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Abstract1

How much cutting is needed to simplify the topology of a surface? We provide bounds for2

several instances of this question, for the minimum length of topologically non-trivial closed curves,3

pants decompositions, and cut graphs with a given combinatorial map in triangulated combinatorial4

surfaces (or their dual cross-metric counterpart).5

Our work builds upon Riemannian systolic inequalities, which bound the minimum length of6

non-trivial closed curves in terms of the genus and the area of the surface. We first describe a sys-7

tematic way to translate Riemannian systolic inequalities to a discrete setting, and vice-versa. This8

implies a conjecture by Przytycka and Przytycki from 1993, a number of new systolic inequalities9

in the discrete setting, and the fact that a theorem of Hutchinson on the edge-width of triangulated10

surfaces and Gromov’s systolic inequality for surfaces are essentially equivalent.11

Then we focus on topological decompositions of surfaces. Relying on ideas of Buser, we prove12

the existence of pants decompositions of length O(g3/2n1/2) for any triangulated combinatorial13

surface of genus g with n triangles, and describe an O(gn)-time algorithm to compute such a de-14

composition.15

Finally, we consider the problem of embedding a cut graph with a given combinatorial map on a16

given surface. Using random triangulations, we prove (essentially) that, for any choice of combina-17

torial map of cut graph, there are some surfaces on which any embedding has length superlinear in18

the number of triangles of the triangulated combinatorial surface.19
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1 Introduction20

Shortest curves and graphs with given properties on surfaces have been much studied in the recent com-21

putational topology literature; a lot of effort has been devoted towards efficient algorithms for computing22

shortest curves that simplify the topology of the surface, or shortest topological decompositions of sur-23

faces [7, 8, 20–24, 37] (refer also to the recent surveys [13, 19]). These objects provide “canonical” sim-24

plifications or decompositions of surfaces, which turn out to be crucial for algorithm design in the case25

of surface-embedded graphs, where making the graph planar is needed [6, 9, 11, 39]. These topological26

algorithms are also relevant in a number of applications that deal with surfaces with non-trivial topology,27

notably in computer graphics and mesh processing, to simplify the topology of a surface [30, 57], for28

approximation [12] and compression [2] purposes, and to split a surface into planar pieces, for texture29

mapping [40, 46], surface correspondence [41], parameterization [29], and remeshing [1].30

In this paper, we study the worst-case length of such shortest curves and graphs with prescribed31

topological properties on combinatorial surfaces. An important parameter in topological graph theory is32

the notion of edge-width of an (unweighted) graph embedded on a surface [7, 53], which is the length33

of the shortest closed walk in the graph that is non-contractible on the surface (cannot be deformed to34

a single point on the surface). The model question that we study is the following: What is the largest35

possible edge-width, over all triangulations with n triangles, of a closed orientable surface of genus g? It36

was known that an upper bound is O(
√
n/g log g) [33], and we prove that this bound is asymptotically37

tight, namely, that some combinatorial surfaces (of arbitrarily large genus) achieve this bound. We also38

study similar questions for other types of curves (non-separating closed curves, null-homologous but39

non-contractible closed curves) and for decompositions (pants decompositions, and cut graphs with a40

prescribed combinatorial map), and give an algorithm to compute short pants decompositions.41

We always assume that the surface has no boundary, that that the underlying graph of the combina-42

torial surface is a triangulation, and that its edges are unweighted; the curves and graphs we seek remain43

on the edges of the triangulation. Lifting any of these three restrictions transforms the upper bound44

above to a function with a linear dependency in n. In many natural situations, such requirements hold,45

such as in geometric modeling and computer graphics, where triangular meshes of closed surfaces are46

typical and, in many cases, the triangles have bounded aspect ratio (which immediately implies that our47

bounds apply, the constant in the O(·) notation depending on the aspect ratio).48

Most of our results build upon or extend to a discrete setting some known theorems in Riemannian49

systolic geometry, the archetype of which is an upper bound on the systole (the length of shortest non-50

contractible closed curves—a continuous version of the edge-width) in terms of the square root of the51

area of a closed Riemannian surface (or more generally the dth root of the volume of an essential Rie-52

mannian d-manifold). Riemannian systolic geometry [28, 34] was pioneered by Loewner and Pu [52],53

reaching its maturity with the fantastic work of Gromov [27].54

After the preliminaries (Section 2), we prove three independent results (Sections 3–5), which are55

described and related to other works below. This paper is organized so as to showcase the more con-56

ceptual results before the more technical ones. Indeed, the results of Section 3 exemplify the strength of57

the connection with Riemannian geometry, while the results in Sections 4 and 5 are perhaps a bit more58

specific, but feature deeper algorithmic and combinatorial tools.59

Systolic inequalities for closed curves on triangulations. Our first result (Section 3) gives a sys-60

tematic way of translating a systolic inequality in the Riemannian case to the case of triangulations,61

and vice-versa. This general result, combined with known results from systolic geometry, immediately62

implies bounds on the length of shortest curves with given topological properties: On a triangulation63

of genus g with n triangles, some non-contractible (resp., non-separating, resp., null-homologous but64

non-contractible) closed curve has length O(
√
n/g log g), and, moreover, this bound is best possible.65

These upper bounds are new, except for the non-contractible case, which was proved by Hutchin-66

son [33] with a worse constant in the O(·) notation. The optimality of these inequalities is also new.67

Actually, Hutchinson [33] had conjectured that the correct upper bound was O(
√
n/g); Przytycka and68

Przytycki refuted her conjecture, building, in a series of papers [49–51], examples that show a lower69
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bound of Ω(
√
n log g/g). They conjectured in 1993 [50] that the correct bound was O(

√
n/g log g);70

here, we confirm this conjecture.71

Short pants decompositions. A pants decomposition is a set of disjoint simple closed curves that split72

the surface into pairs of pants, namely, spheres with three boundary components. In Section 4, we focus73

on the length of the shortest pants decomposition of a triangulation. As in all previous works, we allow74

several curves of the pants decomposition to run along a given edge of the triangulation (formally, we75

work in the cross-metric surface that is dual to the triangulation).76

The problem of computing a shortest pants decomposition has been considered by several au-77

thors [18,48], and has found satisfactory solutions (approximation algorithms) only in very special cases,78

such as the punctured Euclidean or hyperbolic plane [18]. Strikingly, no hardness result is known; the79

strong condition that curves have to be disjoint, and the lack of corresponding algebraic structure, makes80

the study of short pants decompositions hard [31, Introduction]. In light of this difficulty, it seems inter-81

esting to look for algorithms that compute short pants decompositions, even without guarantee compared82

the optimum solution.83

Inspired by a result by Buser [5, Th. 5.1.4] on short pants decompositions on Riemannian surfaces,84

we prove that every triangulation of genus g with n triangles admits a pants decomposition of length85

O(g3/2n1/2), and we give an O(gn)-time algorithm to compute one. In other words, while pants de-86

compositions of length O(gn) can be computed for arbitrary combinatorial surfaces [15, Prop. 7.1], the87

assumption that the surface is unweighted and triangulated allows for a strictly better bound in the case88

where g = o(n) (it is always true that g = O(n)).89

On the lower bound side, some surfaces have no pants decompositions with length O(n7/6−ε), as90

proved recently by Guth et al. [31] using the probabilistic method: They show that polyhedral surfaces91

obtained by gluing triangles randomly have this property.92

Shortest embeddings of combinatorial maps. Finally, in Section 5, we consider the problem of de-93

composing a surface using a short cut graph with a prescribed combinatorial map. To build a homeo-94

morphism between two surfaces, a natural approach is to cut both surfaces along a cut graph, and put95

both disks in correspondence. For this approach to work, however, cut graphs with the same combina-96

torial map are needed. In this direction, Lazarus et al. [38] proved that every surface has a canonical97

systems of loops (a specific combinatorial map of a cut graph with one vertex) with lengthO(gn), which98

is worst-case optimal, and gave an O(gn)-time algorithm to compute one.99

There is, however, no strong reason to focus on canonical systems of loops: It is fairly natural to100

expect that other combinatorial maps will always have shorter embeddings (in particular, by allowing101

several vertices on the cut graph instead of just one). However, we prove (essentially) that, for any choice102

of combinatorial map of a cut graph, there exist triangulations with n triangles on which all embeddings103

of that combinatorial map have a superlinear length, actually Ω(n7/6−ε) (since n may be O(g), there is104

no contradiction with the result by Lazarus et al. [38]). In particular, some edges of the triangulation are105

traversed Ω(n1/6−ε) times. This result translates to the case of polyhedral surfaces obtained by gluing106

together n equilateral triangles: In this model, some edges are intersected Ω(n1/6−ε) times. From the107

case of cut graphs, we can also deduce the same results for all cellular graph embeddings with prescribed108

combinatorial maps.109

Our proof uses the probabilistic method in the same spirit as the aforementioned article of Guth et110

al. [31]: We show that combinatorial surfaces obtained by gluing triangles randomly satisfy this property111

asymptotically almost surely. This also sheds some light on the geometry of these “random surfaces”,112

which have been heavily studied recently [25, 42] because of connections to quantum gravity [47] and113

Belyi surfaces [3]114

Another view of our result is via the following problem: Given two graphs G1 and G2 cellularly115

embedded on a surface S, is there a homeomorphism ϕ : S → S such that G1 does not cross the image116

of G2 too many times? Our result essentially says that, if G1 is fixed, for most choices of trivalent117

graphs G2 with n vertices, for any ϕ, there will be Ω(n7/6−ε) crossings between G1 and ϕ(G2). This118

is related to recent preprints [26, 43], where upper bounds are proved for the number of crossings for119

the same problem, but with sets of disjoint curves instead of graphs. During their proof, Matoušek120
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et al. [43] also encountered the following problem (rephrased here in the language of this paper): For121

a given genus g, does there exist a universal combinatorial map cutting the surface of genus g into a122

genus zero surface (possibly with several boundaries), and with a linear-length embedding on every123

such surface? We answer this question in the negative for cut graphs.124

2 Preliminaries125

2.1 Topology for Graphs on Surfaces126

We only recall the most important notions of topology that we will use, and refer to Stillwell [56] or127

Hatcher [32] for details. We denote by Sg,b the (orientable) surface of genus g with b boundaries, which128

is unique up to homeomorphism. The surfaces S0,0, S0,1, S0,2, and S0,3 are respectively called the129

sphere, the disk, the annulus, and the pair of pants. Surfaces are assumed to be connected, compact,130

and orientable unless specified otherwise. The notation ∂S denotes the boundary of S.131

A path, respectively a closed curve, on a surface S is a continuous map p : [0, 1]→ S, respectively132

γ : S1 → S. Paths and closed curves are simple if they are one-to-one. A curve denotes a path or a133

closed curve. We refer to Hatcher [32] for the usual notions of homotopy (continuous deformation) and134

homology. A closed curve is contractible if it is null-homotopic, i.e., it cannot be continuously deformed135

to a point. A simple closed curve is contractible if and only if it bounds a disk.136

All the graphs that we consider in this paper are multigraphs, i.e., loops are allowed and vertices137

can be joined by multiple edges. An embedding of a graph G on a surface S is, informally, a crossing-138

free drawing of G on S. A graph embedding is cellular if its faces are homeomorphic to open disks.139

Euler’s formula states that v − e + f = 2 − 2g − b for any graph with v vertices, e edges, and f faces140

cellularly embedded on a surface S with genus g with b boundaries. A triangulation of a surface S141

is a cellular graph embedding such that every face is a triangle. A graph G cellularly embedded on a142

surface S yields naturally a combinatorial map M , which stores the combinatorial information of the143

embedding G, namely, the cyclic ordering of the edges around each vertex; we also say that G is an144

embedding of M on S. Two graphs embedded on S have the same combinatorial map if and only if145

there exists a self-homeomorphism of S mapping one (pointwise) to the other.146

A graph G embedded on a surface S is a cut graph if the surface obtained by cutting S along G is147

a disk. A pants decomposition of S is a family of disjoint simple closed curves Γ such that cutting S148

along all curves in Γ gives a disjoint union of pairs of pants. Every surface Sg,b except the sphere, the149

disk, the annulus, and the torus admits a pants decomposition, with 3g + b− 3 closed curves.150

2.2 Combinatorial and Cross-Metric Surfaces151

We now briefly recall the notions of combinatorial and cross-metric surfaces, which define a discrete152

metric on a surface; see Colin de Verdière and Erickson [14] for more details. In this paper, all edges of153

the combinatorial and cross-metric surfaces are unweighted.154

A combinatorial surface is a surface S together with an embedded graph G, which will always be155

a triangulation in this article. In this model, the only allowed curves are walks in G, and the length of a156

curve c, denoted by |c|G, is the number of edges of G traversed by c, counted with multiplicity.157

However, it is often convenient (Sections 4 and 5) to allow several curves to traverse a same edge158

of G, while viewing them as being disjoint (implicitly, by “spreading them apart” infinitesimally on the159

surface). This is formalized using the dual concept of cross-metric surface: Instead of curves in G,160

we consider curves in regular position with respect to the dual graph G∗, namely, that intersect the161

edges of G∗ transversely and away from the vertices; the length of a curve c, denoted by |c|G∗ , is the162

number of edges of G∗ that c crosses, counted with multiplicity. Since, in this article, G is always a163

triangulation, G∗ is always trivalent, i.e., all its vertices have degree three. Curves and graph embedded164

on cross-metric surfaces can be manipulated efficiently [14]. The different notions of systoles are easily165

translated for both combinatorial and cross-metric surfaces.166

Once again, we emphasize that, in this paper, unless otherwise noted, all combinatorial surfaces167

are triangulated (each face is a disk with three sides) and unweighted (each edge has weight one).168
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Dually, all cross-metric surfaces are trivalent (each vertex has degree three) and unweighted (each169

edge has crossing weight one).170

2.3 Riemannian surfaces and systolic geometry171

We will use some notions of Riemannian geometry, referring the interested reader to standard text-172

books [16, 36]. A Riemannian surface (S,m) is a surface S equipped with a metric m, defined by a173

scalar product in the tangent space of every point. For example, smooth surfaces embedded in some174

Euclidean space Rd are naturally Riemannian surfaces (conversely, every Riemannian surface can be175

isometrically embedded in some Rd [44, 45]). The length of a (rectifiable) curve c is denoted by |c|m.176

The Gaussian curvature κp of S at a point p is the product of the eigenvalues of the scalar product at p.177

By the Bertrand–Diquet–Puiseux theorem [55, Chapter 3, Prop. 11], the area of the ball B(p, r) of ra-178

dius r centered at p equals πr2−κpπr4 + o(r4). We now collect the results from systolic geometry that179

we will use; for a general presentation of the field, see, e.g., Gromov [28] or Katz [34].180

Theorem 2.1 ([4, 27, 28, 35, 54]). There are constants c, c′, c′′, c′′′ > 0 such that, on any Riemannian181

surface with genus g and area A:182

1. some non-contractible closed curve has length at most c
√
A/g log g, where c ≤ 1/

√
π;183

2. some non-separating closed curve has length at most c′
√
A/g log g;184

3. some null-homologous non-contractible closed curve has length at most c′′
√
A/g log g.185

Furthermore,186

4. for an infinite number of values of g, there exist Riemannian surfaces of constant curvature −1187

(hence area A = 4π(g − 1)) and systole larger than 2
3
√
π

√
A/g log g − c′′′. In particular, the188

three previous inequalities are tight up to constant factors.189

Indeed, for (1), the existence of c is due to Gromov [27], and the fact that c ≤ 1/
√
π is due to Katz190

and Sabourau [35]. (2) is due to Gromov [28]. (3) is due to Sabourau [54]. (4) is due to Buser and191

Sarnak [4, p. 45].192

3 A Two-Way Street193

In this section, we prove that any systolic inequality regarding closed curves in the continuous (Rieman-194

nian) setting can be converted to the discrete (triangulated) setting, and vice-versa.195

3.1 From Continuous to Discrete Systolic Inequalities196

Theorem 3.1. Let (S,G) be a triangulated combinatorial surface of genus g, without boundary, with197

n triangles. Let δ > 0 be arbitrarily small. There exists a Riemannian metric m on S with area n198

such that for every closed curve γ in (S,m) there exists a homotopic closed curve γ′ on (S,G) with199

|γ′|G ≤ (1 + δ) 4
√

3 |γ|m.200

This theorem, combined with known theorems from systolic geometry, immediately implies:201

Corollary 3.2. Let (S,G) be a triangulated combinatorial surface with genus g and n triangles, without202

boundary. Then, for some absolute constants c, c′, and c′′:203

1. some non-contractible closed curve has length at most c
√
n/g log g, for c ≤ 4

√
3/π2;204

2. some non-separating closed curve has length at most c′
√
n/g log g;205

3. some homologically trivial non-contractible closed curve has length at most c′′
√
n/g log g.206

We note that, by Euler’s formula and double-counting, we have n = 2v + 4g − 4, where v is the207

number of vertices ofG. Thus, on a triangulated combinatorial surface with v ≥ g vertices, the length of208

a shortest non-contractible closed curve is at most 4
√

108/π2 ·
√
v/g log g < 1.82

√
v/g log g. This re-209

proves a theorem of Hutchinson [33], except that her proof technique leads to the weaker constant 25.27.210

We also remark that, in (3), we cannot obtain a similar bound if we require the curve to be simple (and211

therefore to be splitting [10]), as Section A.1 in Appendix shows.212

Proof of Corollary 3.2. The proof consists in applying Theorem 3.1 to (S,G), obtaining a Riemannian213

metric m. For each of the different cases, the appropriate Riemannian systolic inequality is known,214

4



which means that a short curve γ of the given type exists on (S,m) (Theorem 2.1(1–3)); by Theorem 3.1,215

there exists a homotopic curve γ′ in (S,G) such that |γ′|G ≤ (1 + δ) 4
√

3| γ|m, for any δ > 0.216

Proof of Theorem 3.1. The first part of the proof is similar to Guth et al. [31, Lemma 5]. DefinemG to be217

the singular Riemannian metric given by endowing each triangle of G with the geometry of a Euclidean218

equilateral triangle of area 1 (and thus side length 2/ 4
√

3): This is a genuine Riemannian metric except219

at a finite number of points, the set of vertices of G. The graph G is embedded on (S,mG). Let γ be a220

closed curve γ : S1 → S. Up to making it longer by a factor at most
√

1 + δ, we may assume that γ is221

piecewise linear and transversal to G. Now, for each triangle T and for every maximal part p of γ that222

corresponds to a connected component of γ−1(T ), we do the following. Let x0 and x1 be the endpoints223

of p on the boundary of T . (If γ does not cross any of the edges of G, then it is contractible and the224

statement of the theorem is trivial.) There are two paths on the boundary of T with endpoints x0 and x1;225

we replace p with the shorter of these two paths. Since T is Euclidean and equilateral, elementary226

geometry shows that these replacements at most doubled the lengths of the curve. Now, the new curve227

lies on the graphG. We transform it with a homotopy into a no longer curve that is an actual closed walk228

in G, by simplifying it each time it backtracks. Finally, from a closed curve γ, we obtained a homotopic229

curve γ′ that is a walk in G, satisfying |γ′|G = 4
√

3/2 |γ′|mG ≤
√

1 + δ 4
√

3 |γ|mG .230

The metric mG satisfies our conclusion, except that it has isolated singularities. However, it is easy231

to smooth and scalemG to obtain a metricm, also with area n, that multiplies the length of all curves by232

at least 1/
√

1 + δ compared to mG; see Appendix A.2. This metric satisfies the desired properties.233

3.2 From Discrete to Continuous Systolic Inequalities234

Here we prove that, conversely, discrete systolic inequalities imply their Riemannian analogs. The idea235

is to approximate a Riemannian surface by the Delaunay triangulation of a dense set of points, and to236

use some recent results on intrinsic Voronoi diagrams on surfaces [17].237

Theorem 3.3. Let (S,m) be a Riemannian surface of genus g without boundary, of area A. Let δ > 0.238

For infinitely many values of n, there exists a triangulated combinatorial surface (S,G) embedded on S239

with n triangles, such that every closed curve γ in (S,G) satisfies |γ|m ≤ (1 + δ)
√

32
π

√
A/n |γ|G.240

We have stated this result in terms of the number n of triangles; in fact, in the proof we will derive241

it from a version in terms of the number of vertices; Euler’s formula and double counting imply that,242

for surfaces, the two versions are equivalent. Together with Hutchinson’s theorem [33], this result243

immediately yields a new proof of Gromov’s classical systolic inequality:244

Corollary 3.4. For every Riemannian surface (S,m) of genus g, without boundary, and area A, there245

exists a non-contractible curve with length at most 101.1√
π

√
A/g log g.246

Proof. Let δ > 0, and let (S,G) be the triangulated combinatorial surface implied by Theorem 3.3247

with n ≥ 6g − 4 triangles. Euler’s formula implies that the number v of vertices of G is at least g,248

hence we can apply Hutchinson’s result [33], which yields a non-contractible curve γ on G with |γ|G ≤249

25.27
√

(n2 + 2− 2g)/g log g. By Theorem 3.3, |γ|m ≤ 101.08(1+δ)√
π

√
A/g log g.250

On the other hand, using this theorem in the contrapositive together with the Buser–Sarnak examples251

(Theorem 2.1(4)) confirms the conjecture by Przytycka and Przytycki [50, Introduction]:252

Corollary 3.5. For any ε > 0, there exist arbitrarily large g and v such that the following holds: There253

exists a triangulated combinatorial surface of genus g, without boundary, with v vertices, on which the254

length of every non-contractible closed curve is at least 1−ε
6

√
v/g log g.255

Proof. Let ε > 0, let (S,m) be a Buser–Sarnak surface from Theorem 2.1(4), and let G be the graph256

obtained from Theorem 3.3 from (S,m), for some δ > 0 to be determined later. Combining these two257

theorems, we obtain that every non-contractible closed curve γ in G satisfies258

(1 + δ)

√
32

π

√
A

n
|γ|G ≥

2

3
√
π

√
A

g
log g − c′′′,
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where A = 4π(g − 1). If δ was chosen small enough (say, such that 1/(1 + δ) ≥ 1 − ε/2), and g was259

chosen large enough, we have |γ|G ≥ 1−ε
3
√
8

√
n
g log g. Finally, we have n ≥ 2v by Euler’s formula.260

Proof of Theorem 3.3. Let η, 0 < η < 1/2 be fixed, and ε > 0 to be defined later (depending on η). Let261

P be an ε-separated net on (S,m), that is, P is a point set such that any two points in P are at distance262

at least ε, and every point in (S,m) is at distance smaller than ε from a point in P . For example, if we263

let P be the centers of an inclusionwise maximal family of disjoint open balls of radius ε/2, then P is an264

ε-separated net. In the following we put P in general position by moving the points in P by at most ηε;265

in particular, no point in the surface is equidistant with more than three points in P .266

Let P = {p1, . . . , pv}, and let Vi := {x ∈ (S,m) | ∀j 6= i, d(x, pi) ≤ d(x, pj)} be the Voronoi267

region of pi. Since every point of (S,m) is at distance at most (1 + η)ε from a point in P , each Voronoi268

region Vi is included in a ball of radius (1 + η)ε centered at pi. Define the Delaunay graph of P to269

be the intersection graph of the Voronoi regions, and note that if Vi ∩ Vj 6= ∅, then the corresponding270

neighboring points of the Delaunay graph are at distance at most 2(1 + η)ε.271

It turns out that under these assumptions, and choosing ε smaller than 1/(1 + η) times the so-called272

strong convexity radius of (S,m), the Delaunay graph, which we denote by G, can be embedded as a273

triangulation of S with shortest paths representing the edges; this follows from results by Dyer et al. [17],274

we refer the reader to Section A.3 in Appendix for further discussion.275

Consider a closed curve γ on G. Since neighboring points in G are at distance no greater than276

2(1 + η)ε on (S,m), we have |γ|m ≤ 2(1 + η)ε|γ|G. To obtain the claimed bound, there remains to277

estimate the number v of points in P . By compactness, the Gaussian curvature of (S,m) is bounded278

from above by a constant K. By the Bertrand–Diquet–Puiseux theorem, the area of each ball of radius279
1−2η
2 ε is at least π(1 − 2η)2 ε

2

4 −Kπ(1 − 2η)4 ε
4

16 + o(ε4) ≥ π(1 − 2η)3 ε
2

4 if ε > 0 is small enough.280

Since the balls of radius (1 − 2η) ε2 centered at P are disjoint, their number v is at most A/(π(1 −281

2η)3 ε
2

4 ). In other words, ε ≤ 2√
π(1−2η)3

√
A/v. Putting together our estimates, we obtain that |γ|m ≤282

4(1+η)√
π(1−2η)3

√
A

n/2−2g+2 |γ|G, where n is the number of triangles of G. Thus, if ε > 0 is small enough,283

n can be made arbitrarily large, and the previous estimate implies, if η was chosen small enough (where284

the dependency is only on δ) that |γ|m ≤ (1 + δ)
√

32
π

√
A
n |γ|G.285

4 Computing Short Pants Decompositions286

Recall that the problem of computing a shortest pants decomposition for a given surface is open, even287

in very special cases. In this section, we describe an efficient algorithm that computes a short pants288

decomposition on a triangulation. Technically, we allow several curves to run along a given edge of the289

triangulation, which is best formalized in the dual cross-metric setting. If g is fixed, the length of the290

pants decomposition that we compute is of the order of the square root of the number of vertices:291

Theorem 4.1. Let (S,G∗) be an (unweighted, trivalent) cross-metric surface of genus g ≥ 2, with n292

vertices, without boundary. In O(gn) time, we can compute a pants decomposition (γ1, . . . , γ3g−3) of S293

such that, for each i, the length of γi is at most C
√
gn (where C is some universal constant).294

The inspiration for this theorem is a result by Buser [5], stating that in the Riemannian case, there295

exists a pants decomposition with curves of length bounded by 3
√
gA. The proof of Theorem 4.1296

consists mostly of translating Buser’s construction into the discrete setting and making it algorithmic.297

The key difference is that for the sake of efficiency, unlike Buser, we cannot afford to shorten the closed298

curves in their homotopy classes, and we have to use contractibility tests in a careful manner.299

Given closed curves Γ in general position on a (possibly disconnected) cross-metric surface (S,G∗),300

cutting S along Γ, and/or restricting to some connected components, gives another surface S′, and301

restrictingG∗ to S′ naturally yields a cross-metric surface that we denote by (S′, G∗|S′). Also, to simplify302

notation, we denote by |c| (instead of |c|G∗) the length of a curve c on a cross-metric surface (S,G∗).303

The main tool is to cut off a pair of pants of a surface with boundary, while controlling the length of304

the boundary of the new surface:305
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(b) (c) (e)(d)

G∗ G∗

G∗
γc

γc+1

G∗

(a)

G∗
γc

γc+1

Figure 1: (a) Pushing a curve across a vertex. (b) The effect of a shifting step, if no self-tangency or
tangency occurs. (c) A portion of a self-tangent curve. (d) The corresponding subcurves. (e) The curve
after the removal of contractible subcurves.

Proposition 4.2. Let (S,G∗) be a possibly disconnected cross-metric surface, such that every connected306

component has non-empty boundary and admits a pants decomposition. Let n be the number of vertices307

of G∗ in the interior of S. Assume moreover that |∂S| ≤ `, where ` is an arbitrary positive integer.308

We can compute a family ∆ of disjoint simple closed curves of (S,G∗) that splits S into one pair of309

pants, zero, one, or more annuli, and another possibly disconnected surface S′ containing no disk, such310

that |∂S′| ≤ ` + 2n/` + 8. The algorithm takes as input (S,G∗), outputs ∆ and (S′, G∗|S′), and takes311

linear time in the complexity of (S,G∗).312

We defer the proof of Theorem 4.1 to Section B.1 in Appendix: It relies on computing a good ap-313

proximation of the shortest non-contractible closed curve, cutting along it, and applying Proposition 4.2314

inductively.315

Proof of Proposition 4.2. The idea is to shift the boundary components simultaneously until one bound-316

ary component splits, or two boundary components merge. This is analog to Morse theory on the surface317

with the function that is the distance to the boundary. However, in order to control the length of the de-318

composition, some backtracking is done before splitting or merging, as pictured in Figure 2.319

Let Γ = (γ10 , . . . , γ
k
0 ) be (curves infinitesimally close to) the boundaries of S. Initially, let γi = γi0.320

We orient each γi so that it has the surface to its right at the start. We will shift these curves to the right321

while preserving their simplicity and homotopy classes. We will only describe how ∆ is computed,322

since one directly obtains S′ by cutting along ∆ and discarding the annuli and one pair of pants.323

Shifting phase: We say that two simple closed curves on (S,G∗) are tangent if they both have a324

subpath in a common face of G∗. When a single closed curve has two subpaths in the same face of325

G∗, it will be called a self-tangent closed curve. The curves we handle in this phase are simple and326

homotopic to the γi. Since each such curve is separating, in a self-tangency, the two portions of a curve327

are oppositely oriented (Figure 1(c)). Therefore, “rewiring” such a curve at a self-tangency naturally328

splits it into two tangent closed curves, which we call its subcurves, see Figure 1(d).329

We define below how we shift a curve by one step to the right. The whole shifting phase consists of330

shifting the curves in a round robin way, i.e., we shift γ1 by one step, then γ2, . . . , γk, and we reiterate.331

This phase is interrupted immediately whenever some tangency or self-tangency occurs, see below. To332

shift γi by one step, for every successive edge of G∗ crossed by γi, in the order induced by γi, we333

push γi across the vertex adjacent to the edge (Figure 1(a)). The result of a shifting step is shown in334

Figure 1(b). Since G∗ is trivalent, tangencies appear one at a time, determined by only two portions of335

curves. As soon as there is one (including before the very first step), we do the following:336

• If γi is self-tangent, we test the two resulting subcurves for contractibility. If one of them is337

contractible, we discard it (Figure 1(e)) and continue the shifting process with the other one.338

Otherwise, both are non-contractible, and we go to the splitting phase below.339

• If γi is tangent to γj for some j 6= i, we go to the merging phase below.340

This finishes the description of the shifting phase. Let r be the integer such that each curve has been341

shifted between r and r + 1 steps to the right. For each i, 1 ≤ i ≤ k, and each c, 1 ≤ c ≤ r, let γic342

be the curve γi shifted by c steps. At every step of the shifting phase, we also maintain the sum of the343

lengths of the current curves. Then, at the end we denote by s the largest c ≤ r such that
∑k

i=1 |γic| ≤ `.344

(Remember that this is the case for c = 0 by hypothesis.)345
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γ1 δ1

δ2
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η α

β

(b)

Figure 2: (a) Splitting phase. (b) Merging phase.

Splitting phase: When a curve becomes self-tangent, we do a splitting, as is pictured on the top of346

Figure 2. For simplicity, let γ1 denote the curve that became self-tangent during the shifting phase.347

First, for every i 6= 1, we add γis to the family ∆. During the shifting phase, the closed curve γ1 split348

into two non-contractible closed curves α and β. Let η be the shortest path with endpoints on γ1s that349

goes between α and β. This path can be computed in linear time by shifting back, at the end of the350

shifting phase, γ1 to γ1s , and adding pieces of η at every step. The path η cuts γ1s into two subpaths µ351

and ν, one of them being possibly empty. We denote by δ1 the concatenation of µ and η, and by δ2 the352

concatenation of ν and η. Then we add δ1 and δ2 to the family ∆ and we are done.353

Merging phase: When two shifted curves are tangent, we do a merging (Figure 2, bottom), by com-354

puting a curve δ homotopic to their concatenation. For simplicity, let us denote by γ1 and γ2 two curves355

that became tangent during the shifting phase. First, for every i 6= 1, 2, we add γis to the family ∆. Let η356

be the shortest path from γ1s and γ2s , which we can, similarly as above, compute in linear time. The357

curve δ is defined by the concatenation η−1 · γ1s · η · γ2s . Now, we simply add δ to ∆ and we are done.358

Analysis: After joining or merging, we added curves to ∆ that cut the surface into an additional pair359

of pants, (possibly) some annuli, and the remaining surface S′. We first observe that we did not add360

any contractible closed curve to ∆; thus, S′ has no connected component that is a disk. The proof361

that |∂S′| ≤ ` + 2n/` + 8 is deferred to Section B.2 in Appendix; we only provide the intuition. The362

subtlety is the way the value of s was chosen: If s was equal to r (perhaps the most natural strategy), the363

boundary of S′ would contain (at least) one curve γir, and we would have no control on its length. On364

the opposite, if we had chosen s = 0, we would have no control on the lengths of the arcs η involved in365

the merge or the split. The choice of s gives the right tradeoff inbetween: the lengths of the curves γsi366

are controlled by this threshold, while the lengths of the arcs are controlled by the area of the annulus367

between γsi and γri .368

Complexity: The complexity of the splitting phase or the merging phase is clearly linear in n. The369

complexity of outputting the new surface (S′, G∗|S′) is linear in the complexity ∂S′, which is, by con-370

struction, also linear in n. To conclude, it suffices to prove that the shifting phase takes linear time.371

Essentially, it boils down to bounding the complexity of the contractibility tests. Doing them in tandem372

yields the claimed complexity; we defer this result to Section B.3 in Appendix.373

5 Lower Bounds for the Length of Cellular Graphs with Prescribed Combinatorial Map374

In this section, we essentially prove that, for any combinatorial map M of any cellular graph embedding375

(in particular, of any cut graph) of genus g, there exists an (unweighted, trivalent) cross-metric surface S376

with n vertices such that any embedding ofM on S has length Ω(n7/6). We are not able to get this result377

in full generality, but are able to prove that it holds for infinitely many values of g. On the other hand, the378

result is stronger since it holds “asymptoticaly almost surely” with respect to the uniform distribution on379

unweighted trivalent cross-metric surfaces with given genus and number of vertices.380
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(a) (b) (c) (d) (e) (f)

Figure 3: (a) The graph H , obtained after cutting S open along C. The vertices in B (on the outer face)
and the vertices of G∗ (not on the outer face) are shown. The chords are in thick black lines. (b) The
graphH1. (c) The graphH2. (d), (e): The exchange argument to prove (i). (f): Two chords violating (ii).

Let (S,G∗) be a cross metric surface without boundary, and M a combinatorial map on S. The381

M -systole of (S,G∗) is the minimum among the lengths of all graphs embedded in (S,G∗) with com-382

binatorial map M . Given g and n, we consider the set S(g,n) of trivalent unweighted cross-metric383

surfaces of genus g, without boundary, and with n vertices, where we regard two cross-metric surfaces384

as equal if some self-homeomorphism of the surface maps one to the other (note that vertices, edges,385

and faces are unlabelled). (This refines the model introduced by Gamburd and Makover [25]) Here is386

our precise result:387

Theorem 5.1. Given strictly positive real numbers p and ε, and integers n0 and g0, there exist n ≥ n0388

and g ≥ g0 such that, for any combinatorial map M of a cellular graph embedding with genus g, with389

probability at least 1−p, a cross-metric surface chosen uniformly at random from S(g, n) hasM -systole390

at least n7/6−ε.391

We can obtain a similar result in the case of polyhedral triangulations, obtained by gluing n equilat-392

eral triangles with sides of unit length. Indeed, any short cut graph in a polyhedral triangulation leads to393

a short cut graph in the corresponding cross-metric surface; we defer the details to Section C.1.394

The general strategy is inspired by Guth et al. [31], proving a related bound for pants decompositions,395

but the details of the method are rather different. The main tool is the following proposition.396

Proposition 5.2. Given integers g, n, and L, and a combinatorial map M of a graph embedding of397

genus g, at most f(g, n, L) = 2O(n)L (L/g + 1)12g−9 cross-metric surfaces in S(g, n) have M -systole398

at most L.399

Proof. First, note that it suffices to prove the result for cut graphs with minimum degree at least three.400

Indeed, one can transform any cellular graph embedding into such a cut graph by removing edges,401

removing degree-one vertices with their incident edges, and dissolving degree-two vertices, namely,402

removing them and replacing the two incident edges with a single one. So let M be the combinatorial403

map of such a cut graph of genus g; let (S,G∗) be a cross-metric surface in S(g, n), and let C be an404

embedding of M of length at most L. Euler’s formula and double-counting immediately imply that405

C has at most 4g − 2 vertices and 6g − 3 edges.406

Let H ′ be the graph that is the overlay of G∗ and C. Cutting S along C yields a topological disk D,407

and transforms H ′ into a connected graph H (Figure 3(a)) embedded in the plane, where the outer face408

corresponds to the copies of the vertices and edges of the cut graph C. The set B of vertices of degree409

two on the outer face of H exactly consists of the copies of the vertices of C; there are at most 12g − 6410

of these. A side of H is a path on the boundary of D that joins two consecutive points in B.411

Given the combinatorial map of H in the plane, we can (almost) recover the combinatorial maps412

corresponding to H ′ and to (S,G∗). Indeed, the set B of vertices of degree two on the outer face413

of H determines the sides of D. The correspondence between each side of D and each edge of the414

combinatorial map M is completely determined once we are given the correspondence between a single415

half-edge on the outer face of H and a half-edge of C; in turn, this determines the whole gluing of416

the sides of H and completely reconstructs H ′ with C distinguished. Finally, to obtain G∗, we just417

“erase” C. Therefore, one can reconstruct the combinatorial map corresponding to the overlay H ′ of G∗418

and C, just by distinguishing one of the O(L) half-edges on the outer face of H .419
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A chord of H is an edge of H that is not incident to the outer face but connects to vertices incident420

to the outer face. Two chords are parallel if their endpoints lie on the same pair of sides of D. We claim421

that we can assume the following:422

(i) no chord has its endpoints on the same side of H (Figure 3(d));423

and that (at least) one of the two following conditions holds:424

(ii) the subgraph of H between any two parallel chords only consists of other parallel chords (Fig-425

ure 3(f) shows an example not satisfying this property), or426

(ii’) there are two parallel chords such that the subgraph of H between them contains all the interior427

vertices of H .428

Indeed, without loss of generality, we can assume that our cut graph C has minimum length among all429

cut graphs of (S,G∗) with combinatorial map M . If a chord violates (i), one could shorten the cut graph430

by sliding a part of the cut graph over the chord (Figure 3(d–e)), which is a contradiction. The proof that431

either (ii) or (ii’) holds uses a similar argument and is deferred to Section C.2 in Appendix.432

We now estimate the number of possible combinatorial maps for H , by “splitting” it into two con-433

nected plane graphs H1 and H2, estimating all possibilities of choosing each of these graphs, and esti-434

mating the number of ways to combine them.435

Let H1 be the graph (see Figure 3(b)) obtained from H by removing all chords and dissolving all436

degree-two vertices (which are either in B or endpoints of a chord). H1 is connected, trivalent, and has437

at most n vertices not incident to the outer face, so O(n) vertices in total. There are thus 2O(n) possible438

choices for the combinatorial map of this planar trivalent graph H1 [31, Lemma 4].439

On the other hand, let H2 be the graph (see Figure 3(c)) obtained from H by removing internal440

vertices together with their incident edges and dissolving all degree-two vertices not in B. A simple441

computation, deferred to Section C.3 in Appendix, shows that the number of possibilities for H2 is at442

most 2O(g)
(
e(L+12g−9)

12g−9

)12g−9
, by (i) and since the total number of chords is at most L.443

Finally, in how many ways can we combine given H1 and H2 to form H? Let us first assume that444

(ii) holds; the parallel chords joining the same pair of sides are consecutive, so choosing the position of445

a single chord fixes the position of the other chords parallel to it. Therefore, given H1, we need to count446

in how many ways we can insert the O(g) copies of B on H2 into H1, and similarly the O(g) intervals447

where endpoints of chords can occur, respecting the cyclic ordering. After choosing the position of448

a distinguished vertex of H2, we have to choose O(g) positions on the edges of the boundary of H1,449

possibly with repetitions, which leaves us with
(O(n+g)
O(g)

)
≤ 2O(n+g) = 2O(n) possibilities. In case (ii’)450

holds, a very similar argument gives the same result. The claimed bound follows by multiplying the451

number of all possible choices above.452

Proof of Theorem 5.1. Let g0, n0, p, ε be as indicated. Euler’s formula implies that a cross-metric sur-453

face with n vertices has genus g ≤ (n+ 2)/4. Proposition 5.2 implies, after a routine computation (de-454

ferred to Section C.4 in Appendix), that, if n is large enough,
∑(n+2)/4

g=g0
f(g, n, n7/6−ε) ≤ n(1−ε)n/2 (*).455

Furthermore, let h(g, n) = |S(g, n)| be the number of cross-metric surfaces with genus g and n ver-456

tices. We have
∑(n+2)/4

g=0 h(g, n) ≥ eCnnn/2 if n is large enough and even, for some absolute con-457

stant C [31, Lemma 3] (see Section C.5 for details). But, if g is fixed, h(g, n) = O(eC
′n) for some458

constant C ′ [31, Lemma 4]. Thus, since g0 is fixed, there is a constant C ′′ such that, for n large enough459

and even,
∑(n+2)/4

g=g0
h(g, n) ≥ eC′′nnn/2 (**).460

Choose any (even) n ≥ n0 such that n−εn/2e−C
′′n ≤ p and such that (*) and (**) hold. This461

implies that, for some g ≥ g0, we have f(g, n, n7/6−ε)/h(g, n) ≤ n(1−ε)n/2/(eC
′′nnn/2) ≤ p (and the462

denominator is non-zero). In other words, among all h(g, n) cross-metric surfaces with genus g and463

n vertices, for any combinatorial map M of a cellular graph embedding of genus g, a fraction at most p464

of these surfaces have an embedding of M with length at most n7/6−ε.465

Finally, we remark that a tighter estimate on the number h(g, n) of triangulations with n triangles of466

a surface of genus g could lead to the same result for any large enough g, instead of for infinitely many467

values of g.468
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A Omitted Proofs for Section 3598

A.1 Splitting Closed Curves are Longer than Homologically Trivial Non-Contractible Closed599

Curves600

Figure 4 shows that the minimum length of a shortest homologically trivial, non-contractible closed601

curves can become much larger if we additionally request the curve to be simple (and thus splitting).602

` 1 ` 1

γ

α

β

Figure 4: A piecewise linear double torus with area A such that the length of a shortest splitting closed
curve is Ω(A) (left), but the length of a shortest homologically trivial non-contractible curve, concate-
nation of αβα−1β−1, has length Θ(1).

A.2 Smoothing Riemannian Surfaces603

Lemma A.1. With the notations of the proof of Theorem 3.1, there exists a smooth Riemannian metricm604

on S, also with area n, such that any closed curve γ in S satisfies |γ|m ≥ |γ|mG/
√

1 + δ.605

Proof. The idea is to smooth out each vertex v of G to make mG Riemannian, as follows.606

On the ball B(v, 2ε), consider a Riemannian metric mv with area at most δ/3 such that any path607

in that ball is longer under mv than under mG. This is certainly possible provided ε is small enough:608

For example, build a diffeomorphism from B(v, 2ε) onto the unit disk in the plane in the natural way (v609

being mapped at the center of the disk, and the trace of the edges of G being mapped to line segments610

forming equal angles); endow the disk with a metric just large enough so that the corresponding metric611

on B(v, 2ε) is larger than mv. If ε is taken small enough, the area that is needed for the new metric can612

be made as small as we want.613

We now use a partition of unity to define a smooth metric m̂ that interpolates between mG and the614

metrics mv, in the sense that:615
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• outside the balls of radius 2ε, we have m̂ = mG;616

• inside a ball B(v, ε), we have m̂ = mv;617

• in B(v, 2ε) \B(v, ε), the metric m̂ is a convex combination of mG and mv.618

The area of m̂ is at most the sum of the areas of mG and the mv’s, which is at most n(1 + δ). Moreover,619

for any curve γ, we have |γ|m̂ ≥ |γ|mG .620

Finally, we scale m̂ to obtain the desired metric m with area n; for any curve γ, we indeed have621

|γ|m ≥ |γ|m̂/
√

1 + δ.622

A.3 Delaunay Triangulations on Riemannian Surfaces623

The strong convexity radius at a point in a Riemannian surface (S,m) is an invariant that refines the624

well-known injectivity radius. It is the supremum of the radius ρx such that for every r < ρx the ball625

of radius r centered at x is strongly convex, that is, for any p, q ∈ B(x, r) there is a unique shortest626

path in (S,m) connecting p and q, this shortest path lies entirely within B(x, r), and moreover no627

other geodesic connecting p and q lies within B(x, r), see Klingenberg [36, Def. 1.9.9]. The strong628

convexity radius is positive at every point, and its value on the surface is continuous (see also Dyer et629

al. [17, Sect. 3.2.1]). It follows that for every compact Riemannian surface (S,m), there exists a strictly630

positive lower bound on the strong convexity radius of every point. We use the following lemma, which631

is a result of of Dyer et al. [17, Corollary 2].632

Lemma A.2. Let (S,m) be a Riemannian surface, let ρ > 0 be smaller than the strong convexity radius633

of any point in (S,m), and let P a point set in general position such that balls of radius ρ centered at P634

cover S. Then the Delaunay graph of P is a triangulation of S.635

To apply this result to our proof, we choose ε small enough so that (1 + δ)ε ≤ ρ.636

B Omitted Proofs for Section 4637

B.1 Proof of Theorem 4.1638

In this appendix, we finish the proof of Theorem 4.1, the main theorem of our algorithm to compute639

pants decomposition.640

Proof of Theorem 4.1. To prove Theorem 4.1, we consider our cross-metric surface without boundary641

(S,G∗), and we start by computing a simple non-contractible curve γ whose length is at most twice the642

length of the shortest non-contractible closed curve. Such a curve can be computed in O(gn) time [7,643

Prop. 9] (see also Erickson and Har-Peled [21, Corollary 5.8]) and has length at most C
√
n, where C is644

a universal constant, see Section 3. This gives a surface S(1) with two boundary components.645

The end of the proof just consists of applying Proposition 4.2 inductively: We start with S(1), and646

applying it to S(k) gives another surface S(k)′, in which we remove all the pair of pants. We denote the647

resulting surface by S(k+1) and apply Proposition 4.2 again. We apply this induction until we obtain648

a surface S(m) that is empty. Note that, for every k, S(k) contains no disk, annulus, or pair of pants,649

and that every application of Proposition 4.2 gives another pair of pants. Therefore, we obtain a pants650

decomposition of S by taking the initial curve γ together with all the curves in ∆ in all the applications651

of Proposition 4.2 and, when there are homotopic curves, by removing all of them except the shortest652

one. Therefore, the number of applications of Proposition 4.2 is bounded by the maximum size of a653

pants decomposition of S, i.e., 3g−3. The length of the pants decomposition is at most the sum, over k,654

of `k = |∂S(k)|. The sequence `k satisfies the induction `k+1 ≤ `k + 2n/`k + 8, with `1 ≤ C
√
n. A655

small computation gives that `k ≤ C
√
kn for C larger than 16 and k ≤ 3n, which proves the bound on656

the lengths since k ≤ 3g − 3 ≤ 3n. The total complexity of this algorithm is O(gn) since we applied657

O(g) times Proposition 4.2, which takes linear complexity.658

B.2 Analysis of the lengths of the curves659

After the joining or the merging phase, we added curves in ∆ that cut the surface into a new pair of660

pants, some annuli, and a new subsurface S′. We prove here that the length of the boundary S′ satisfies661

|∂S′| ≤ `+ 2n/`+ 8.662
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Lengths after the splitting phase: After a splitting phase with the curve γ1, the boundary ∂S′ of S′663

consists of all the other curves γis in Γ, and of the two new curves, whose sum of the lengths is bounded664

by |γ1s | + 2|η|. Hence |∂S′| ≤ |γ1s | + 2|η| +
∑k

i=2 |γis|, which is at most ` + 2|η| by the choice of s.665

Furthermore, by construction, |η| ≤ 2(r − s+ 1).666

Lengths after the merging phase: After a merging phase with the curves γ1 and γ2, the boundary ∂S′667

of S′ consists of all the other curves γis of Γ, and of the new closed curve, whose length is bounded by668

|γ1s |+ |γ2s |+ 2|η|. Hence similarly, |∂S′| ≤ `+ 2|η|. Furthermore, by construction, |η| ≤ 2(r− s+ 1).669

Final analysis: Thus, after either the splitting or the merging phase, we proved that |∂S′| ≤ ` +670

4(r − s+ 1). To conclude the proof, there only remains to prove that r − s ≤ n
2` + 1.671

Let c ∈ {s, . . . , r − 1}. The curves γic and γic+1 bound an annulus Ki
c. The number A(Ki

c) of672

vertices in the interior of this annulus, its area, is at least |γic| + |γic+1| (see Figure 1(b)—this is where673

we use, in a crucial way, the fact that G∗ is trivalent), because we may only have added vertices in the674

annulus when we discarded contractible curves.675

For c ∈ {s, . . . , r − 1} and i ∈ {1, . . . , k}, the annuli Ki
c have disjoint interiors, so the sum of their676

areas is at most n. By the above formula, this sum is at least Us + Ur + 2
∑r−1

c=s+1 Uc ≥ 2
∑r−1

c=s+1 Uc,677

where Uc =
∑k

i=1 |γic|. On the other hand, we have Uc ≥ ` if s+ 1 ≤ c ≤ r, by definition of s. Putting678

all together, we obtain n ≥ 2(r − s− 1)`, so r − s ≤ n
2` + 1.679

B.3 Complexity Analysis of the Shifting Phase680

To prove that the shifting phase takes linear time, it suffices to prove that the contractibility tests take681

linear time in total. We now show how to achieve this. To perform a contractibility test on two subcurves682

α and β, we perform a tandem search on the surfaces bounded by α and β, and stop as soon as we find683

a disk. If we find one, the complexity in the tandem search is at most twice the complexity of this disk,684

which is immediately discarded and never visited again. If we do not, the complexity is linear in n,685

but the shifting phase is over. Therefore, the total complexity of the contractibility tests is linear in the686

number of vertices swept by the shifting phase or in the disks, until the very last contractibility test,687

which takes time linear in n. In the end, the shifting phase takes time linear in n, which concludes the688

complexity analysis.689

C Omitted Proofs for Section 5690

C.1 A Polyhedral Version691

We first note that an element of S(g, n) naturally corresponds to a polyhedral triangulation by gluing692

equilateral triangles of unit side length on the vertices. The notion of M -systole is defined similarly in693

this setting, and we now prove that Theorem 5.1 implies an analogous result for polyhedral triangula-694

tions:695

Theorem C.1. Given strictly positive real numbers p and ε, and integers n0 and g0, there exist n ≥ n0696

and g ≥ g0 such that, for any combinatorial map M of a cellular graph embedding with genus g, with697

probability at least 1 − p, a polyhedral triangulation chosen uniformly at random from S(g, n) has698

M -systole at least n7/6−ε.699

Proof. As in the proof of Theorem 5.1, it suffices to prove the result for mapsM that are cut graphs with700

minimum degree three, which have at most 4g − 2 vertices and 6g − 3 edges. Let G be the vertex-edge701

graph of a polyhedral triangulation on a surface S with genus g. Assume that M has an embedding C of702

length O(n7/6−ε) on that polyhedral surface. We prove that M has an embedding of length O(n7/6−ε)703

in the dual cross-metric surface (S,G∗). Since, by Theorem 5.1, the proportion of such surfaces is704

arbitrarily small, this implies the theorem.705

Without loss of generality, we assume thatC is piecewise-linear, and in general position with respect706

to G. We consider a tubular neighborhood N of G (Figure 5(a)), obtained by first building a small disk707

around each vertex of G, and then building a rectangular strip containing each part of edge not covered708

by a disk. The disks are pairwise disjoint, the strips are pairwise disjoint; each strip intersects only the709
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(a) (b) (d)(c)

Figure 5: Illustration of the proof of Theorem C.1. (a): Two triangles of the graph G, the corresponding
part of the tubular neighborhood N , made of disks and strips, and the dual cross-metric graph G∗,
whose traces on the strips constitute the paths Ps. (b): A part of C. (c): Pushing the pieces not incident
to vertices of C into N . (d): Pushing the vertices of C.

c1 c2

p1

p2

Figure 6: The exchange argument to prove (ii) or (ii’). Left: Two chords violating (ii). Middle: The
exchange argument, in case p1 and p2 have different perturbed lengths. Right: A schematic view of the
situation, in case p1 and p2 have the same perturbed length.

disks corresponding to the incident vertices of the corresponding edge, along paths. We first push C710

into N as follows. First consider the maximal pieces of edges C that lie inside a triangle, but do not711

contain a vertex of C. It is easy, using elementary geometry in equilateral triangles, to prove that one712

can push, by an isotopy, all such pieces, without moving their endpoints, into C, while at most doubling713

their total length (Figure 5(b–c)). Finally, we push theO(g) vertices of C into the disks, thereby pushing714

also the incident pieces into N ; this adds O(g) to the length of C (Figure 5(d)).715

For each strip s, draw a shortest path Ps with endpoints on its boundary, that separates the two sides716

touching disks. If a piece of C inside s crosses Ps, it forms a bigon with Ps; by flipping innermost717

bigons, without increasing the length of C, we can assume that each piece of C inside s crosses Ps at718

most once.719

Now we extend the paths Ps to form the graph G∗ (Figure 5(a)). By the paragraph above, each720

crossing of a path Ps corresponds to a piece of a path of C that crosses the strip containing Ps, and thus721

has length at least 1 − δ, for δ > 0 arbitrarily close to zero. Therefore, the length of C on the cross-722

metric surface (S,G∗) is at most (1 − δ) times that of the length of C on the polyhedral triangulated723

surface.724

C.2 Proof That (ii) or (ii’) Holds725

Lemma C.2. With the notations in the proof of Proposition 5.2, we can assume that at least one of the726

following conditions holds:727

(ii) the subgraph of H between any two parallel chords only consists of other parallel chords (Fig-728

ure 6, left), or729

(ii’) there are two parallel chords such that the subgraph of H between them contains all the interior730

vertices of H .731

Proof. The basic idea is to use a similar exchange argument as to prove (i), but we need a perturbation732

argument as well. Specifically, let us temporarily perturb the crossing weights of the edges of G∗ as733
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follows: The weight of each edge e of G∗ becomes 1+we, where the we’s are i.i.d. real numbers strictly734

between 0 and 1/L. Let C be a shortest embedding of M under this perturbed metric.735

It is easy to see that C is also a shortest embedding of M under the unweighted metric: Indeed,736

two cut graphs C1 and C2 with respective (integer) lengths `1 < `2 ≤ L in the unweighted metric have737

respective lengths `′1 < `′2 in the perturbed metric, since the perturbation increases the length of each738

edge by less than 1/L.739

We claim that either (ii) or (ii’) holds for this choice of C. Assume that (ii) does not hold; we prove740

that (ii’) holds. So the region R of D between two parallel chords c1 and c2 of D contains internal741

vertices; without loss of generality (by (i)), assume that the region R contains no other chord in its742

interior. Let p1 and p2 be the two subpaths of the cut graph on the boundary of R. If p1 and p2 have743

different lengths under the perturbed metric, e.g., p1 is shorter, then we can push the part of p2 to let it744

run along p1 and shorten the cut graph, which is a contradiction. Therefore, p1 and p2 have the same745

length under the perturbed metric, which implies with probability one that they cross exactly the same746

set S of edges of G∗. (We exclude from S the edges on the endpoints of p1 and p2.) Since none of the747

edges in S are chords, all the endpoints of the edges in S belong to the region of D bounded by p1, p2,748

c1, and c2, which implies (ii’).749

C.3 A Bound on the Number of Possibilities for H2750

Lemma C.3. With the notations in the proof of Proposition 5.2, the number of different possible combi-751

natorial maps for H2 is at most 2O(g)
(
e(L+12g−9)

12g−9

)12g−9
.752

Proof. Since the chords are non-crossing and connect distinct sides of D, the pairs of sides connected753

by at least one chord form a subset of a triangulation of the polygon having one vertex per side of D.754

To describe H2, it therefore suffices to describe a triangulation of this polygon with at most 12g − 6755

edges, which makes 2O(g) possibilities, and to describe, for each of the 12g − 9 edges of the trian-756

gulation, the number of parallel chords connecting the corresponding pair of sides. Since there are757

at most L chords, the number of possibilities for the latter numbering is at most the area of the sim-758

plex {(x1, . . . , x12g−9) | xi ≥ 0,
∑

i xi ≤ L+ 12g − 9} (since this simplex contains all the copies of759

the unit cube translated by the non-negative integer points (x1, . . . , x12g−9) with total sum at most L),760

which is, using Stirling’s formula,761

1

(12g − 9)!
(L+ 12g − 9)12g−9 ≤

(
e(L+ 12g − 9)

12g − 9

)12g−9
.

C.4 An Upper Bound on the Number of Surfaces with Short Map Embeddings762

Lemma C.4. If n is large enough, we have
∑(n+2)/4

g=g0
f(g, n, n7/6−ε) ≤ n(1−ε)n/2.763

Proof. This is routine computation. We have f(g, n, n7/6−ε) ≤ 2C0n
(
n7/6−ε/g + 1

)12g−9
for some764

constant C0. We need to sum up these terms from g = g0 to (n + 2)/4. For n large enough, the765

largest term in this sum is for g = (n + 2)/4. Thus the desired sum is bounded from above by766

n2C0n.
(
4n1/6−ε + 1

)12(n+2)/4−9
, which is at most 2C1n.n(1/6−ε).3n (for n large enough, for some con-767

stant C1), which in turn is at most n(1−ε)n/2 for n large enough.768

C.5 The Number of Connected Cross-Metric Surfaces769

Lemma C.5. The number of (unweighted, trivalent) connected cross-metric surfaces with n vertices is,770

for n even large enough, at least eCnnn/2 for some absolute constant C.771

Proof. By duality, this is equivalent to counting triangulations with n triangles. Guth et al. [31, Lemma 3]772

prove that, for n ≥ 2 even and large enough, the number of possibly disconnected triangulations with773

n triangles is between eKn.nn/2 and eK
′n.nn/2, where K and K ′ are absolute constants. Like us, they774

actually need to prove such bounds for connected surfaces. We shall fill this gap here.775
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Every disconnected triangulation with n triangles can be expressed as the disjoint union of two776

(possibly disconnected) triangulations with k and n − k triangles, respectively. Therefore, the number777

of disconnected triangulations with n triangles is bounded from above by778 ∑
2≤k≤n/2
k even

eK
′n.kk/2(n− k)(n−k)/2.

This sum is dominated by its first term, so the number of disconnected triangulations with n triangles is779

O
(
eK
′n.(n− 2)(n−2)/2

)
. Therefore, the number of connected triangulations with n triangles is at least780

eKn.nn/2 −K ′′eK′n.(n− 2)(n−2)/2 for some constant K ′′, which is Ω
(
eKn.nn/2

)
, as desired.781
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