0,v0)}

(
h(x)u0h(y)

)
⊆ ∗−→

S

(
h(u)

)
.

Case 2: (u0, v0) ∈ D. By definition, v0 = ε. Thus

h(v) = h(x)h(y) ⊆ −→
D

(
h(x)u0h(y)

)
⊆ ∗−→

S

(
h(xu0y)

)
= ∗−→

S

(
h(u)

)
.

Case 3: (u0, v0) ∈ RM . This rule can be of two types, corresponding to the two
subcases below.
Case 3.1: u0 ∈MN∗ and v0 ∈M(N −M)∗. We have h(x)P ∗u0h(y) ⊆ h(u)

and h(v) = h(x)P ∗v0h(y). As v0
−→u0 ∈ P , h(x)P ∗v0

−→u0u0h(y) ⊆ h(u).
Hence

h(v) = h(x)P ∗v0h(y) ⊆ ∗−→
D

(h(x)P ∗v0
−→u0u0h(y)) ⊆ ∗−→

S
(h(u)).

Case 3.2: u0 ∈ N∗MN∗ and v0 ∈ (N − M)∗. We have u0 = u′0#u′′0
with u′0 ∈ (N − M)∗, # ∈ M , u′′0 ∈ N∗, and

←−
u′0v0

−−→
#u′′0 ∈ P . Hence

h(x)u′0P
∗
#u′′0h(y) ⊆ h(u), which implies in particular that

h(x)u′0
←−
u′0v0

−→
u′′0
−→
#u′′0h(y) ⊆ h(u).

Finally we obtain that

h(v) = h(x)v0h(y) ⊆ ∗−→
D

(
h(x)u′0

←−
u′0v0

−→
u′′0
−→
#u′′0h(y)

)
⊆ ∗−→

S
(h(u)).

This concludes the proof that h(v) ⊆ −→∗
S(h(u)) for u −→∗

R∪D v. As v ∈ h(v),
we finally get −→∗

R∪D(u) ⊆ −→∗
S(h(u)). ut

A similar decomposition can also be achieved using suffix sub-alphabets in-
stead of prefix ones. A subset M of N is a suffix sub-alphabet of R if

R ⊆ N∗M×(N −M)∗M ∪ N∗×(N −M)∗.

It can also be seen as a prefix sub-alphabet of R̃ = {(ũ, ṽ) | u R v }, where
ũ = u(|u|). . .u(1) is the mirror of word u. Lemma 2.6 remains true for any suffix
sub-alphabet M , with the difference that hM (x) = xQ∗ for all x ∈ M with
Q = {←−u w−→v | uv R w ∧ u ∈ N∗M ∧ v ∈ (N −M)∗}.

Using prefix and suffix sub-alphabets, we can now iterate this decomposition
process as long as at least one such sub-alphabet remains. We say that R ⊆
N∗×N∗ is u-decomposable for u ∈ (2N)∗ if u = ε, or u = Mv with M a prefix
or suffix sub-alphabet of R and R−RM is v-decomposable. For any u ∈ (2N)∗,
we define the sub-system Ru of R as Ru = Ru(1) ∪ . . .∪Ru(|u|) = Ru(1)∪...∪u(|u|)
consisting of the subset of rules of R with at least one letter in u(1)∪ . . .∪u(|u|).

When the letters of u are prefix and suffix sub-alphabets, we define the
substitution hu : N −→ 2N

∗
by hu = hu(1) ◦ . . . ◦ hu(|u|) where for every 1 ≤ i ≤

|u|, hu(i) is the substitution associated to the prefix, or suffix but not prefix, sub-
alphabet u(i) of R. Note that if Ru is recognizable, hu is a regular substitution.
Let us now iterate the decomposition of Lemma 2.6.

Proposition 2.7. If R is u-decomposable then
∗−→
R

=
(
hu ◦

∗−→
(R−Ru)∪D

)
∩N∗×N∗.

Proof. We have
∗−→
R

= ∗−→
R∪D

∩ N∗×N∗

=
(
hu(1) ◦

∗−→
(R−Ru(1))∪D

)
∩ N∗×N∗ by Lemma 2.6

=
(
hu(1) ◦ . . . ◦ hu(|u|) ◦

∗−→
(R−Ru(1)...−Ru(|u|))∪D

)
∩ N∗×N∗

=
(
hu ◦

∗−→
(R−Ru)∪D

)
∩ N∗×N∗.

ut

We say that R is decomposable into S if R is u-decomposable for some u
and R−Ru = S. This decomposition relation is reflexive and transitive. Let us
illustrate this mechanism on an example.

Example 2.8. Consider the rewriting system R = {(abb, ab), (a, ε), (cb, cc)} and
the derivation caabb −→R caab −→R cab −→R cb −→R cc.

As {a} is a prefix sub-alphabet of R, and by Lemma 2.6, we have

∗−→
R

=
(
ha ◦

∗−→
R′ ∪D

)
∩N∗×N∗

with R′ = {(cb, cc)} and ha(a) = {−→a , ab
−→
b
−→
b −→a }∗a.

As {b} is a prefix sub-alphabet of R′ (but not of R), we have

∗−→
R′ ∪D

∩ N
∗×N∗ =

(
hb ◦

∗−→
D

)
∩ N

∗×N∗

with hb(b) = {←−c cc
−→
b }∗b. Thus R is {a}{b}-decomposable into ∅ and

∗−→
R

=
(
hab ◦

∗−→
D

)
∩N∗×N∗

with hab(a) = hb(ha(a)) = {−→a , a{←−c cc
−→
b }∗b

−→
b
−→
b −→a }∗a and hab(b) = hb(ha(b)) =

hb(b) = {←−c cc
−→
b }∗b. For instance

u = c.−→a a.−→a a←−c cc
−→
b b
−→
b
−→
b −→a a.b.b ∈ hab(caabb) and u

∗−→
D

cc.

Finally R is terminating (no infinite derivation) although R is not match-bounded
[11].

ut

For any letter a ∈ N−Im(R) which does not appear in the right hand sides of
rules of R, {a} is a prefix (or suffix) sub-alphabet of R and we call a a reducible
letter of R. We say that R is reducible into S if R is u-decomposable into S for
some word u composed only of reducible letters (of the successive remaining sub-
relations). Note that this is not the case of the rewriting system in the above
example, even though it is decomposable into the empty system. The systems
which can be reduced into ∅ or {(ε, ε)} are exactly the deleting systems.

Proposition 2.9. R is deleting if and only if R is reducible into ∅ or {(ε, ε)}.

When R is decomposable into S and R − S is recognizable, we say there is
a recognizable decomposition of R into S. Let us apply Proposition 2.7 to that
setting.

Theorem 2.10. For R recognizable decomposable into S,
∗−→

S ∪D
preserves regularity =⇒ ∗−→

R
preserves regularity,

∗−→
S−1 ∪D−1

preserves context-freeness =⇒ ∗−→
R−1

preserves context-freeness.

Proof. By Proposition 2.7, there is a regular substitution h such that for all L ⊆
N∗, −→∗

R(L) = −→∗
S ∪D(h(L)) ∩N∗ and −→∗

R−1(L) = h−1
(
−→∗

S−1 ∪D−1(L)
)
∩

N∗. Since h is a regular substitution, this proves the theorem. ut

Note that we cannot suppress D or D−1 in Theorem 2.10, and that the
reverse implications are false. Indeed the system S = {(#a, bb#), (b&, &a)} has a
rational derivation, hence its derivation preserves regularity and context-freeness,
but −→∗

S∪D does not preserve regularity:

∗−→
S ∪D

(
(#−→&)∗#a(←−# &)∗

)
∩ #a∗ = {#a2n

| n ≥ 0}

and −→∗
S∪D−1 does not preserve context-freeness:

∗−→
S ∪D−1

(a) ∩ (−→# &)∗a∗(←−& #)∗ = {(−→# &)na2n

(←−& #)n | n ≥ 0}.

To conclude this section, let us apply Theorem 2.10 together with Proposi-
tion 2.3 to transfer regularity and context-freeness preservation properties from
context-free systems to a larger class of rewriting systems.

Proposition 2.11. If R−1 is recognizable decomposable into S−1 where S is a
context-free system, then R is cf/reg-preserving.

By Lemma 2.9, this proposition strictly generalizes Proposition 2.4 by al-
lowing a recognizable set of rules: indeed any recognizable deleting system is
recognizable-decomposable into the empty rewriting system (or {(ε, ε)}), whose
inverse is trivially a context-free system. This entails that recognizable context-
limited systems are cf/reg-preserving. In the following section we give several
other applications of Theorem 2.10 and Proposition 2.11.

3 Applications

In this section, we provide several consequences and applications of the decom-
position technique presented in the previous section. In particular, we show how
to derive from Theorem 2.10 preservation properties for the classes of prefix,
suffix and bifix systems as well as their tag-adding variants.

3.1 Prefix, suffix and bifix systems

Proposition 2.4 was already applied in [13] to the prefix derivations of finite
systems. Using Theorem 2.10, this can be extended to any recognizable system.

The prefix rewriting of a system R is the binary relation 7−→R = R.N∗ =
−→R,0, i.e. uy 7−→R vy for any uRv and y ∈ N∗. As expected, the prefix deriva-
tion 7−→∗

R of R is the reflexive and transitive closure of the prefix rewriting
relation. For any finite system, the regularity of the set of words reached by
prefix derivation from a given word [8] is a particular case of the rationality of
the prefix derivation; this remains true for any recognizable system.

Proposition 3.1 ([9]). The prefix derivation of any recognizable system is a
rational relation.

Proof. Let R =
⋃n

i=1 Ui×Vi be a recognizable rewriting system, and # 6∈ N be a
new symbol, and consider the system #R = {(#u, #v) | u R v}. By definition, {#}
is a prefix sub-alphabet of #R, which is thus recognizable and #-decomposable
into ∅. For any L ⊆ N∗, 7−→∗

R(L) = #
−1

(
−→∗

#R(#L)
)

which by Theorem 2.10,
is regular whenever L is regular. By Proposition 2.7, the last equality is equiva-
lent to

∗7−→
R

(L) = ∗−→
N↓

(
{v−→u | u R v}∗L

)
∩N∗.

Since 7−→∗
R−1(U) and 7−→∗

R(V) remain regular for any regular languages U, V ,
the relation R =

⋃n
i=1 7−→∗

R−1(Ui)× 7−→∗
R(Vi) is recognizable, hence

∗7−→
R

= IdN∗ ∪ 7−→
R

= IdN∗ ∪ R.N∗

is recognized by a finite transducer. ut

The rules of a system R can also be applied only to suffixes. The suffix rewrit-
ing of R is the binary relation −→|R = N∗.R, i.e. wu −→|R wv for any u R v and
w ∈ N∗. Note that the rewriting relation of a suffix system is isomorphic to that
of a prefix one: u −→|R v if and only if ũ 7−→ eR ṽ where R̃ = {(ũ, ṽ) | u R v}.
Hence Proposition 3.1 holds for suffix systems as well.

Finally we allow the application of rules both to prefixes and suffixes. The
bifix rewriting relation of R is 7−→|R = 7−→R ∪ −→|R. There exists a general-
ization of Proposition 3.1 to this type of rewriting.

Proposition 3.2 ([15]). The bifix derivation of any recognizable system is a
rational relation.

Proof. We take two new symbols #, & 6∈ N and we define the recognizable system
S = #R∪R& = {(#u, #v) | u R v}∪{(u&, v&) | u R v}. The sets {#} and {&} are
respectively prefix and suffix sub-aphabets of S. Thus S is #&-decomposable in
∅. For any L ⊆ N∗, 7−→|∗

R(L) = #
−1

(
−→∗

S(#L&)
)
&
−1 which by Theorem 2.10, is

regular whenever L is regular. By Proposition 2.7, the last equality is equivalent
to ∗

7−→|
R

(L) = ∗−→
D

(
{v−→u | u R v}∗L{←−u v | u R v}∗

)
∩N∗.

This is a possible first step of the construction, given in [15], of a finite transducer
recognizing 7−→|∗

R. ut

3.2 Left-to-right derivation

Let us apply Theorem 2.10 to another restriction of the derivation. The left-to-
right derivation ↪→∗

R of a system R is defined by

u
∗

↪→
R

v ⇐⇒ u0 −→
R,p1

u1 . . . −→
R,pn

un with p1 ≤ . . . ≤ pn, u0 = u and un = v.

The left-to-right derivation and leftmost derivation are incomparable. In partic-
ular, applying a rewrite rule at some position i could in a leftmost derivation
enable another rule at some position strictly smaller than i. However, in a left-
to-right derivation, successive rewriting positions must be just increasing.

Proposition 3.3. The left-to-right derivation of any recognizable system pre-
serves context-freeness, and its inverse preserves regularity.

Proof. We consider a new symbol # 6∈ N and the system S = {(u, #v) | u R v}.
By choosing {#} as a prefix sub-alphabet, we can recognizably decompose S−1

into ∅. Note that S−1 is deleting for R finite. By Proposition 2.11, −→∗
S thus

preserves context-freeness and −→∗
S−1 preserves regularity. Furthermore −→∗

S

can be performed from left to right: −→∗
S = ↪→∗

S . Let π be the morphism
defined by π(#) = ε and π(a) = a for any a ∈ N . We have

∗
↪→
R

= {(u, π(v)) | u ∈ N∗ ∧ u
∗

↪→
S

v}.

Thus for every L ⊆ N∗,

∗
↪→
R

(L) = π
(∗
↪→
S

(L)
)

= π
(∗−→

S
(L)

)
hence ↪→∗

R(L) is context-free whenever L is. Finally for any L ⊆ N∗,(∗
↪→
R

)−1(L) = ∗−→
S−1

(
π−1(L)

)
∩N∗

which is regular whenever L is regular. ut

Note that Proposition 2.3, when restricted to recognizable rewriting systems,
is a corollary of Proposition 3.3. Indeed for any R ⊆ (N∪{ε})×N∗, the derivation
−→∗

R is equal to ↪→∗
R. Also note that inverse preservation properties do not hold

in general. For instance when R = {(a, bab)}, we have ↪→∗
R(a) = {bnabn | n ≥ 0}

hence ↪→∗
R does not preserve regularity. Conversely −→∗

N↓−1 = ↪→∗
N↓−1 hence(

↪→∗
N↓−1

)−1 = −→∗
N↓ which does not preserve context-freeness.

We conclude this section on left-to-right derivation by showing that the left-
to-right derivation of any rewriting system can be described using prefix deriva-
tion. To any R ⊆ N∗×N∗, we associate the labelled transition system (i.e.
labelled graph) R̂ over N ∪ {ε} defined as

R̂ = {u ε−→ v | u R v} ∪ {a a−→ ε | a ∈ N}

and its prefix transition graph

R̂.N∗ = {uw
ε−→ vw | u R v ∧ w ∈ N∗} ∪ {aw

a−→w | a ∈ N ∧ w ∈ N∗}.

The words obtained by left-to-right derivation by R from a word u are precisely
the words v labelling paths u =⇒vbR.N∗ ε (in other words recognized by R̂.N∗)
from vertex u to vertex ε.

Lemma 3.4. For any system R, u ↪→∗
R v ⇐⇒ u =⇒vbR.N∗ ε.

By Proposition 3.3 and Lemma 3.4, we get ↪→∗
R(L) = L(R̂.N∗, L, ε), the

language of words labelling paths in the graph R̂.N∗ between vertices in L and
the vertex ε. This is a context-free language whenever L is context-free and R
is recognizable [9]. When R is finite and taking a new symbol p representing a
control state, the system pR̂ = {pu−→ε pv | u R v} ∪ {pa−→a p | a ∈ N} can be
seen as a pushdown automaton with stack alphabet N (as customary, pushdown
rules can be straightforwardly obtained by adding new states and rules). We have
just described the effective construction of a pushdown automaton recognizing
the language ↪→∗

R(L) by empty stack and with possible initial stack content each
word in L.

3.3 Tagged and tag-adding systems

We will now apply Theorem 2.10 to the derivation of systems generalizing bifix
derivation. We consider a finite set M of special symbols called tags. Bifix sys-
tems can be easily simulated and extended by adding tags at the first and last
position of the sides of the rules, enforcing that the first and/or last tags of each
side of a rule must be the same [1].

Definition 3.5. Given disjoint sets M and N , a tagged bifix system over M∪N
is a system

R ⊆ (M ∪ {ε})N∗(M ∪ {ε})×(M ∪N)∗

such that for any rule (u, v) ∈ R, (u(1) ∈M ∨ u(|u|) ∈M) and

u(1) ∈M =⇒ u(1) = v(1) and u(|u|) ∈M =⇒ u(|u|) = v(|v|).

In such a system all tags are preserved by the rewriting process. Without
this condition, we could transform any finite system R over N into the tagged
system

R• = {(•u, •v) | u R v} ∪ {(•a, #a) | a ∈ N} ∪ {(&a, •a) | a ∈ N}
∪ {(#a, a•) | a ∈ N} ∪ {(a•, &a) | a ∈ N}

with M = {#a | a ∈ N} ∪ {&a | a ∈ N} ∪ {•}. We have u −→∗
R v ⇐⇒

•u −→∗
R• •v for any u, v ∈ N∗. Since −→∗

R is not recursive in general, neither is
−→∗

R• . The rationality of bifix derivation can be extended to the derivation of
tagged bifix systems.

Proposition 3.6 ([1]). The derivation relation of any recognizable tagged bifix
system is rational.

Before further extending this class of systems by allowing tag-adding and
infix rules, we consider systems whose tag set M is partitioned into a subset Mp

of prefix tags and a subset Ms of suffix tags: Mp ∪Ms = M and Mp ∩Ms = ∅.

Definition 3.7. A tag-adding prefix/suffix system is a system

R ⊆ (Mp ∪ {ε})N∗(Ms ∪ {ε})×(M ∪N)∗

such that for any rule (u, v) ∈ R,(
u(1) ∈Mp =⇒ v(1) ∈Mp

)
and

(
u(|u|) ∈Ms =⇒ v(|v|) ∈Ms

)
.

Considering tags #, & ∈ M and a letter a ∈ N , the two-rule system R =
{(#a, &), (&, a#)} cannot be a tag-adding prefix/suffix system since the tag #

would be simultaneaously prefix and suffix. For this system, neither the direct
nor the inverse derivation preserve regularity:
∗−→
R

(
(#a)∗

)
∩a∗#

∗ = {an
#

n | n ≥ 0} and ∗−→
R−1

(
(#a)∗

)
∩#

∗a∗ = {#nan | n ≥ 0}.

We say that a tag-adding prefix/suffix system R is context-free if R ∩N∗×N∗ is a
context-free system and R−N∗×N∗ is recognizable. Let us apply Theorem 2.10.

Proposition 3.8. Any context-free tag-adding prefix/suffix system is cf/reg-
preserving.

Proof. Let R be a context-free tag-adding prefix/suffix system. The sets Mp

and Ms are respectively prefix and suffix sub-alphabets of R−1. Thus R−1 is
MpMs-decomposable into (R∩N∗×N∗)−1 and by Proposition 2.11, R is cf/reg-
preserving. ut

A particular case of a tag-adding prefix system (Ms = ∅) is given by a
recognizable system R ⊆MN∗×(MN∗)+ which is cf/reg-preserving by Propo-
sition 3.8, and also by Proposition 3.3 : the derivation is equal to its left-to-right
derivation. These particular systems generalize the first model of dynamic net-
works of pushdown systems [7].

We will now use Proposition 3.8 to obtain the same closure properties for
the following extension of tagged bifix systems.

Definition 3.9. A tag-adding bifix system is a system

R ⊆ (M ∪ {ε})N∗(M ∪ {ε})×(M ∪N)∗

such that for any rule (u, v) ∈ R,(
u(1) ∈M =⇒ u(1) = v(1)

)
and

(
u(|u|) ∈M =⇒ u(|u|) = v(|v|)

)
.

Note that the previous system {(#a, &), (&, a#)} is not tag-adding bifix.
Proposition 3.8 remains valid for such systems when they are context-free, i.e.
when R ∩N∗×N∗ is a context-free system and R−N∗×N∗ is recognizable.

Theorem 3.10. Any context-free tag-adding bifix system is cf/reg-preserving.

Note that Proposition 3.8 and Theorem 3.10 can both be generalized to the
systems R such that R − N∗×N∗ is recognizable and (R ∩ N∗×N∗) ∪ D−1 is
cf/reg-preserving.

Theorem 3.10 generalizes Theorem 7 of [1]: for any ‘tagged infix system with
tag removing rules’ R, its inverse R−1 is a particular tag-adding bifix system
hence −→∗

R preserves regularity. As a corollary, Theorem 3.10 also positively
answers a conjecture stated in [2] (page 99).

Conclusion

In this paper we presented a decomposition mechanism for word rewriting sys-
tems, allowing us to transfer the simultaneous regularity and inverse context-
freeness preservation of the Dyck system to several classes of rewriting systems.

We are currently investigating more general criteria to widen the scope of
this result and to extend this decomposition to terms.

Many thanks to Antoine Meyer for helping us make this paper readable, and to
anonymous referees for helpful comments.

References

1. Altenbernd, J.: On bifix systems and generalizations. In: Martin-Vide, C., Otto,
F., Fernau, H. (eds.) Proc. 2nd LATA. LNCS, vol. 5196, pp. 40–51. Springer (2008)

2. Altenbernd, J.: Reachability over word rewriting systems. Ph.D. thesis, RWTH
Aachen, Germany (2009)

3. Benois, M.: Parties rationnelles du groupe libre. C.R. Académie des Sciences, Série
A 269, 1188–1190 (1969)

4. Berstel, J.: Transductions and context-free languages. Teubner (1979)
5. Book, R., Jantzen, M., Wrathall, C.: Monadic thue systems. Theoretical Computer

Science 19, 231–251 (1982)
6. Book, R., Otto, F.: String-rewriting systems. Texts and Monographs in Computer

Science, Springer-Verlag (1993)
7. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic

networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) Proc. 16th

CONCUR. LNCS, vol. 3653, pp. 473–487. Springer (2005)
8. Büchi, R.: Regular canonical systems. Archiv für Mathematische Logik und Grund-

lagenforschung 6, 91–111 (1964)
9. Caucal, D.: On the regular structure of prefix rewriting. Theoretical Computer

Science 106, 61–86 (1992), originally published in CAAP’90
10. Endrullis, J., Hofbauer, D., Waldmann, J.: Decomposing terminating rewrite rela-

tions. In: Geser, A., Sondergaard, H. (eds.) Proc. 8th WST. pp. 39–43. Computing
Research Repository, http://www.acm.org/corr/ (2006)

11. Geser, A., Hofbauer, D., Waldmann, J.: Match-bounded string rewriting systems.
Applicable Algebra in Engineering, Communication and Computing 15, 149–171
(2004)

12. Hibbard, T.: Context-limited grammars. JACM 21(3), 446–453 (1974)
13. Hofbauer, D., Waldmann, J.: Deleting string rewriting systems preserve regularity.

Theoretical Computer Science 327, 301–317 (2004), originally published in DLT’03
14. Jantzen, M., Kudlek, M., Lange, K.J., Petersen, H.: Dyck1-reductions of context-

free languages. In: Budach, L., Bakharajev, R., Lipanov, O. (eds.) Proc. 6th FCT.
LNCS, vol. 278, pp. 218–227. Springer (1987)

15. Karhumäki, J., Kunc, M., Okhotin, A.: Computing by commuting. Theoretical
Computer Science 356, 200–211 (2006)

