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Abstract

Normal surfaces are a ubiquitous tool in computa-
tional 3-manifold theory. In this paper, we investigate
a relaxed notion of normal surfaces where we remove
the quadrilateral conditions. This yields normal sur-
faces that are no longer embedded. We prove that
it is NP-hard to decide whether a given singular nor-
mal surface is immersed. Our proof uses a reduction
from boolean constraint satisfaction problems where
every variable appears in at most two clauses, using
a classification theorem of Feder.

1 Introduction

The field of computational topology aims at providing
computational and efficient tools to deal with topo-
logical problems. In this theory, the dimension of
the problems we consider has a very direct impact
on the complexity of the algorithms designed to solve
them. Fundamental problems tend to have polyno-
mial time solutions for surfaces [I], while in dimen-
sions larger than three, things easily become unde-
cidable [I3] Chapter 9]. In the intermediate case,
most of the problems we encounter in 3-dimensional
topology are decidable but typically solved with (at
least) exponential-time algorithms. The most famous
of these is detecting the unknot, whose complexity
is in NP [5], and in co-NP assuming the Generalized
Riemann Hypothesis [7], but for which no polynomial
time algorithm nor hardness proof is known.

A standard way to study 3-manifolds is to investi-
gate which surfaces can be embedded in them. Nor-
mal surfaces, used in a wealth of algorithms, are per-
haps the most ubiquitous tool for that. First brought
to the algorithmic light by Haken [4], normal surfaces
provide a compact and structured way to analyze and
enumerate the most interesting surfaces embedded in
a 3-manifold. Starting with a triangulation T of a 3-
manifold M with ¢ tetrahedra, a normal surface is a
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vector in Zj_t describing a (possibly disconnected) sur-
face in M. In rough terms, many interesting surfaces,
such as for example a Seifert disk for the unknot, are
witnessed by a normal surface having coordinates at
most exponential in ¢. This is the starting point of
many algorithms based on the enumeration of normal
surfaces, which naturally have an exponential com-
plexity. See Hass et al. [5] for a nice exposition.

In addition to providing a succinct representation of
embedded surfaces, normal surfaces possess an addi-
tional algebraic structure. The natural addition and
scalar multiplication of vectors carry over to opera-
tions on normal surfaces, and the space of normal
surfaces in ert is characterized by two sets of con-
straints: the matching equations and the quadrilateral
conditions. The former are linear equations specifying
how pieces of the surface glue together, while the lat-
ter are non-linear and ensure that the surface we ob-
tain is embedded. Spaces defined by linear constraints
can be studied through linear programming, a power-
ful framework to deal with decision and optimization
problems; in contrast, the quadrilateral conditions are
combinatorial in nature, and provide the source of the
exponential complexity. This motivates the study of
a notion of relaxed normal surfaces, where we remove
the quadrilateral conditions to obtain a polyhedral
structure on the space of normal surfaces.

Removing the quadrilateral conditions amounts
to removing the embeddedness of normal surfaces.
Therefore, it amounts to dealing with singular normal
surfaces. Among these, the immersed normal sur-
faces are well-behaved, in the sense that while they
can self intersect, they are still 2-manifolds locally.
Moreover, their Euler characteristic is a linear form
on the polyhedron of singular normal surfaces—this
fact is crucial in algorithms that work with embedded
normal surfaces, but does not hold in general for sin-
gular normal surfaces. By coupling singular normal
surface theory with an algorithm that efficiently sep-
arates immersed normal surfaces from the others, we
would have powerful tools at our disposal: this could
lead to efficient algorithms to find immersed low genus
surfaces in 3-manifolds, and through classical topolog-
ical results like Dehn’s Lemma or the Loop Theorem
[6] we would obtain embedded surfaces, which are the
key behind the unknot problem and many others.

In this paper, we show some inherent limitations of
this approach (Theorem : it is NP-hard to detect
whether a singular normal surface is immersed.
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Immersed normal surfaces have been studied from a
mathematical point of view in [8] and from a compu-
tational perspective in [9} [T1], in the particular case of
a fixed triangulation of the figure eight knot comple-
ment. In these papers, the authors devise and imple-
ment an algorithm to test whether a given singular
normal surface is immersed. While the complexity
of this algorithm is not explicitly computed, it is at
least doubly exponential in the input size. Our main
result shows that the problem is inherently hard and
no polynomial solution is to be expected. The main
result of [9, [T1] is that in the case of the complement
of the figure eight knot, a projective variant of the
space of immersed normal surfaces has a nice and low
complexity polyhedral structure. Our hardness proof
complements this by showing that this simplicity is
not to be expected in the general case.

The complexity reduction used in the proof of this
theorem relies on an intricate classification theorem
in the complexity of boolean constraint satisfaction
problems [2, [3]. Hardness results are scarce in 3-
dimensional computational topology, and thus our re-
sult displays a different intractibility aspect of this
theory, which gives another possible justification for
the exponential complexity of most known algorithms.

2 Normal surfaces

2.1 3-manifolds and embedded normal surfaces

In this paper, we describe 3-manifolds using trian-
gulations, i.e., tetrahedra glued in pairs along two
dimensional faces. We assume that the link of every
vertex is a 2-sphere, and no edge is glued to itself in
the opposite direction: this is the case if and only if
the underlying space is a 3-manifold. Note that such
a triangulation is in general not a simplicial complex.
Conversely, it is known that any 3-manifold M is the
underlying space of such a triangulation [10]. Hence-
forth, T" denotes a triangulation of a 3-manifold M.
An (embedded) normal surface in T is a prop-
erly embedded and possibly disconnected surface in T
that meets each tetrahedron in a possibly empty col-
lection of triangles and quadrilaterals, called normal
disks. In each tetrahedron, there are 4 possible types
of triangles and 3 possible types of quadrilaterals, pic-
tured in Figure The intersection of a triangle or
quadrilateral with a face of the triangulation gives rise
to a normal arc. To each embedded normal surface,

Figure 1: The seven types of normal disks.

one can associate a vector in (Z,)™, where t is the

number of tetrahedra in T', by listing the number of
triangles and quadrilaterals of each type in each tetra-
hedron. This vector provides a very compact descrip-
tion of that surface, since the bit representation of in-
tegers allows for an exponential compression. Recip-
rocally, to recover an embedded normal surface from
a vector in (Z4 )™, called normal coordinates, the
vector must satisfy two types of equations:

e The matching equations stipulate that at the
interface of two tetrahedra, there are as many
arcs of each arc type coming from both sides.

e The quadrilateral conditions stipulate that,
within any tetrahedron, at most one of the three
quadrilateral coordinates must be non-zero.

Proposition 1 ([5]) Let T be a triangulation of size
tandv € (Z4)™. Then v corresponds to an embedded
normal surface if and only if the matching equations
and the quadrilateral conditions are fulfilled.

2.2 Singular and immersed normal surfaces

Given mnormal coordinates satisfy-
ing the matching equations and the
quadrilateral conditions, one obtains
a family of triangles and quadrilat-
erals that can be glued together to
form an embedded surface, which is
unique up to isotopy. When one
drops the quadrilateral conditions,
one can still glue their boundaries
pairwise to obtain an abstract sur-

Figure 2: . .
A branch face, since they satisfy the match-
point ing equations. However, the result-

ing surface might not be embedded
any more: It may have singularities,
and so is called it a singular normal surface. Also,
when we allow singular surfaces, different gluings are
possible that (in general) give radically different sur-
faces, and so the singular surface is not uniquely de-
fined. After a small perturbation, the surface we ob-
tain is either an #mmersed normal surface, i.e.,
the image of a usual surface by a locally one-to-one
map, or it has a branch point, as pictured in Figure [2}
Given the data of normal coordinates satisfying the
matching equations, together with a gluing, i.e., a
choice of how to glue the normal triangles and quadri-
laterals, we can easily determine whether the cor-
responding singular normal surface is immersed or
not. However, if we only have the normal coordinates,
then, depending on the choice of the gluings, some of
the resulting surfaces may be immersed while some
other may have branch points. If there exists a glu-
ing whose corresponding singular surface is immersed,
we say that the normal coordinates are tmmersible.
Our main result is about the computational complex-
ity of the following problem.
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Problem 2 (Immersibility)

Input: A triangulation T and normal coordinates N
satisfying the matching equations.

Output: Are the normal coordinates N immersible?

Two difficulties are at the heart of this problem: Not
only do we need to guess a “good” gluing, but this glu-
ing may have an exponential complexity in the input,
since the normal coordinates are naturally compressed
by the bit representation. Therefore, the naive algo-
rithm (implemented by Matsumoto and Rannard [9])
is doubly exponential.
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Figure 3: A schematic representation of a block.

We introduce a schematic representation of singular
normal surfaces, more specifically to draw a family of
tetrahedra that all have one edge in common, which
we call a block like in Figure a). In order to pic-
ture cleanly what happens on the back of this block,
we will unfold it as in Figure (b), with the implicit
convention that the rightmost face is glued to the left-
most face. Although normal disks can be drawn inside
this block, the pictures easily become congested when
there are several of them. Instead, we will forget the
edge in common in the representation and represent
the normal disks by their normal arcs, i.e., by their
intersection with the front faces (Figure [3(c)). These
normal arcs are glued together and form possibly self-
intersecting closed curves, called block curves.

Abstracting a bit more, horizontal lines will rep-
resent triangles, while diagonal ones will stand for
quadrilaterals (Figure [3[d)). To make these pictures
even more readable, we will draw the edges between
the tetrahedra vertically, only linking them at the
extreme top and bottom parts of the figures (Fig-
ure [3[e)). Finally, when we represent normal coor-
dinates without a specific gluing, the normal arcs are
drawn so that they connect the midpoints of the cor-
responding edges of the triangulation (as in Figure|4)).

2.3 Boolean Constraint Satisfaction Problems

In this section, we recall a few basic results about
boolean constraint satisfaction problems; our presen-
tation is inspired from Dalmau and Ford [2] and we
refer to their paper for the notations.

For an r-ary relation R C {0,1}", we denote
by SAT(R) the corresponding satisfiability problem,
i.e., whether a given conjunction of R-clauses (pos-
sibly with constants) is satisfiable. A relation R is
Schaefer if it is Horn, dual-Horn, bijunctive or affine
(see [2] for the corresponding definitions). The cel-
ebrated classification theorem of Schaefer [I2] shows
that if a relation R is Schaefer, then SAT(R) is in P,
otherwise it is NP-complete.

For our reduction, we will restrict ourselves to con-
straint satisfaction problems where every variable oc-
curs at most twice; we denote the corresponding prob-
lem by SAT(2, R). We introduce a last concept to
classify this restricted class of satisfaction problems.

Let R C {0,1}" be a relation. Let x,y,2’ € {0,1}",
then 2’ is a step from z to y if d(z,2') = 1 and
d(z,2") + d(2',y) = d(x,y), where d is the Hamming
distance. R is a A-matroid (relation) if it satisfies
the following two-step axiom:

For all z,y € R and for all 2’ a step from z
to y, either 2’ € R or there exists " € R
which is a step from z’ to v.

Feder [3] proved that if R is a non-A-matroid relation,
then SAT(2, R) is polynomially equivalent to SAT(R).
This result, combined with Schaefer’s theorem [12],
immediately implies:

Theorem 3 If R is neither Schaefer nor a A-matroid,
then SAT(2, R) is NP-complete.

3 NP-hardness of detecting immersibility

Our main result is the following theorem.

Theorem 4 The problem IMMERSIBILITY is INP-
hard.

The relation. We define the following relation:

R = {(0,0,0,0,0,0);(0,0,0,1,0,1);(0,1,0,1,0,0);
(0,1,0,0,0,1); (0,0,1,0,1,0); (0,1,1,0, 1, 1);
(1’ 0? 1?07 07 0)’ (]‘707 1’ ]" 0’ ]')? (1’ 070? 07 ]'7 O)’
( 5 (

1,1,1,1,1,1);(1,1,0,1,1,0) }

One can check that R satisfies the hypotheses of The-
orem [3} thus:

Proposition 5 SAT(2, R) is NP-complete.
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The proof of Theorem [ proceeds by a reduction of
SAT(R) to IMMERSIBILITY. We start with a for-
mula ® that is a conjunction of clauses of the form
R(z;, ... x), where x; is either a variable or a con-
stant, and every variable appears at most twice in .
Each clause is represented by a clause gadget. For
each variable occurring exactly twice in ®, we connect
these two occurrences in the clauses using tubes. Fi-
nally, the constant gadgets are used to represent the
constants 0 or 1. The idea for the proof is that a clause
is satisfiable if and only if the normal coordinates in
the corresponding gadget are immersible; the tubes
then enforce consistency between the clauses. There-
fore, the whole formula will be satisfiable if and only
if the associated normal coordinates are immersible.

The clause gadget. For every clause in ®, we cre-
ate one copy of the clause gadget in Figure [ The

Figure 4: A block representing a clause gadget.

rationale behind this gadget is the following. At the
interface of two adjacent tetrahedra, exactly two pos-
sibilities exist for the gluings. This choice of gluing
can be described by a variable z; € {0,1}: a value of 1
corresponds to the fact that the two block curves at
the specified position cross. Therefore, each variable
in a clause corresponds to a couple of faces in the gad-
get; for example, the two shaded triangles in Figure []
are the couple of faces associated to the variable x;.
This way, a gluing of the singular normal surface is
described by an element x € {0,1}%. For every pos-
sible choice of z, testing whether the corresponding
surface is immersed yields the following lemma.

Lemma 6 The singular normal surface in the gadget
G specified by the gluing x € {0,1}% is immersed if
and only if z € R.

The tubes. A tube is the block pictured in Fig-
ure [fla. The gluing of the singular normal surface
in a tube is specified by two variables. For each vari-
able appearing in exactly two clauses, we put a tube
between the corresponding occurences of the variable.
The following lemma shows that a tube enforces the
values of the variables to be consistent among clauses.

Lemma 7 The singular normal surface in a tube
specified by the gluing is immersed if and only if both
variables of the tube are equal.

1 a0
2 G

a. b. C.

Figure 5: a. A tube gadget. b.c. The constant gad-
gets CGy and CG;.

The constants. We finally glue the gadgets C'Gj
and CG pictured in Figure [5]b,c respectively on the
clauses where the constants 0 or 1 appear. Their
structure makes them so as to force the corresponding
gluing in the clause gadget to be respectively a 0 or a
1 gluing.
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