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Résumé
Ce mémoire d’habilitation présente un panorama de mes activités de recherche depuis

ma soutenance de thèse. Le thème commun à tous mes travaux est l’étude des interactions
entre les propriétés algorithmiques, géométriques et topologiques d’objets mathématiques
de basse dimension, tels que les graphes et leurs plongements sur les surfaces, ainsi que les
nœuds et les 3-variétés.

Ce document présente principalement trois séries de travaux que j’ai menés avec de
nombreux co-auteurs sur plusieurs années. La première traite de problèmes de décompo-
sitions de surfaces : quelle est la façon optimale de découper une surface en un disque?
Par dualité, ce problème est relié au problème algorithmique MULTICUT pour les graphes
plongés, qui vise à calculer la meilleure façon de découper un graphe pour séparer un en-
semble de paires de terminaux. Nous utilisons des algorithmes topologiques pour obtenir
des schémas d’approximation pour ces deux problèmes, et parallèlement nous développons
de nouvelles techniques pour prouver des bornes inférieures algorithmiques pour des pro-
blèmes sur des graphes plongés, en particulier ces deux-ci. Ensuite, nous nous intéressons
au problème de calculer une homotopie optimale, c’est-à-dire où la longueur maximale
des courbes est minimisée. L’étude de telles homotopies est motivée par des considéra-
tions à la fois mathématiques et plus appliquées. Nous établissons des propriétés structu-
relles fortes sur ces homotopies optimales, valables à la fois dans un contexte riemannien
et discret, qui nous permettent d’obtenir des algorithmes pour les calculer, aussi bien de
façon exacte qu’approchée. Nous établissons aussi des liens avec la théorie des mineurs
de graphes. Dans un troisième temps, nous présentons une famille de résultats de difficulté
algorithmique pour des problèmes en théorie des nœuds et en topologie de dimension trois.
En particulier nous prouvons la NP-difficulté du problème de décider la plongeabilité de
complexes simpliciaux dans R3, ainsi que du problème de démêler un nœud trivial en un
nombre minimal de mouvements. Nous exposons ensuite de façon plus succincte d’autres
contributions, sur les plongements par plus courts chemins de graphes sur les surfaces, le
raccourcissement des courbes et les transformations électriques, la largeur d’arborescence
des diagrammes de nœuds et le nombre de croisements d’entrelacs. Nous concluons avec
quelques perspectives et directions de recherche ultérieures.



Abstract
This habilitation thesis presents an overview of my research activities since the defense of
my PhD Thesis. The common theme underlying most of my work is the investigation of
the interactions between the algorithmic, geometric and topological properties of a mathe-
matical object. The focus is on low dimensions: graphs and their embeddings on surfaces,
as well as knots and 3-dimensional topology.

This document showcases three lines of work that I have developed with multiple co-
authors over the course of several years. The first one deals with a problem of surface
decomposition: what is the best way to cut a surface into a disk? By duality, this problem
is related to the algorithmic problem MULTICUT for embedded graphs, asking for the best
way to cut a graph so as to separate a specified set of pairs of terminals. We leverage topo-
logical algorithms to provide approximation schemes for both problems, and dually we de-
velop new tools to establish lower bounds for computational problems involving embedded
graphs, including these two. We then turn our attention towards the problem of computing
optimal homotopies, i.e., homotopies where the length of the longest curve is minimized.
Their study is motivated by questions coming both from Riemannian and computational
geometry. We prove strong results on the structure of optimal homotopies, valid in both
the discrete and the continuous setting, and leverage those to provide improved algorithms
to compute optimal homotopies exactly or approximatively, as well as to draw connections
with graph minor theory. In a third step, we present a family of computational hardness
results for various problems in knot theory and 3-dimensional topology. Most importantly
we prove the NP-hardness for the problem of deciding embeddability of simplicial com-
plexes in R3 and for the problem of optimally untangling a diagram of the unknot. We then
survey more succinctly some other contributions pertaining to shortest path embeddings of
graphs on surfaces, curve tightening and electrical transformations, treewidth of knot dia-
grams and the crossing number of links. We conclude with some perspectives and future
research directions.
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CHAPTER 1

Introduction

This habilitation thesis presents a compilation of some of the works that I have completed
between the defense of my PhD Thesis [V] in 2014 and the present day. My research re-
volves broadly around the algorithmic and combinatorial questions arising from geometric
topology, or in the other direction around how geometric and topological ideas impact the
design and analysis of algorithms. As the title of this document highlights, the common
thread weaving through most of my works is the systematic exploration of the interactions
between the geometry and topology of a mathematical object on one side, and the complex-
ity of the algorithmic problems surrounding this object on the other side. Typical instances
of these interactions arise when asking the following basic questions:

• Pick a combinatorial object that is equipped with a topological structure, for example
a graph embedded on a surface. How does this topological constraint impact the
combinatorics of the object? How can we leverage the topology to solve algorithmic
problems on the graph?

• Pick a topological space and consider the combinatorial and metric structures that
it can be endowed with. For example, a surface can be endowed with a continuous
metric (e.g., a Riemannian one), or a discrete metric (via an embedded graph). How
do these geometries compare to each other? Can we use techniques apparently spe-
cific to one world (discrete or continuous) to impact the other world, for example to
design algorithms?

• Pick a discrete model of a topological object, for example a simplicial complex trian-
gulating a manifold. What are the best algorithms to solve basic topological questions
on this object? For example: are these two topological objects homeomorphic? Is
this curve contractible? Are these two knots the same? Can we rely on geometric
tools to answer these questions?
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These broad questions are at the source of countless fundamental problems, many of
which are wide open despite their apparent simplicity. My work revolves mostly around
low-dimensional topological objects, such as graphs, surfaces, two-dimensional complexes,
knots and 3-manifolds. This is partly motivated by applications: surfaces and their em-
beddings in R3 occur naturally in many applications (computer graphics, computer-aided
design, geometry processing, materials science, geographic information systems, VLSI de-
sign). Furthermore, topology in low dimension possesses a distinct mathematical flavor
compared to the higher dimensional case. Indeed, many topological problems tend to be-
come undecidable as soon as the dimension grows past four (for example testing homotopy
or homeomorphism). In addition, the topological study of surfaces and 3-manifolds often
revolves around geometric ideas, as opposed to the more algebraic theory underlying the
topological properties of spaces of higher dimension. This is showcased by the Poincaré
conjecture, which was solved using widely different techniques in dimensions five or more
(Smale [172]), four (Freedman [70]) and three (Perelman [152]).

In my PhD Thesis [V], I have investigated questions pertaining to the complexity of
computing deformations of embedded graphs [R], decompositions of triangulated sur-
faces [S], and immersed surfaces in 3-manifolds [T]. In my work since then, I have
continued exploring the very rich world at the intersection of low-dimensional topology,
geometry and algorithms, which has led to 17 publications in peer-reviewed conferences
and/or journals in mathematics and theoretical computer science.

We refer to Figure 1.1 for a panorama of some problems covered in this memoir. After
the technical preliminaries in Chapter 3, this habilitation thesis is structured so as to show-
case three particular lines of work in Chapters 4, 5 and 6, each of them being developed
over the course of multiple years and articles. Since these articles have already been pub-
lished and reviewed, the approach that I have chosen for this document is to avoid being
redundant and focus on different aspects of my research than the ones that have already
appeared in print. Therefore, the exposition focuses on the ideas and the context instead of
the technical aspects, and a particular emphasis is put into telling the story that was weaved
between a succession of papers on similar topics. Likewise, I chose whenever possible to
present simple alternative constructions instead of the optimal ones.

Cutting surfaces: Shortest Cut Graph and Multicut. In Chapter 4, the main object that
we consider is a graph G embedded on surface and we investigate algorithms to undertake
one of the most basic operations for surfaces: cutting it into pieces of simpler topology. In
the SHORTEST CUT GRAPH problem, the problem is to find a subgraph H ⊆ G of mini-
mal length such that cutting the surface along H yields a disk. This is a basic topological
primitive, both in applied settings and for algorithm design, where such a planarization
can then be used in order to apply algorithmic techniques specifically designed for planar
graphs. The second problem that we look at is a fundamental algorithmic problem: the
MULTICUT problem asks, given a graph and a set of pairs of terminals (si, ti) chosen from
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of the vertices, to find a minimum subset of edges whose removal disconnects the pairs of
terminals. A first observation is that this problem can be recast into a topological one when
G is an embedded graph as follows: by basic duality, the MULTICUT problems amounts
to computing a shortest subgraph of the dual graph such that cutting along it yields pieces
where the pairs of dual terminals are separated. Then both the SHORTEST CUT GRAPH

and the MULTICUT problems seek to compute shortest subgraphs with specific topological
properties. In Chapter 4, we present approximation schemes for SHORTEST CUT GRAPH

and MULTICUT that run in fixed parameter tractable time when parameterized by the ap-
proximation factor, the genus of the underlying surface, and the number of terminals in the
case of MULTICUT. These algorithms are then complemented by lower bounds: reduc-
tions proving that assuming the Exponential Time Hypothesis, these algorithms cannot be
improved to yield exact algorithms with similar time dependencies. These lower bounds
answer a question of Erickson and Har-Peled [63].

Homotopy height: optimally sweeping a surface. In Chapter 5, we investigate the HO-
MOTOPY HEIGHT problem, which we can paint in broad strokes as follows: given a surface
endowed with some metric (continuous or discrete), what is the best way to sweep the sur-
face using a connected curve? Such questions can be thought of in a physical setting: some
elastic curve (say, a rubber band) breaks when its length exceeds some fixed value. Is it
possible to bring this curve from one specified position to another using a continuous de-
formation without breaking it? In this problem, the complexity measure that we are trying
to minimize is the maximum length that the curve might require during the sweeping. Such
optimal sweep-outs have been studied for very different reasons in both the Riemannian
and the discrete setting. In the former setting, they provide a way to prove the existence
and control the length of closed geodesics, following an argument dating back to Birkhoff.
In the discrete world, they have been introduced as a similarity measure between trajecto-
ries, and bear interesting similarities with classical notions of graph decompositions such
as path-width and branch-width. Our first result is to show that in many different settings,
there exists an optimal sweep-out that has nice structural properties: the sweeping curve
always stays simple, and always moves in one direction, i.e., it does not backtrack. This
is then leveraged to prove that the underlying algorithmic problem lies in the complexity
class NP and to provide a polynomial-time O(log n)-approximation algorithm. Finally,
we observe an intriguing connection with grid minors, which provides us with a fixed-
parameter tractable algorithm to compute a specific variant of HOMOTOPY HEIGHT when
parameterized by the output.

Hard problems in three dimensions: knots and embeddings. The objective of Chap-
ter 6 is to provide a collection of NP-hardness results for topological problems in three
dimensions. The common thread in these hardness results is that they all revolve around
classical knots and links, i.e., closed curves (or families of those) embedded in R3. Al-
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gorithmic problems occurring in knot theory occupy a peculiar place in the computational
landscape, as there are often huge gaps between the best known algorithms and the best
computational lower bounds. After providing an introductory outlook on this algorithmic
divide, we prove the NP-hardness of multiple knot-theoretical problems: detecting whether
a given link admits a trivial link as a sublink, computing the unlinking number of a link,
and computing a minimal sequence of Reidemeister moves to untangle an unlink, and even
an unknot. A common point in all our reductions is that the gadgets revolve around Bor-
romean rings, which seem to provide a useful topological analogue of the structure of a
SATISFIABILITY instance. In a second step (which was actually the first step chronologi-
cally), we explain how we can also use reduction techniques based on Borromean rings to
prove the NP-hardness of the seemingly unrelated topological problem EMBED2→3, which
asks whether a given 2-dimensional complex into R3. The connection with knot theory
occurs through the technical tool of Dehn surgery, which we will introduce before giving
the main idea of the proof.

Other works involving surfaces and three-dimensional topology. In Chapters 7 and 8,
we present some other results that we have obtained, involving respectively surfaces or
three-dimensional objects. The presentation of my work in these chapters in more concise
and focuses on explaining the main results and their motivations. In Section 7.1, we present
our work on the universal shortest path metric question: given a surface S, does there exist
a metric on S such that any graph embeddable on S can be embedded with its edges em-
bedded as shortest paths? Such a universal shortest path metric would provide an analogue
of the famous Fàry theorem for planar graphs, and provide a geometric approach towards
solving a conjecture of Negami on the crossing number of pairs of embedded graphs. In
Section 7.2, we provide upper and lower bounds as well as algorithms for the problem of
tightening a curve or a family of curves on a surface, where we are trying to minimize the
number of combinatorial moves used during this tightening process. This tightening pro-
cess has connections with the operation of simplifying embedded graphs using electrical
transformations, and our results also yield results for the latter problem. In Section 8.1,
we answer a question of Burton and Makowsky-Mariño, asking whether there exist knots
for which any diagram has high treewidth. We show that this is the case for torus knots
(among others), by connecting tree decompositions of a knot diagram to topological quan-
tities related to the knot itself. In Section 8.2, we investigate another basic computational
problem arising in knot theory: what is the complexity of computing the crossing number
of a link? We show that it is NP-hard, which is far from telling the end of the story since
the best known algorithm is not known to be in NP, or anywhere close.

Finally, in Chapter 9, we discuss perspectives that arise as a continuation of the nu-
merous questions investigated in this document. We start by presenting ongoing work
undertaken with Master and PhD students in Section 9.1, and then list further ongoing or
planned projects in Section 9.2.
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This document is mostly self-contained, although familiarity with the main concepts
is expected. Apart from the preliminaries in Chapter 3 which regroup notions used in all
subsequent chapters, its chapters are independent.
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FIGURE 1.1 – Four problems (among others) studied in this habilitation thesis. From top
to bottom:

• Given a surface, what is the best way to cut it into a disk?

• Given a annulus endowed with a metric, what is the best way to sweep it, i.e.,
go from the left boundary to the right boundary by using curves with a minimal
maximal length?

• Given a diagram of the unknot, what is the best way to untangle it?

• Given a 2-dimensional simplicial complex, i.e., a family of triangles glued to each
other, can we embed this simplicial complex into R3?



CHAPITRE 2

Introduction en français

Ce mémoire d’habilitation présente une collection de travaux que j’ai complétés depuis
la soutenance de ma thèse [V] en 2014. Mes thèmes de recherche traitent des questions
algorithmiques et combinatoires qui apparaissent naturellement en topologie géométrique,
ainsi que dans l’autre sens des techniques d’origine géométrique ou topologique que l’on
peut utiliser dans la conception et l’analyse d’algorithmes. Comme le titre de ce mémoire
le met en valeur, il s’agit donc d’explorer de façon systématique les interactions entre la
géométrie et la topologie d’un objet d’un côté, et la complexité des problèmes algorith-
miques autour de cet objet de l’autre. Voici quelques exemples de questions issues de ces
interactions :

— Prenons un objet combinatoire qui est muni d’une structure topologique, par exemple
un graphe planaire ou un graphe plongé sur une surface. Quel est l’impact de cette
contrainte topologique sur la combinatoire de l’objet ? Dans le cas d’un graphe plon-
gé, comment peut-on exploiter cette topologie pour résoudre des problèmes algorith-
miques sur le graphe?

— Prenons un espace topologique et étudions les structures discrètes ou métriques dont
on peut le munir. Par exemple, une surface peut être munie d’une métrique conti-
nue (par exemple riemannienne), ou bien d’une métrique discrète (par le biais d’un
graphe plongé). Comment ces deux géométries possibles interagissent-elles ? Peut-on
utiliser des techniques venant d’un monde (discret ou continu) pour étudier l’autre?
Plus spécifiquement, les techniques développées dans l’étude de métriques continues
peuvent-elles servir à l’algorithmique et la combinatoire des graphes plongés?

— Prenons un modèle discret d’un objet topologique, par exemple un complexe sim-
plicial qui triangule une variété. Quels sont les meilleurs algorithmes pour identifier
les propriétés topologiques de cet objet ? Par exemple : comment reconnaître si deux
espaces sont homéomorphes? Si une courbe est contractile ? Si deux nœuds sont les
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mêmes? Peut-on utiliser des outils géométriques pour répondre à ces questions?

Malgré leur apparente simplicité, ces questions sont à l’origine de nombreux problèmes
fondamentaux, dont beaucoup sont largement inexplorés. Mes travaux tournent principa-
lement autour d’objets topologiques de basse dimension, c’est-à-dire des graphes, des sur-
faces, des complexes simpliciaux de dimension deux ou trois, des nœuds et des 3-variétés.
Cela vient en partie des applications : les surfaces et leurs plongements dans R3 appa-
raissent naturellement dans de nombreux domaines (infographie, conception assistée par
ordinateurs, traitement géométrique, science des matériaux, systèmes d’information géo-
graphique, VLSI). De plus, la topologie de basse dimension a une saveur particulière que
ne possèdent pas les espaces de dimension plus grande : en effet, la plupart des problèmes
topologiques deviennent indécidables dès que la dimension dépasse quatre (par exemple
les problèmes de tester l’homotopie ou l’homéomorphisme). Par ailleurs, l’étude des va-
riétés de basse dimension fait souvent appel à des outils d’origine géométriques, ce qui est
différent des techniques plus algébriques qui ont prouvé leur succès en grande dimension.
Cela est démontré par exemple par la résolution de la conjecture de Poincaré, qui a né-
cessité des outils radicalement différents en dimension cinq ou plus (Smale [172]), quatre
(Freedman [70]) et trois (Perelman [152]).

Dans ma thèse de doctorat [V], j’ai étudié des questions à propos des déformations de
graphes sur les surfaces [R], des décompositions de surfaces triangulées [S] et des surfaces
normales immergées dans les 3-variétés [T]. Depuis, j’ai continué à explorer ce monde à
l’intersection de la topologie de basse dimension, la géométrie et les algorithmes, ce qui
a donné lieu à 17 publications dans des conférences à comité de lecture, et/ou dans des
journaux de mathématiques et d’informatique théorique.

La figure 2.1 propose un panorama de quelques problèmes dont ce mémoire traite.
Après quelques préliminaires dans le chapitre 3, ce document est structuré autour de trois
grands chapitres (4, 5 et 6) qui développent chacun un thème de recherche développé sur de
multiples années et donnant lieu à plusieurs publications. Comme les articles en question
ont déjà été soumis au processus de revue et de publication, j’ai choisi pour ce mémoire
d’essayer d’éviter d’être redondant, et de me concentrer sur des aspects de ces recherches
différents de ceux qui ont déjà été publiés. Ainsi, l’on se concentrera davantage sur les
idées et le contexte plutôt que sur les aspects techniques, et nous nous attacherons à com-
bler les interstices entre une succession d’articles sur des sujets similaires. Similairement,
j’ai préféré dès que possible présenter des constructions simples et pédagogiques, souvent
moins efficaces ou complètes que les constructions optimales, plus techniques, qui ont été
publiées.

Découper une surface : Graphes de découpe et Multicoupes. Dans le chapitre 4, l’ob-
jet d’étude principal est un graphe G plongé sur un surface, et nous nous intéressons à des
algorithmes pour réaliser une des opérations les plus basiques pour une surface : décou-
per celle-ci en des morceaux de topologie plus simple. Dans le problème SHORTEST CUT



9

GRAPH (plus court graphe de découpe), le problème est de trouver un sous-graphe H ⊆ G
de longueur minimale tel que découper la surface le long de H donne un disque. C’est une
primitive topologique fondamentale, à la fois pour des problèmes d’origine appliquée que
pour l’algorithmique : une telle découpe permet ensuite d’exploiter les nombreuses tech-
niques algorithmiques développées spécifiquement pour les graphes planaires. Le second
problème que nous regardons dans ce chapitre est un problème classique d’algorithmique :
le problème MULTICUT (Multicoupe) demande, étant donné un graphe G et un ensemble
de paires de terminaux (si, ti) choisis parmi les sommets, de calculer un ensemble minimal
d’arêtes dont la suppression sépare les si des ti. Lorsque le graphe est plongé sur une sur-
face, une observation de base est que ce problème peut être reformulé par dualité comme
celui de calculer un plus court sous-graphe H ⊆ G∗ tel que découper la surface le long
de H donne des morceaux où les paires de terminaux sont séparés. Ainsi, SHORTEST CUT

GRAPH et MULTICUT visent tous les deux à calculer des plus court sous-graphes avec
des propriétés topologiques particulières. Dans le chapitre 4, nous présentons des schémas
d’approximation pour ces deux problèmes qui ont une complexité FPT vis-à-vis du fac-
teur d’approximation, du genre de la surface et du nombre de terminaux pour MULTICUT.
Nous présentons ensuite des bornes inférieures qui complémentent ces résultats algorith-
miques : essentiellement, nous établissons que l’on ne peut pas avoir d’algorithmes exacts
avec des dépendances paramétrées similaires. L’Exponential Time Hypothesis nous per-
met de raffiner ces résultats en donnant des bornées inférieures précises en termes de temps
d’exécution. Ces bornes inférieures répondent à une question d’Erickson et Har-Peled [63].

Hauteur d’homotopie : balayer une surface de façon optimale. Le chapitre 5 traite du
problème HOMOTOPY HEIGHT (hauteur d’homotopie), que l’on peut décrire de la façon
suivante : étant donnée une surface munie d’une métrique soit discrète soit continue, quelle
est la meilleure façon de balayer cette surface en utilisant une courbe simple? Plus prati-
quement : prenons un élastique qui casse lorsque sa longueur excède une longueur donnée.
Est-il possible d’amener cet élastique d’une position de départ à une position d’arrivée en
utilisant une déformation continue, sans jamais le casser ? Reformulé sous forme d’un pro-
blème d’optimisation, la mesure de complexité que nous minimisons et la longueur maxi-
male que l’élastique pourrait prendre durant le balayage. De tels problèmes de balayages
optimaux ont été introduits et étudiés dans des contextes très différents en géométrie rie-
mannienne ainsi qu’en géométrie algorithmique. Dans le premier cadre, ils fournissent une
technique pour prouver l’existence de géodésiques fermées et contrôler leurs longueurs.
Dans un cadre discret, un balayage optimal peut être utilisé comme une mesure de simila-
rité entre des trajectoires. De plus, il présente de nombreuses similarités avec des décompo-
sitions classiques de graphes comme les décompositions en chemins ou en branches. Notre
premier résultat est de montrer que dans de nombreux contextes différents, il existe toujours
un balayage optimal qui a de très fortes propriétés structurelles : la courbe reste simple à
chaque instant, et la balayage est monotone, c’est-à-dire qu’il ne rebrousse jamais chemin.
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Ces résultats nous permettent d’établir que le problème algorithmique sous-jacent est dans
NP, ainsi que d’obtenir un algorithme de O(log n)-approximation qui tourne en temps po-
lynomial. Enfin, nous exploitons la monotonicité pour établir une connexion avec la théorie
des mineurs de graphe, qui nous permet d’obtenir un algorithme FPT (en la solution) pour
calculer une variante spécifique de la hauteur d’homotopie.

Problèmes difficiles en trois dimensions : nœuds et plongements. L’objectif du cha-
pitre 6 est de décrire une famille de résultats de NP-difficulté pour des problèmes topolo-
giques en trois dimensions. Le point commun de ces résultats est qu’ils tournent tous autour
de nœuds ou d’entrelacs classiques, c’est-à-dire plongés dans R3. Les problèmes algorith-
miques en théorie des nœuds ont cette particularité qu’il y a généralement un énorme fossé
entre les meilleurs algorithmes connus et les bornes inférieures. Après une introduction
à ce phénomène, nous établissons la NP-difficulté de plusieurs problèmes de théorie des
nœuds : détecter si un entrelacs donné admet un sous-entrelacs trivial, calculer le nombre
de décroisement d’un entrelacs, et calculer le nombre minimum de mouvement de Reide-
meister nécessaire pour démêler le diagramme d’un entrelacs trivial, et même d’un nœud
trivial. Un point commun de toutes nos réductions est qu’elles utilisent toutes des gadgets
construits à partir des anneaux borroméens, qui semblent fournir un analogue topologique
de la structure d’un problème de satisfaisabilité. Dans un second temps (qui était en fait le
premier chronologiquement), nous appliquons des techniques de réduction similaires pour
prouver la NP-difficulté d’un problème d’apparence très différente : celui de tester si un
complexe simplicial de dimension deux ou trois se plonge dans R3. La connexion avec la
théorie des nœuds vient d’un outil appelé la chirurgie de Dehn, auquel nous fournissons
une introduction avant d’expliquer la preuve.

Autres travaux autour des surfaces et de la topologie en trois dimensions. Dans les
chapitres 7 et 8, nous présentons d’autres résultats que nous avons obtenus en lien res-
pectivement avec les surfaces et la topologie en trois dimensions. Dans ces chapitres, la
présentation est plus concise et se concentre sur les motivations et les résultats principaux.
Dans la section 7.1, nous présentons nos travaux sur la question suivante : étant donnée
une surface S, existe-t-il une métrique sur S telle que tout graphe plongeable sur S puisse
être plongé tel que ses arêtes soient représentés par des plus courts chemins? Une telle
métrique, dite universelle, fournirait un analogue du célèbre théorème de Fàry pour les
graphes planaires, ainsi qu’une approche géométrique pour résoudre une conjecture de Ne-
gami sur les nombres de croisements de paires de graphes plongés. Dans la section 7.2, nous
fournissons des bornes inférieures et supérieures concernant le problème du raccourcisse-
ment de courbes ou d’une famille de courbes sur une surface, où l’on essaye de minimi-
ser le nombre d’opérations combinatoires utilisées lors du processus de raccourcissement.
Ce processus de raccourcissement a des connexions avec celui de simplifier des graphes
plongés en utilisant des transformations électriques, et donc nos travaux donnent aussi de
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nouveaux résultats pour ce problème. Dans la section 8.1, nous résolvons une question de
Burton et de Makowsky-Mariño, qui ont demandé s’il existait des nœuds dont tous les dia-
grammes avaient une grande largeur d’arborescence. Nous montrons que c’est le cas pour
les nœuds toriques (parmi d’autres), en reliant les décompositions arborescents d’un dia-
gramme de nœud avec des propriétés topologiques intrinsèques du nœud lui-même. Dans
la section 8.2, nous étudions la complexité du calcul d’un invariant éminemment classique
de théorie des nœuds : le nombre de croisements est le nombre minimal de croisements
d’un diagramme d’un nœud ou d’un entrelacs donné. Nous montrons que son calcul est
NP-difficile pour un entrelacs, mais l’écart est encore grand entre cette borne inférieure et
le meilleur algorithme connu pour ce problème.

Enfin, dans le chapitre 9, nous évoquons quelques perspectives de travaux dans la conti-
nuité de ceux présentés dans ce mémoire. Nous commençons dans la section 9.1 par présen-
ter des travaux en cours avec des étudiants en Master ou en thèse, puis nous introduisons
en section 9.2 d’autres perspectives de recherche qui font l’objet de travaux en cours ou
futurs.

Ce mémoire introduit l’essentiel des outils sur lesquels il repose, mais il requiert pro-
bablement une certaine familiarité avec les concepts utilisés. Les chapitres sont essentielle-
ment indépendants, à part le chapitre 3 qui introduit les notions utilisées dans tout le reste
du document.



12 Chapitre 2. Introduction en français

FIGURE 2.1 – Quatre problèmes (parmi d’autres) étudiés dans ce mémoire d’habilitation.
De haut en bas :

— Étant donnée une surface, quelle est la meilleure façon de la découper en un disque?

— Étant donné un anneau muni d’une métrique, quelle est la meilleure façon de le
balayer, c’est-à-dire de passer continûment du bord gauche au bord droit en utilisant
des courbes de longueur maximale minimale?

— Étant donné le diagramme d’un nœud trivial, quelle est la meilleure façon de le
démêler ?

— Étant donné un complexe simplicial de dimension deux, c’est-à-dire une famille de
triangles recollés les uns sur les autres, peut-on plonger ce complexe simplicial dans
R3 ?



CHAPTER 3

Preliminaries

In this chapter, we introduce the main objects that will be used repeatedly throughout the
remaining chapters. The aim of these preliminaries is to be concise and serve as a quick
reference while reading the different chapters. For in-depth background on the various
objects that will be studied here, we refer the reader to the textbooks of Hatcher [95] and
Stillwell [176] (for algebraic topology), Mohar and Thomassen [142] (for graphs on sur-
faces), Schultens [168] (for 3-manifold theory), Rolfsen [164] (for knot theory), Arora and
Barak [7] (for computational complexity) and Cygan et al. [45] (for parameterized algo-
rithms).

Surfaces. A surface is a topological space where each point has an open neighborhood
homeomorphic to R2. We will also refer to surfaces with boundary, where each point has
an open neighborhood homeomorphic to R2 or to a half-space {(x, y) ∈ R2 | x ≥ 0}, the
latter points are the boundary of the surface. By a common abuse of language, we will
not always specify "with boundary" when obvious from the context. Compact connected
surfaces are classified (up to homeomorphism) by their orientability and their genus. For
surfaces with boundaries, the same classification holds, with the number of boundaries as
an additional parameter. Throughout this document, surfaces will always be denoted by S,
g will denote their genus, and b will denote the number of boundaries. The genus quantifies
intuitively the number of holes in the surface, while the orientability detects whether one
can reach the other side of a surface by simply walking on it. The Euler characteristic of
a surface equals 2− 2g − b in the orientable case and 2− g − b in the non-orientable case.
Figure 3.1 pictures common examples of low-genus surfaces.

A path on a surface is a map p : [0, 1] → S. An arc is a path with endpoints on the
boundary of the surface. A loop based at x is a path such that p(0) = p(1) = x. A closed
curve is a path where the two endpoints are the same and thus can be thought of as a map
S1 → S. A curve is a path or a closed curve. A path, loop or closed curve is simple if
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FIGURE 3.1 – Examples of (mostly) orientable surfaces: from top left to bottom right,
a sphere, a torus (genus 1), a double torus (genus 2), a disk (genus 0, one boundary),
a cylinder (also called annulus, genus 0, two boundaries), a pair of pants (genus 0, 3
boundaries) and a Möbius band (non-orientable, genus 1, one boundary).

the corresponding map is injective. Homotopy captures the intuitive notion of continuous
deformation: two closed curves γ1 and γ2 are (freely) homotopic if one can be continuously
deformed into the other, i.e., there exists a continuous map h : [0, 1] × S1 → S so that
h(0, ·) = γ1 and h(1, ·) = γ2. Two simple closed curve are isotopic if they are homotopic
via a homotopy such that h(t, ·) is a simple closed curve for any t ∈ [0, 1]. Homotopy
can similarly be defined for loops with a common basepoint with the constraint that all the
intermediate curves also go through the basepoint, and for arcs with various restrictions
as to whether and how the endpoints can move on the boundary. The homotopy classes
of loops on a surface form a group called the fundamental group of the surface, denoted
by π1(S). We will also encounter the notion of homology in Chapter 6, which is a looser
notion of equivalence than homotopy: intuitively, two closed curves are homologous if
they cobound a surface. Homology and homotopy generally differ, but on the torus they
coincide. The homology classes of closed curves form an abelian group H1(S), and on
the torus S = S1 × S1, we have H1(S) = π1(S) = Z2: closed curves on the torus can be
classified by how many times they wind around the torus in the direction of the two S1s.

Continuous metrics on surfaces. This classification via genus, orientability and num-
ber of boundary components only perceives surfaces through a topological lens. For many
problems studied in this manuscript, we will be also very interested in looking at surfaces
through a geometric lens, i.e., endowing them with a metric structure. Perhaps the most
intuitive metric structure that one can define on a surface is obtained by defining an embed-
ding of the surface into R3, i.e., an injective map i : S ↪→ R3. Then the usual metric struc-
ture of R3 naturally defines a length for paths on the surface, and thus a distance function
between points. However, it is more standard and fruitful to adopt the following intrinsic
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viewpoint: a Riemannian metric on a surface S is an inner product gx on the tangent spaces
TxS that varies smoothly when x moves on S. This inner product induces a length on the
smooth curves on the surface: if p is a path on S, its length is

∫ 1

0

√
gx(p′(t), p′(t)), and

thus we can define a distance by taking the infimum of the length of all paths connecting
two points. A geodesic on a Riemannian surface is a path or a closed curve that is locally
minimal, i.e., such that any local perturbation increases its length. Let us emphasize here
that a geodesic may not be a shortest path, as the minimality condition is only local. A
local invariant of a Riemannian metric is its curvature, which quantifies how locally bent
the metric is. One intrinsic way to define it is via the formula K(p) = limr→0

12(πr2−A(p,r))
πr4

where A(p, r) denotes the area of the ball centered at p of radius r. Thus the curvature
measures how locally the area of balls differs from the Euclidean area. Surfaces of con-
stant curvature will be of particular interest to us: the geometries in constant positive, zero
and negative curvature are respectively called spherical, Euclidean and hyperbolic. The
Gauss-Bonnet theorem is a fundamental formula relating the geometry and the topology of
surfaces: it shows that

∫
S
KdA = 2πχ(S), where K is the curvature and χ(S) denotes the

Euler characteristic. Therefore, the topology restricts strongly the geometry that a surface
can be endowed with: for example in the orientable world, only the sphere can be endowed
with a spherical metric, only the torus can be endowed with a Euclidean metric, and all the
other surfaces can only be endowed with hyperbolic metrics.

Graphs on surfaces and discrete metrics. The previous paragraph described how to
endow a surface with a continuous metric. A discrete converse is provided by a graph
embedded on a surface. In this manuscript, we will allow for a fairly general class of
graphs, allowing loops and multiple edges. Graphs without those will be referred to as
simple graphs. A graph G = (V,E) can naturally be seen as a topological space, and an
embedding of G on a surface is an injective map i : G → S, i.e., a drawing of the graph
on the surface without crossings. As is customary, we will often identify a graph with its
embedding when there is no ambiguity. A planar graph is a graph embedded in the plane
R2, or equivalently on the sphere S2. An embedding of a graph defines faces F which are
connected components of the complement S \ i(G), and an embedding is cellular if all the
faces are homeomorphic to open disks. In a strong sense, cellular embeddings are the most
natural ones, as any embedding on a surface of minimal genus is cellular. A triangulation
is an embedded graph where all the faces are triangles, i.e., are adjacent to three edges. A
key invariant of cellularly embedded graphs is the Euler characteristic χ = |V |−|E|+ |F |
which, as the name indicates, equals the Euler characteristic of the surface, i.e. 2−2g−b, or
2−g−b respectively for orientable or non-orientable surfaces. This equality implies that the
number of edges of a simple graph satisfies |E| = |V |+O(g+b), and we will refer to |E| as
the complexity of the graph, which thus, up to a constant factor, also controls the number of
vertices and faces. Cellularly embedded graphs can be described in a purely combinatorial
way, independently of the precise location of the vertices and the edges on the surface:
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the combinatorial data of the faces, described by the ordered list of edges 1 that they are
adjacent to, suffices to reconstruct the homeomorphism class of the embedded graph. Such
a data is generally referred to as a combinatorial map. Non-cellularly embedded graphs
can be encoded in a similar fashion by also specifying the topology (genus, orientability,
number of boundary components of each face, yielding an extended combinatorial map.
Some morally equivalent notations are rotation systems [142], fat graph [82] or ribbon
graphs [61]. When discussing algorithms and manipulating embedded graphs either as
inputs or intermediate objects, they will always be encoded using a combinatorial map, it
is easy to see that such a data structure has size O(|E|).

A walk on an embedded graph is a path on the surface following the edges of the
graph. The graph induces a length function on walks by counting the number of edges
it uses, which in turn induces a distance function on vertices by considering the shortest
walk connecting them. Therefore, embedded graphs provide a discrete way of endowing a
surface with a metric, and we call this discrete model a combinatorial surface. When the
embedded graph is weighted, the corresponding metric structure can be made more precise
by taking into accounts the weights when evaluating the lengths of paths.

We will often employ a different way of using a graph as a metric, relying on duality.
A path p on a surface is in general position with respect to an embedded graph G if the
intersection points p ∩ G only occur on edges of G, are finite and are transverse, i.e., lo-
cally the path always crosses an edge that it intersects. Likewise, two embedded graphs
are in general position if they only intersect at edges and these intersections are finite and
transverse. An embedded graph induces a length function on paths in general position by
simply counting the number of intersections with the graph. Hence it defines a distance
function between any two points in the complement of the graph by considering the in-
fimum of the length of all the paths connecting those two points. We call such a metric
structure a cross-metric surface. Cross-metric surfaces were was first introduced by Colin
de Verdière and Erickson in [38]. The graph-theoretically minded reader will not be fazed
by this definition: it amounts to considering the dual graph of the embedding, obtained
by putting a vertex in each face and connecting (dual) vertices when they are separated
by an edge. Then each path in general position can be pushed on this dual graph, and the
cross-metric structure boils down to the combinatorial structure of the dual graph. Yet the
point of view of cross-metric surfaces has some benefits when we use topological argu-
ments: most importantly the paths that we consider are the paths in general position with
respect to a graph, compared to walks on the edges of a graph. The former setting has more
"space", and for example in some settings will allow us to consider simple paths, which in
the combinatorial setting would use repeated edges and thus would be harder to consider
simple. In turn, simple paths are important because they are easily cut along, yielding a
new surface with boundary. In this manuscript, we will alternate between the combinato-

1. To be precise, we actually use four flags per edge, in order to know precisely to which side of the edge
and in which direction each face is attached.
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FIGURE 3.2 – Examples of knots and links. From left to right: the unknot, the trefoil knot,
the 2-component unlink, the Hopf Link and the Borromean rings.

FIGURE 3.3 – The Reidemeister moves I, II and III

rial and the cross-metric point of view freely depending on which is the most natural for
the problem at hand. For a rigorous description of combinatorial surfaces and handling of
repeated edges, we refer to the habilitation thesis of Francis Lazarus [124].

From many perspectives, graphs on surfaces and Riemannian metrics are two facets of
the same coin, which is the study of metric structures on surfaces, and there is quite a wide
parallel literature establishing very similar theorems in both settings. The connection can
be made formal using for example the two-way street that we designed in [S], which allows
for a direct translation of some theorems in one setting to the other one. In recent work,
Cossarini [41] provided a correspondence between the discrete and the continuous world
with tighter (and optimal) bounds, with the distinction that the continuous metrics that he
relies on are Finsler and not Riemannian, that is, the norm that is used on the tangent space
is in general not Euclidean.

3-manifolds and knots. A 3-manifold is a topological space where each point has an
open neighborhood homeomorphic to R3. As was the case for surfaces, we will also con-
sider 3-manifolds with boundaries, where points on the boundary have an open neighbor-
hood homeomorphic to a half-space {(x, y, z) ∈ R3 | x ≥ 0}. Examples of 3-manifolds
include the 3-dimensional sphere S3, the three-dimensional torus S1 × S1 × S1 or the solid
torus: a torus filled inside, i.e., a space homeomorphic to D×S1, where D is a topological
disk.

A knot is an embedding K ↪→ M , where M is a 3-manifold. In this thesis, we will
almost exclusively consider classical knots, i.e., knots embedded in R3, or equivalently
its compactification S3. An ambient isotopy i : [0, 1] × S3 → S3 is a continuous family
of homeomorphisms such that i(0, ·) is the identity (by a slight abuse of language, we
often call i(1, ·) the isotopy). Two knots K1 and K2 are considered equivalent if one can
be continuously deformed into the other without creating crossings: formally K1 and K2
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+ + − −

FIGURE 3.4 – The linking number

are equivalent if there exists an ambient isotopy sending K1 to K2. The trivial knot, or
unknot is the knot described by the standard embedding of S1 into S3, see Figure 3.2,
left. This simple definition already hides a great deal of complexity: it is for example
not immediate to prove that the trefoil knot is not isotopic to the unknot, or that there
exists a non-trivial knot at all. Since the focus of this thesis is on computational aspects
of knot theory, we will restrict our attention to polygonal knots, that is, knots of the kind
K : S1 → S3 where the embedding K is a concatenation of segments. This does not lose
much generality: every smooth knot is equivalent to a polygonal knot. But it does rule
out some pathological behaviors known as wild knots, where some knotting pattern can for
example get repeated infinitely many times. The connected sum of two knots is obtained
by removing a small segment on two knots endowed with some orientation and identifying
their endpoints so as to preserve the orientation. This operation is well-defined, and every
knot can be decomposed in a unique way into a connected sum of prime knots (knots that
can not be decomposed further).

A link is a disjoint union of knots. Links are also considered up to ambient isotopy, and
the unlink on k components is the link obtained by taking k trivial knots contained in k
disjoint balls, see Figure 3.2. The Hopf link is the 2-component link pictured on Figure 3.2,
middle right, while the Borromean rings are the 3-component link pictured on Figure 3.2,
right. A knot diagram or a link diagram is a generic two-dimensional projection of a knot
or link, where one indicates at each crossing point which strand is above and which strand
is below. Therefore, a knot diagram is a four-valent planar graph with decorations on the
vertices, and the pictures in Figure 3.2 are actually knot and link diagrams. Equivalence
of knots or links has a combinatorial interpretation in terms of Reidemeister moves, which
are pictured in Figure 3.3: two knot diagrams represent equivalent knots if and only if
they can be related by a finite sequence of such Reidemeister moves [157], and a similar
theorem holds for links. We will denote by I+ and II+ the Reidemeister moves I and II that
increase the number of crossings, and by I- and II- the Reidemeister moves that decrease
them. Since they contain knots as a subcase, links are more complicated than knots, but
they can be partially distinguished using a very simple invariant called the linking number.
For two components of a link, this number can be defined by orienting arbitrarily the two
components, and summing the number of positive and negative crossings as defined by
Figure 3.4. One can prove that the resulting quantity is indeed a knot invariant by showing
that it is invariant under Reidemeister moves. The linking number directly proves that the
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Hopf link is not equivalent to the unlink, but is powerless on the Borromean rings, as pairs
of components of the Borromean rings have zero linking number (and actually form unlinks
when considered in isolation).

Knots and links are important in 3-manifold theory as they naturally provide a host of
examples of 3-manifolds: removing a small tubular neighborhood of a classical knot yields
a 3-manifold with boundary, and the famous Gordon-Luecke theorem [79] shows that two
knots are equivalent if and only if their complements are orientation-preserving homeo-
morphic. The theorem does not hold for links however (see for example Rolfsen [164,
Section 3.A.2]. More subtly, the operations of Dehn filling and Dehn surgery provide a
way to define 3-manifolds without boundary from framed links. We defer the discussion of
these operations to Section 6.2 where they will be used.

Simplicial complexes. A graph cellularly embedded on a surface provides a discrete way
of describing a topological space. It is a nontrivial result [105, 154] that any surface
can be represented this way. Likewise, one can represent more complicated and higher-
dimensional topological spaces using basic building blocks as follows. A k-dimensional
simplex is a topological space homeomorphic to the convex hull of k + 1 points in general
position in Rk+1. Its faces are the convex hulls of subsets of these k + 1 points (note that
each face is also a simplex). A simplicial complex is a collection of simplicesK embedded
in some ambient space Rn such that (1) if σ ∈ K and σ′ is a face of σ, then σ′ ∈ K and
(2) if σ, τ ∈ K, then σ ∩ τ is a common face to σ and τ . The union of all the simplices
in a simplicial complex forms a topological space, which is often identified with the com-
plex itself. The vertices of K are the 0-dimensional simplices. The isomorphism class of
a simplicial complex does not depend on the location of the simplices in Rn, and a sim-
plicial complex can simply be described combinatorially by specifying which subsets of
the vertices form simplices. The k-skeleton of a simplicial complex is the collection of all
simplices of dimension at most k. It is an old question whether all topological manifolds
can be realized as simplicial complexes, to which the answer is known to be negative, we
refer to the book [155] for extensive background on this question and its relatives. Yet, as
we already said, all the topological surfaces can be triangulated, and this is also the case
for all 3-manifolds, by a result of Moise [143].

Parameterized algorithms and complexity. We consider that the reader is acquainted
with basic notions of complexity theory (Turing machines, polynomial-time algorithms,
NP-hardness) as explained for example in Arora and Barak [7]. In the past decades, two
very common approaches have emerged to deal with NP-hard problems. The first one is the
design of approximation algorithms (see for example Vazirani [180]) and the second one
is the design of parameterized algorithms (see for example Cygan et al. [45]). As some of
our results in Chapter 4 combine both approaches, we introduce the relevant notions here.
The holy grail of approximation algorithms for NP-hard problems is a Polynomial-Time
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Approximation Scheme (PTAS): an approximation scheme for a minimization problem is
a family of algorithms Aε parameterized by ε, such that each algorithm Aε is a (1 + ε)-
approximation algorithm, i.e., it outputs a solution of cost at most (1 + ε)OPT , where
OPT is the value of the optimal solution. An algorithmic problem with input of size n
and provided with a parameter p is fixed parameter tractable (FPT) for the parameter p if
it can be solved in time f(p)poly(n), where f is a computable function and poly denotes
a polynomial function. It has now been clearly demonstrated that FPT algorithms often
provide improved runtimes compared to classical ones, even when the size of the parameter
is not bounded.

There is a parameterized theory of complexity mirroring the classical theory of NP-
hardness, for which we will only refer to textbooks (e.g., Downey and Fellows [58]) and
just use the fact that under standard conjectures, a problem that is W [1]-hard is not FPT,
and thus thatW [1]-hardness (conjecturally) precludes the existence of an f(p)poly(n) algo-
rithm. Typically, W [1]-hardness is established by reducing from another W [1]-hard prob-
lem using a parameterized reduction, that is, a FPT reduction where the size of the reduced
parameter is controlled by the input parameter. Typical W [1]-hard problems are the prob-
lems of determining the existence of a clique of size k in a graph, or an independent set
of size k. A lesser known problem is the GRID TILING problem (defined in Section 4.3),
which has now been identified as a very convenient problem to establish W [1]-hardness of
problems in planar graphs (see Cygan et al. [45, Chapter 14]).

In the past decade, a complexity theory that is finer than the usual ones (parameter-
ized or not) has emerged, allowing to prove explicit lower bounds on the complexity of
algorithms for certain problems, under stronger conjectures. The Exponential Time Hy-
pothesis (ETH), which is now established as a key conjecture in the field, stipulates that
there is a positive value s such that 3-SAT cannot be solved by an algorithm running in time
2sn(n + m)O(1), where n and m denote respectively the number of variables and clauses.
As we will see in Chapter 4, the ETH can be used as a starting hypothesis to prove explicit
lower bounds for algorithms for numerous problems. We refer to Williams [183] for an
introduction to the blooming field of fine-grained complexity.

Graph decompositions. A tree decomposition of a graph G is a pair (T, χ) where T =
(I, F ) is a tree, and χ = {χi | i ∈ I} is a family of subsets of V called bags such that:

1. Every vertex of G appears in some bag of G.

2. For every edge e = uv of G, there exists a bag that contains both u and v.

3. For every vertex v of G, the set of bags that contain v form a connected subtree Tv of
T .

The width of the decomposition is one less than the maximum size of a bag in χ. The
treewidth of a graph G, denoted by tw(G), is the minimum width over all possible tree
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decompositions of G. Intuitively, the treewidth of a graph is a quantitative measure of how
much a graph looks like a tree: a connected graph has treewidth 1 if and only if it is a tree,
while a complete graph Kn has treewidth n − 1 and a k × k grid has treewidth k. While
originally introduced as a technical tool in structural graph theory, treewidth has emerged
as a key parameter in the design of parameterized algorithms, as tree-like structures allow
for efficient algorithms based on dynamic programming (see the discussion in Section 8.1
for specific examples in the case of topological problems). We will see in Chapter 4 a
converse of this: one can prove precise computational lower bounds for a general family
of problems (constraint satisfaction problems) when parameterizing by the treewidth of the
underlying graph.

Two other graph decompositions that will be mentioned in this thesis are the pathwidth
and the branchwidth. Pathwidth is defined using path decompositions, which mirror tree
decomposition except for the fact that the bags are structured along a path. Therefore path-
width quantifies how much a graph looks like a path. Branchwidth is a variant of treewidth:
the two quantities are always within a constant factor of each other. Branchwidth, and the
underlying branch decompositions, display additional structural properties in the case of
embedded graphs, and in particular the branchwidth of planar graphs is known to be com-
putable in polynomial time (for treewidth, this is a famous open problem). We refer to
Seymour and Thomas [170] for the algorithm and appropriate definitions.





CHAPTER 4

Cutting a surface: approximation schemes and
lower bounds

The material in this chapter comes
from the three articles [D, K, N]
which were co-authored with
Vincent Cohen-Addad, Éric Colin
de Verdière and Dàniel Marx.

4.1 Introduction
In this chapter, we tell the story of our three articles [D, K, N] which establish approx-
imation algorithms and lower bounds for two cutting problems for graphs embedded on
surfaces: the SHORTEST CUT GRAPH problem and the MULTICUT problem (and its close
variant MULTIWAY CUT). The main results are summarized in Table 4.1.

The shortest cut graph problem. When one is given a graph embedded on a surface,
one of the first things one wants to do with it is to cut the surface open into a disk. One
way to do so is by cutting along a subgraph of the original graph: For a graph G with n
vertices embedded on a surface S of genus g, a cut-graph of G is a subgraph C ⊆ G such
that cutting G along C gives a topological disk. See an example in Figure 4.1. This is a
key primitive for a wide range of applications:

• The first application is perhaps to simply represent the graph, as is done seamlessly
throughout this document: once an embedded graph G is cut along a subgraph C to
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SHORTEST CUT GRAPH MULTI(WAY) CUT

Exact nO(g) [63] nO(
√
g2+gt) [37]

Approx.
O(log2 g) in time O(n log n) [63] 1 + ε in time

1 + ε in time f(g, ε)n3 [N] f(g, t, ε)n log n [K]
1 + ε in time f(g, ε)n log n [This chapter]

Lower b.

NP-hard [63] NP-hard for t = 3 [46]
W[1]-hard w.r.t. g [D] APX-hard for t = 3 [46]

nΩ(g/log(g)) assuming ETH [D] W[1]-hard w.r.t. g
for t = 4 [D]

nΩ(
√
g2+gt/ log(g2+gt))

assuming ETH [D]

TABLE 4.1 – Approximate and exact algorithms for SHORTEST CUT GRAPH and MULTI-
CUT problems for graphs of genus g. In the right column, upper bounds are for MULTICUT,
lower bounds are for MULTIWAY CUT.

yield a planar graph, one can represent G by drawing the planar graph G \C and the
gluing rules on its boundary C to recover the full graph G.

• Cutting a surface into a disk is a cookie-cutter first step in algorithm design, as it
allows to solve algorithmic problems on surface-embedded graphs using a simple
paradigm: first cut the surface into a disk, then solve the planar problem using the
wide array of algorithmic tools available for planar graphs, and finally glue back the
disk into a surface and update the solution accordingly.

• In computer graphics or mesh processing, simplifying the topology of a surface is an
important step for example in topological noise removal [184], parameterization [54,
83] or texture mapping [128].

In all these applications, it is crucial to control the length of the object used to cut
the surface into a disk: indeed, if this length stays reasonable, the main features of the
embedded graph will be somewhat similar in the remaining planar graph, which ensures
that we will not pay too much when re-gluing the surface into its original shape. With
this goal in mind, Erickson and Har-Peled [63] introduced the problem of computing the
shortest cut-graph:

SHORTEST CUT GRAPH
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FIGURE 4.1 – A cut graphC of a graphG cellularly embedded on a surface S is a subgraph
of G such that cutting S along C yields a disk.

Input: An edge-weighted graph G cellularly embedded on a surface S, and an
integer k.

Output: Is there a subgraph C ⊆ G of length at most k such that cutting S along
C yields a disk?

They provided a host of results on this problem: they showed that it is NP-hard, pro-
vided an nO(g) algorithm to compute it exactly, as well as an O(g2n log n) algorithm to
compute a O(log2 g) approximation. They left as an open problem the fixed-parameter
tractability of the problem, that is, whether there exists an algorithm to compute it exactly
in time f(g)nO(1). This is a particularly relevant question here as in most practical applica-
tions (think about road networks or digitized objects), the genus of the embedded graph is
much smaller than the complexity of the graph itself, and thus having an algorithm where
the dependency on the genus is isolated could drastically change the efficiency of the algo-
rithm. Furthermore, the shortest cut graph problem contains as a sub-problem the planar
Steiner tree problem: intuitively, in order to cut a surface with small, localized handles, into
a disk, one must first connect all the handles. The Steiner tree problem famously admits a
fixed-parameter algorithm when parameterized by the number of terminals [59]. This gives
grounds to be optimistic.

This open problem has kept me occupied for quite some time. Solving it was already an
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explicit goal of my PhD thesis, but progress only really started to kick in after my defense.
First, with Vincent Cohen-Addad [N], we devised a fixed-parameter tractable algorithm
(parameterized by the genus) to compute a (1 + ε)-approximation of the shortest cut graph
for any ε.

Theorem 4.1.1 ([N]). Let G be an undirected, possibly edge-weighted graph cellularly
embedded on a surface S of genus g. For any ε > 0, there exists an algorithm computing
a (1 + ε)-approximation of the shortest cut graph of G, which runs in time f(ε, g)n3 for
some computable function f .

While we had good hopes that an exact FPT algorithm was just around the corner, we
could not figure it out, and went on a different path to work on a quite different-looking
problem.

The multicut problem. The MULTICUT problem is a classic algorithmic problem, gen-
eralizing the well-known MIN-CUT problem to an arbitrary number of pairs of terminals:
let G = (V,E) be an undirected graph, let T be a subset of vertices of G, called termi-
nals, and let R be a set of unordered pairs of vertices in T , called terminal pairs. A subset
E ′ ⊆ E is a multicut (with respect to (T,R)) if for every terminal pair (t1, t2), the vertices
t1 and t2 lie in different connected components of the graph (V,E \ E ′); see the example
in Figure 4.2, left. Then the MULTICUT problem is the following problem:

MULTICUT

Input: An edge-weighted undirected graph G, a subset T of the vertices, a set R of
unordered pairs of vertices in T and an integer k.

Output: Is there a multicut with respect to (T,R) of size at most k?

A simpler variant of MULTICUT is MULTIWAY CUT, which is the same problem except
that one wants to separate all the terminals instead of a specified set of pairs. MULTIWAY

CUT is therefore a special case of MULTICUT when all the possible pairs of terminals are
chosen. We will focus on MULTICUT when discussing algorithms, and on MULTIWAY

CUT when discussing lower bounds, therefore obtaining the strongest possible results in
both cases.

The MULTICUT problem has a very rich history, of which we will only mention the
most salient points for this chapter. Already for |R| = 3, the problem is NP-hard [46],
and it is arguably even harder than most hard problems: for many algorithmic problems,
one can somewhat get around the hardness by devising efficient approximation algorithms,
parameterized algorithms, or by looking at specific instances with more structure, planar
or surface-embedded graphs being a prime target here. In contrast, MULTICUT seems to
resist all three approaches: it is APX-hard, even for planar graphs [76], so there is little
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FIGURE 4.2 – A multicut is a set of edges whose removal disconnects a specified set of
pairs of terminals (here, all the pairs of stars) (left). For embedded graphs, in the dual, this
amounts to finding a shortest graph to cut along so as to separate the pairs of terminals on
the surface (right).

hope of devising a polynomial-time approximation scheme. Furthermore, it is W [1]-hard
when parameterized by the number of terminals, even for planar graphs [135].

Nevertheless, one can still devise algorithms by combining these different approaches
to cope with hardness. The first result on this path was obtained by Klein and Marx [110],
who showed that MULTIWAY CUT on k terminals could be solved on planar graphs in time
nO(

√
k). This was strengthened by Éric Colin de Verdière [37], who tackled the full MUL-

TICUT problem for graphs embedded on a surface of genus g and provided an algorithm
running in time (g + t)α(g+t)nα

√
g2+gt+t+1 for some constant α > 0.

In such graph-theoretical cutting problems, the problem is always initially stated as
finding a minimum subset of edges whose removal has some desired properties. However,
when one is studying embedded graphs, it is always nicer to investigate those under the
lens of duality. For example, the dual of a min-cut in a planar graph is a cycle, and the best
known algorithms to compute a planar min-cut start by using this dual formulation and
then look for a shortest cycle [101]. Likewise, the MULTICUT problem for an embedded
graph gets transformed under duality into the problem of finding the shortest transverse
graph C∗ so that cutting the surface along C∗ separates all the required pairs of terminals,
see Figure 4.2, right. From that perspective, MULTICUT and the SHORTEST CUT GRAPH

problem start looking alike: when considering the terminals as boundaries of the surface,
both are problems where one aims to compute the shortest graph cutting the surface into
a prescribed topological way, in one case the goal is to separate the prescribed boundaries
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and in the other case the goal is to obtain a disk. Furthermore, both problems are invariant
under homotopy: continuous deformations of the cutting graph do not impact whether it
fulfills the objective.

Armed with this analogy, we set on with Vincent Cohen-Addad and Éric Colin de
Verdière to develop an analogue of our fixed parameter tractable approximation scheme
for the MULTICUT problem, which led to the following result, which stands right on the
edge of the precipice formed by all the various hardness results for MULTICUT (see the
Introduction of [K] for more details).

Theorem 4.1.2 ([K]). Let G be a undirected, possibly edge-weighted graph embeddable
on a surface of genus g, orientable or not. Let n be the number of vertices and edges of G,
let T be a set of terminals and R be a set of unordered pairs of T . For any ε > 0, we can
compute a (1 + ε)-approximation of the minimum multicut of G with respect to (T,R) in
time f(ε, g, t)n log n, where f(ε, g, t) = (g + t)O(g+t)3 · (1/ε)O(g+t).

This turned out to be significantly more technical than we expected. The algorithm is
very involved, combining techniques stemming from topology (covering spaces, homotopy,
homology), parameterized algorithms (similar to the Dreyfus-Wagner algorithm [59]) and
approximation algorithms (we use portals à la Arora [6] and Mitchell [140]) in a delicate
way. Exposing the internal workings of this theorem falls squarely outside the scope of
this document. However, while designing this algorithm we came up with a much simpler
way to approximate the shortest cut graph (Theorem 4.1.1) which also gives improved run-
times. Since it has never appeared in print, it is a good occasion to present it. We will then
lay out the multiple additions required in order to obtain Theorem 4.1.2 starting from the
same approach.

4.2 Approximation schemes for the Shortest Cut Graph
and Multicut problems

Approximating the shortest cut graph. We first explain how to obtain the following
strengthening of Theorem 4.1.1.

Theorem 4.2.1. Let G be an undirected, possibly edge-weighted graph cellularly embed-
ded on a surface S of genus g. For any ε > 0, there exists an algorithm computing a
(1 + ε)-approximation of the shortest cut graph of G, which runs in time f(ε, g)n log n for
some computable function f .

The algorithm follows the outline of many polynomial time approximation schemes
(PTAS) for surface-embedded graphs. The main ideas date back to the works of Arora [6]
and Mitchell [140] on approximating the Traveling Salesman Problem in Euclidean spaces,
and got successively refined into a complete framework for the design of PTAS for planar
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graphs (see for example [19, 108, 109]). However, while our initial algorithm [N] followed
precisely this framework, involving the use of brick decompositions [108] and some deli-
cate dynamic programming, the version that we expose here is much simpler. Let us denote
by OPT the optimal cut-graph. The algorithm is summarized in the following steps.

1. Compute a O(log2 g)-approximation C of OPT . Cut along it to obtain a disk D.

2. Place a set of points called portals at intervals η = |OPT |ε/g2 on C = ∂D.

3. Modify OPT into NearOPT by making it go through the portals.

4. Guess the set of portals used by each connected component of NearOPT in D.

5. Solve all the corresponding Steiner tree instances where the terminal set is the set of
portals that we guessed.

Let us give details on all these steps and explain how they work together to prove
Theorem 4.2.1. In the first step, we use an approximation algorithm of Erickson and Har-
Peled [63] to compute an approximate solution C, cutting the surface into a disk D. The
length of the boundary of D is, by definition, O(log2 g OPT ), and along the boundary we
compute a set of portals P , so that all the points on this boundary are at distance at most
η := |OPT |ε/g2 of some portal. One can do so using O(g2 log2 g/(ε)) portals. Now, we
look at how the solution OPT intersects C. For this, we rely on the following structural
lemma:

Lemma 4.2.2 ([63, Lemma 4.1 and 4.2]). The reduced 1 shortest cut graph OPT consists
of O(g) vertices and edges, and each of its edges can be decomposed in two shortest paths.

Likewise, the approximate cut graph C has a similar structure: it consists of O(g) ver-
tices and edges, and each edge consists of O(1) shortest paths (we refer to the construction
described in [63, Section 6]). Since a pair of shortest paths intersect at most once, C and
OPT intersect O(g2) times. In Step 3, we reroute OPT into another graph NearOPT so
that it only crosses C at portals. Since there are O(g2) crossing points, this increases the
length of OPT by at most O(g2η) = O(ε|OPT |). Therefore, NearOPT is a (1 + ε)-
approximation of the optimal solution. Denote the connected components of NearOPT in
D by O1, . . . , Ok. Each of them is a tree (otherwise NearOPT would not be a cut graph).
Observe that k = O(g2), and since the number of portals in P only depends on g and ε,
one can guess (i.e., brute-force) the set of portals used by each of the Oi in time f(ε, g).
While any Oi might not be a Steiner tree for its set of portals, replacing it by a Steiner tree
makes it shorter. Furthermore, replacing all the Oi by the Steiner trees corresponding to
their terminals preserves the fact that they cut the surface into one or more disks: indeed the

1. The reduction means that we consider paths through degree-two vertices as single edges.
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worse that can happen is that they run into each other, which makes them cut the surface
even more than necessary. Removing the possibly superfluous edges allows us to recover
a cut graph. Since NearOPT is a (1 + ε)-approximation of OPT and our cut graph is at
most the length of NearOPT , we obtain a (1+ε)-approximation of the shortest cut graph,
as promised. The complexity of our algorithm is dominated by Step 1, which runs in time
O(g2n log n), the guesses in step 4 running in time f(g, ε), and the Steiner tree instances
in step 5 can be solved using the Dreyfus-Wagner algorithm [59] which can be made to run
in time 2O(t)n log n (see Vygen [182, Introduction]).

Approximating the optimal multicut. Let us now zoom out and highlight what makes
this argument work. The key here is that one can compute efficiently a graph with the
following two important properties:

1. It is short, i.e., it has length O(|OPT |), where the O(·) is allowed to hide dependen-
cies on the parameters.

2. It cuts OPT into a forest.

The first property allows us to place portals and reroute the optimal solution through
these portals at a controlled cost. The second property turns the remaining optimization
problem into a Steiner tree problem which we can solve efficiently (at least in the parame-
terized world). In the case of the shortest cut graph, one can conveniently take an approx-
imation of the optimal solution, since, by definition, it satisfies the first property, and the
second one follows because any cut graph cuts any other cut graph into a forest. In our
analysis, a third property was important, namely that this approximation and the optimal
cut graph do not cross too many times, but this turns out not to be that important (as long
as the optimal solution has O(g) vertices and edges), as it suffices to reroute each edge a
single time if one computes the Steiner trees carefully (see [K, Sections 8 and 9]).

When trying to apply the same framework for the MULTICUT problem, one quickly
stumbles into the problem that it is hard to find a graph with these two properties. An ap-
proximation C of an optimal multicutOPT need not cutOPT into a forest, see Figure 4.3,
top left. Another natural try is to take some shortest tree spanning the terminals, which has
the second property, since any remaining cycle would be superfluous. However, there is no
guarantee that this tree will be short, see Figure 4.3, top right. Therefore, a major part of
the proof of Theorem 4.1.2 is devoted to computing a graph that we call a skeleton, which
has the two required properties for some (1 + ε)-approximate solution.

In order to do that, we fully leverage the leeway allowed by parameterized algorithms.
First, we can afford to guess the homeomorphism class of the optimal solution since one
can show that its number of vertices only depends on g and t. Even more so, we can afford
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FIGURE 4.3 – OPT is depicted in black in all three figures, an optimal multicut separating
the three terminals. An approximate multicut might not cut OPT into a forest (top left).
A shortest tree spanning the terminals might be too long (top right). Our algorithm uses
a skeleton, that sandwiches OPT between two cycles of roughly the same length and
connects the two cycles (bottom).

to treat separately each cycle of the graph formed by this optimal solution so as to cut it. 1

Our approach is to guess the topology and an approximation of the length of each cycle γ
in the graph formed by the optimal solution, in order to sandwich it between two cycles
γL and γR of approximately the same length. Then either OPT crosses both γL and γR,
and in this case we can afford to connect γL and γR using a shortest path since the length
of this path will be bounded by OPT , see Figure 4.3, bottom. Or OPT only crosses one
of them, say γL and then we can push it at a small cost so that it coincides with γL. Or it
does not cross any of them, but then we can replace it by the shortest cycle in its homotopy
class, which we can compute. All in all, we manage to cut every single cycle of OPT, thus
cutting it into a forest, while maintaining some control on the length of the skeleton used
to do so.

The rest of the algorithm follows the same idea as for the SHORTEST CUT GRAPH

problem: one can then put portals at regular intervals on the skeleton, guess the set of por-
tals used by a near-optimal solution, and compute Steiner trees connecting those portals to
recover a near-optimal solution. Note however that in contrast to the problem of computing
the SHORTEST CUT GRAPH, this last computation might not take place in a disk, and we
need to control the homotopy class of the Steiner trees that we compute: whether it leaves
a terminal on one side or the other side makes a big difference on the solution. This is
achieved by doing the computations in the appropriate covering space, which is a tool from
algebraic topology allowing us to handle homotopical constraints by considering a larger

1. It actually suffices to cut a subset of all cycles, called an exhaustive family, to obtain the second prop-
erty, leading to a speed-up in the algorithm (but note that cutting all faces does not suffice). We take the
simpler approach of cutting all the cycles here, and refer the reader to the paper [K] for more details.
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space where we do the computations.
Before concluding this hasty sketch, let us mention two additional technical difficul-

ties: the sandwiching procedure requires carefully optimized algorithms (in particular, to
get near-linear time, we rely on the fast computation of planar Multiple Source Shortest
Paths [24] in some well-chosen annular covering spaces), and in order to guess the length
approximately within the given complexity, we need to have a separate treatment for cycles
that are very long.

4.3 Lower bounds

We now come back to the original question of designing an FPT algorithm for the SHORT-
EST CUT GRAPH problem, armed with our experience with MULTICUT, which, as we now
explain, radically changed our expectations.

Exact algorithms to solve both the SHORTEST CUT GRAPH [63] and the MULTI-
CUT [37] problem both start with a similar observation. We want to compute a shortest
transverse graph C so that G \ C is either a disk or separates the prescribed boundaries.
In particular, C, viewed as a (not necessarily cellularly) embedded graph, always has at
most t faces, where t is the number of terminals. The number of homeomorphism classes
of such graphs (after dissolving degree 2 vertices) only depends on g and t, and since we
are designing algorithms parameterized in g and t, we can safely afford to enumerate them
all, or, stated differently, to guess the correct one. Therefore, both problems, modulo this
observation, can be seen as a subcase of the following more general problem, which I call
the SHORTEST MAP EMBEDDING problem:

SHORTEST MAP EMBEDDING

Input: A graph G cellularly embedded on a surface S, a homeomorphism class M
(i.e., an extended combinatorial map) of a graph embedded on S, and an integer k.

Output: Is there a graph H transverse to G, having the topology prescribed by M
and at most k crossings with G?

If one allows a FPT preprocessing step, this very general problem contains a wide
family of topological problems: computing a shortest non-contractible or non-separating
curve (see for example [36] for a survey on algorithms for this problem), a shortest splitting
cycle [27], a shortest pants decomposition [S, Section 4], a shortest system of loops [64],
as well as the aforementioned shortest cut graph and multicut problems.

Being so general, the shortest map embedding problem must be very hard. Since, as we
said earlier, the MULTICUT problem is W[1]-hard on planar graphs when parameterized by
the number of terminals [135], it is natural to expect the shortest map embedding problem
to be W[1]-hard when parameterized by the complexity of the input map M . Even more,
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it incentivizes us to look precisely into the gadgets designed by Marx in [135] to see if
they can be used to prove W[1]-hardness for other sub-problems of the SHORTEST MAP

EMBEDDING problem, such as the SHORTEST CUT GRAPH problem, or tighter hardness
bounds for MULTICUT on higher genus graphs. In a joint work with Vincent Cohen-Addad,
Éric Colin de Verdière and Dàniel Marx [D], we succeeded in doing so and obtained the
following almost tight bounds.

Theorem 4.3.1 ([D]). • The SHORTEST CUT GRAPH problem for a graph with n ver-
tices embedded on a surface of genus g is W[1]-hard when parameterized by g. Fur-
thermore, assuming the ETH, there exists a universal constant αCG > 0 such that
for any fixed integer g ≥ 0, there is no algorithm solving all the SHORTEST CUT

GRAPH instances of genus at most g in time O(nαCG·(g+1)/ log(g+2)).

• The MULTIWAY CUT problem for a graph with n vertices and t terminals, embedded
on a surface of genus g is W[1]-hard with respect to g if t ≥ 4. Furthermore,
assuming the ETH, there exists a universal constant αMC > 0 such that for any
fixed choice of integers g ≥ 0 and t ≥ 4, there is no algorithm that decides all
the MULTIWAY CUT instances (G, T ) for which G is embeddable on the orientable
surface of genus g and |T | ≤ t in time O(nαMC

√
gt+g2+t/ log(g+t)).

Comparing these lower bounds with the aforementioned best exact algorithms for the
SHORTEST CUT GRAPH [63] and the MULTICUT [37] problems, we see that they only
differ by a logarithmic factor in the exponent.

At its core, the proof of Theorem 4.3.1 relies on a set of delicately handcrafted gadgets
due to Marx [D], which allow us to encode a very general class of constraint satisfaction
problems inside the problem of finding a shortest graph with specific topological properties.
We first introduce these dual cross gadgets, which depend on a subset S ⊆ [∆]2 for some
integer ∆.

Dual cross gadgets. A dual cross gadget G∗S is a planar graph embedded on a disk D,
with 4∆ + 8 distinguished faces incident to its boundary, which are, in clockwise order,
denoted by

UL∗, u∗1, . . . , u
∗
∆+1, UR

∗, r∗1, . . . , r
∗
∆+1, DR

∗, d∗∆+1, . . . d
∗
1, DL

∗, `∗∆+1, . . . , `
∗
1.

The faces UL∗, UR∗, DR∗ and DL∗ are considered as (dual) terminals in such a dual
cross gadget.

A dual multiway cut is a set of edges M∗ of G∗S such that cutting the disk D along M∗

yields at least four connected components, and the four terminal faces end up in distinct
components. We say that a dual multiway cut M∗ represents a pair i, j ∈ [∆]2 if cutting
the disk D yields exactly four connected components that partition the distinguished faces
into the following classes:
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UL∗ UR∗

DL∗ DR∗

u∗1 u∗2 u∗3 u∗4

`∗1

`∗2

`∗3

`∗4

d∗1 d∗2 d∗3 d∗4

r∗4

r∗1

r∗2

r∗3

UL∗ UR∗

DL∗ DR∗

u∗1 u∗2 u∗3 u∗4

`∗1
`∗2
`∗3
`∗4

d∗1 d∗2 d∗3 d∗4

r∗4

r∗1
r∗2
r∗3

FIGURE 4.4 – Left: a dual multiway cut in a dual cross gadget. Right: A more realistic
representation of an actual optimal multiway cut in a dual cross gadget.

{UL∗, u∗1, . . . , u∗j , `∗1, . . . , `∗i } {UR∗, u∗j+1, . . . u
∗
∆+1, r

∗
1, . . . , r

∗
i }

{DL∗, d∗1, . . . d∗j , `∗i+1, . . . , `
∗
∆+1} {DR∗, d∗j+1, . . . , d

∗
∆+1, r

∗
i+1, . . . r

∗
∆+1}

We refer the reader to Figure 4.4, left, for a (somewhat wrong) representation of a dual
cross gadget.

The key properties of the dual cross gadgets are stated in the following lemma.

Lemma 4.3.2 (Dual restatement of [135, Lemma 2]). Given a subset S ⊆ [∆]2, we can
construct in polynomial time a planar gadget G∗S with poly(∆) unweighted edges and
vertices, and an integer D1 such that the following properties hold:

i. For every (i, j) ∈ S, the gadget G∗S has a dual multiway cut of weight D1 represent-
ing (i, j).

ii. Every dual multiway cut of G∗S has weight at least D1.

iii. If a dual multiway cut of G∗S has weight D1, then it represents some (i, j) ∈ S.

We will not explain the intricate construction of these gadgets here, but it is worthwhile
to spend some time to see why obtaining this set of properties is non-trivial. A tempting
starting point to design a dual cross gadget is to start with a grid, and play with multiple
edges to make some (dual) rows and columns lighter than others, see Figure 4.5, left. This
way, we can hope that the rows and columns labeled by S are lighter than others, and thus
the dual multiway cuts representing pairs in S are exactly those “crosses” of weight at most
D1. This runs into two issues:



4.3. Lower bounds 35

UL∗ UR∗

DL∗ DR∗

u∗1 u∗2 u∗3 u∗4

`∗1

`∗2

`∗3

`∗4

d∗1 d∗2 d∗3 d∗4

r∗4

r∗1

r∗2

r∗3

FIGURE 4.5 – A naive attempt at a cross gadget: the rows and columns in bold are lighter
than others (left), but it might yield unwanted dual multiway cuts (middle, in orange), or
dual multiway cuts that do not represent any pair in S (right, in orange).

1. If S contains pairs (i1, j1) and (i2, j2) but not (i1, j2), the dual multiway cut repre-
senting (i1, j2) will also be light, see Figure 4.5, middle.

2. If S contains pairs (i1, j1) and (i2, j2), there is also a light dual multiway cut not
representing any pair in S, see Figure 4.5, right.

We invite the reader to ponder about how to tinker the grid so as to avoid these problems.
A key idea of Marx [135] is to design the gadgets such that the multiway cuts are not
represented by crosses but by more technical shapes to circumvent these two key issues,
see Figure 4.4, right.

W[1]-hardness of Shortest Cut Graph. The dual cross gadgets were initially designed
to reduce from the following GRID TILING problem, which is known to be W[1]-hard
when parameterized by k [45, Section 14.4.1]:

GRID TILING

Input: Integers k, n and k2 nonempty sets Si,j ⊆ [n]2 for 1 ≤ i, j ≤ k.
Output: For each 1 ≤ i, j ≤ k, a value si,j ∈ Si,j such that:

• If si,j = (x, y) and si,j+1 = (x′, y′), then x = x′

• If si,j = (x, y) and si+1,j = (x′, y′), then y = y′.

Informally, the goal in the grid tiling problem is to find labels on each vertex of a
grid that belong to a specified subset that is different for each vertex, and that “agree”
horizontally and vertically. See Figure 4.6 for an example of an instance (left), and a valid
solution (right).
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S1,1 : S1,2 : S1,3 :

(1,4) (5,2) (1,1)
(3,1) (1,4) (2,4)
(2,4) (3,4)
S2,1 : S2,2 : S2,3 :

(2,2) (3,1) (2,2)
(1,4) (1,2) (2,3)
S3,1 : S3,2 : S3,3 :

(1,3) (1,1) (2,3)
(2,3) (1,3)

S1,1 : S1,2 : S1,3 :

(1,4) (5,2) (1,1)
(3,1) (1,4) (2,4)
(2,4) (3,4)
S2,1 : S2,2 : S2,3 :

(2,2) (3,1) (2,2)
(1,4) (1,2) (2,3)
S3,1 : S3,2 : S3,3 :

(1,3) (1,1) (2,3)
(2,3) (1,3)

FIGURE 4.6 – A grid tiling instance (left), with a satisfying assignment in boldface (right).

We now explain how the dual cross gadgets can be directly used to reduce GRID TILING

to SHORTEST CUT GRAPH, transforming the parameter k into the genus, and thereby
showing that SHORTEST CUT GRAPH is W[1]-hard when parameterized by the genus.
This reduction was the first idea that ultimately led to the article [D] but was not pub-
lished in the final version because of its inefficiency (when used with the Exponential Time
Hypothesis, see infra). However, its simplicity makes it a good reduction to present here.

We start by defining a cellularly embedded graph G′ on a surface S of genus k2 as
follows 1. We start with a k × k toroidal grid H , and we embed it on a surface of genus
k2 + 1 as follows. Each edge is embedded on a cylinder, and each (degree-4) vertex is
embedded on a sphere with four boundary disks. The spheres and cylinders are attached
in the natural way, see Figure 4.7. The embedding of the grid H on this surface is not
cellular. We fix this as follows: we pick T a spanning tree of H , and for each edge not in
T , we subdivide that edge and add a loop going through the middle vertex and around its
cylinder (see Figure 4.7, right). This defines a graphG′. It is easy to see thatG′ is cellularly
embedded and furthermore that it has a unique face which is a disk.

Now, starting from a GRID TILING instance with parameter k, we embed it into a
SHORTEST CUT GRAPH instance of genus k2 +1 built on G′ as follows. The vertices of G′

that came from the gridH are replaced by the dual cross gadgetsG∗Si,j
, where i, j designates

the vertex coordinates on the grid. The vertices that were added afterwards on the edges
not in the spanning tree are replaced by dual cross gadgets G∗S , where S = [n]× [n]. This
concludes the construction and defines a graph G cellularly embedded on S.

We claim that the shortest cut graph of G naturally corresponds to a grid tiling solution,
and vice versa. Indeed, since G′ is cellularly embedded and G was obtained by replacing

1. We describe the graph G′ in very geometric terms, but of course only the combinatorics matter. The
reader can directly deduce the combinatorics from the right picture in Figure 4.7
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FIGURE 4.7 – Encoding a GRID TILING instance into a SHORTEST CUT GRAPH instance.
Left: a non-cellular embedding of a toroidal grid. A spanning tree is colored. Right:
Adding loops to edges not in the spanning tree to make the embedding cellular. The final
shortest cut graph instance is obtained by replacing each vertex with a dual cross gadget.

its degree 4 vertices by dual cross gadgets, in any cut graph C of G, C must be a dual
multiway cut in each of the dual cross gadgets. Therefore, in an optimal cut graph, this
dual multiway cut must represent a pair (i, j) in each such gadget (by Lemma 4.3.2), and
these labels must agree on adjacent vertices: otherwise one could find a non-contractible
cycle by going around the disconnection, contradicting the fact that C is a cut graph. This
means that the first labels agree on each column and the second labels agree on each row:
we obtain a grid tiling solution. In the other direction, starting from a grid tiling solution,
one can choose a dual multiway cut in each of the cross gadgets representing the pairs (i, j)
given by this solution. Since the labels agree horizontally and vertically, the endpoints of
the dual multiway cut can be connected so as to match for neighboring vertices in the
grid. By furthermore adding dual cross gadgets that match on the additional vertices (those
coming from the edges not in the spanning tree), we obtain a graph very similar to the
graph G′, which by construction is a cut graph. The bound on its length follows from the
properties of the dual cross gadgets.

Tighter lower bounds. The Exponential Time Hypothesis, a standard computational
complexity conjecture that is now ubiquitously used in parameterized complexity, implies
that GRID TILING cannot be solved in time f(k)no(k), for any function computable f , as
was proved by Marx (see for example [D]). Therefore, the previous reduction shows that
under ETH, SHORTEST CUT GRAPH cannot be solved in time f(g)no(

√
g). There is still

a big gap between this lower bound and the best known exact algorithm running in time
nO(g), due to Erickson and Har-Peled [63]. However, the quadratic blow-up in the reduction
is inevitable if one starts with GRID TILING since it is already present there. Therefore, in
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order to improve the lower bound and obtain the much tighter bounds advertised in Theo-
rem 4.3.1, we departed from GRID TILING and defined the following harder problem:

4-REGULAR GRAPH TILING

Input: Positive integers k, ∆; a four-regular graph Γ on k vertices where the edges
are labeled by U,D,L,R in a way that each vertex is incident to exactly one of each
label; for each vertex v, a set Sv ⊆ [∆]× [∆].

Output: For each vertex v, a value sv ∈ Sv such that if sv = (i, j),

1. the first coordinates of sL(v) and sR(v) are both i, and

2. the second coordinates of sU(v) and sD(v) are both j,

where U(v), D(v), L(v), and R(v) denote the vertex of the graph Γ connected to v via
an edge labeled respectively by U , D, L, and R.

The intuition is the following. This problem maintains a structure similar to that of
GRID TILING: finding labels on the vertices of a graph, where the labels must belong to a
specified set (different for each vertex) and there are local compatibility conditions between
adjacent vertices. The problem is richer than GRID TILING since the underlying graph is
not restricted to be a grid. Therefore, we can prove the following stronger lower bound:

Theorem 4.3.3 ([D, Theorem 3.1]). 1. The 4-REGULAR GRAPH TILING problem re-
stricted to instances whose underlying graph is bipartite is W[1]-hard parameterized
by the integer k.

2. Assuming the ETH, there exists a universal constant αGT such that for any fixed
integer k ≥ 2, there is no algorithm that decides all the 4-REGULAR GRAPH TILING

instances whose underlying graph is bipartite and has at most k vertices, in time
O(∆αGT·k/ log k).

The proof of this theorem is based on another key result of Marx [134], where he
showed that the fine-grained complexity of Constraint Satisfaction Problems (of which our
TILING problems are an example) is entirely 1 determined by the treewidth of its graph.
Here, a constraint satisfaction problem (CSP) is a generalization of a satisfiability problem
defined as follows: it is a triple (V,D,C) where

• V is a set of variables,

• D is a domain of values,

1. Modulo a logarithmic factor in the exponent.



4.3. Lower bounds 39

• C is a set of constraints, each of which is a triple of the form 〈u, v, R〉, where (u, v)
is a pair of variables called the scope, and R is a subset of D2 called the relation.

A solution to a constraint satisfaction problem instance is a function f : V → D such
that for each constraint 〈u, v, R〉, the pair (f(u), f(v)) is a member of R. An algorithm
decides a CSP instance I if it outputs true if and only if that instance admits a solution. The
primal graph of a CSP instance I = (V,D,C) is a graph with vertex set V such that distinct
vertices u, v ∈ V are adjacent if and only if there is a constraint whose scope contains both
u and v.

Marx proved [134] that Constraint Satisfactions Problems whose primal graphs have
treewidth tw have computational lower bounds of the kind nΩ(tw/ log(tw)). Grids with n
vertices have treewidth Θ(

√
n), hence the square root in the lower bound of the complexity

of GRID TILING. But general 4-valent graphs can have linear treewidth: expander graphs
for example have treewidth Ω(n), and therefore can be used to obtain the strong lower
bounds of Theorem 4.3.3.

With Theorem 4.3.3 in hand, the reduction for SHORTEST CUT GRAPH follows a sim-
ilar blueprint as in the previous paragraph, except that we start with any 4-regular graph
instead of a grid. We first embed this graph so that the embedding is cellular and has a
unique face (as before, in order to do so we add some loops). Then we replace each de-
gree 4 vertex with a dual cross gadget, modeled along the corresponding set Si,j in the
4-REGULAR GRAPH TILING instance. In the resulting graph G, any shortest cut graph
will necessarily realize a dual multiway cut in each dual cross gadget, and thus there is
a direct correspondence between a set of labels solving the 4-REGULAR GRAPH TILING

instance and the shortest cut graph.

Lower bounds for Multiway Cut. We finish this section with a few comments on how to
prove lower bounds for the MULTIWAY CUT problem. The reductions are made technical
by the fact that there are two parameters: the genus g and the number of terminals t. We
devise two different reductions depending on the regime that we are interested it. On the
one hand, when the number of terminals is small, the genus dominates the lower bounds
and we aim to prove a lower bound of the type nΩ(g/ log g). On the other hand, when the
number of terminals is at least comparable to the genus, we aim to prove a lower bound of
the type nΩ(

√
gt/ log(g+t)).

The first bound can be obtained rather directly by a reduction from 4-REGULAR GRAPH

TILING: here again, we start from the corresponding graph, and replace each vertex by a
cross gadget. 1 We identify the four terminals of all the cross gadgets, so that the whole re-
sulting graph has only four terminals. Then, any multiway cut must separate these four ter-

1. Cross gadgets are the duals of dual cross gadgets. As explained in the introduction, in some sense
MULTIWAY CUT is dual to the cutting problems à la SHORTEST CUT GRAPH, and thus the gadgets used in
our reductions also differ by duality.
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minals in all the cross gadgets, and from that we can recover a solution to the 4-REGULAR

GRAPH TILING problem.
The second bound requires a bit more work, and to obtain the correct bi-dimensional

lower bound we work directly from Constraint Satisfaction Problems and not from 4-
REGULAR GRAPH TILING. The main idea is the following: the hardness of 4-REGULAR

GRAPH TILING relied on reducing from Constraint Satisfaction Problems built on expander
graphs. Here, in order to obtain the correct trade-off between the genus and the number of
terminals, we use expander graphs on g vertices, where each vertex has been replaced by a
grid of size δ×δ, where δ =

√
t/g. This construction originates from a foundational paper

of Gilbert, Hutchinson and Tarjan [78] on separators in embedded graphs. One can show
that such graphs have treewidth Θ(

√
gt), and thus reducing from such instances provides

lower bounds of the correct order of magnitude.



CHAPTER 5

Homotopy height

The material in this chapter comes
from the three articles [C, G, J]
which were co-authored with
Therese Biedl, Erin W. Chambers,
Gregory Chambers, David
Eppstein, Tim Ophelders and
Regina Rotman.

5.1 Introduction

Suppose that you are given an elastic bracelet which breaks when it is stretched above some
maximal length L, and you wonder whether there is enough wiggling room to put on the
bracelet around your hand and reach your wrist, as in Figure 5.1. One way to model this
problem is to cut off the hand at the wrist, therefore obtaining a topological disk which
is endowed with some metric structure. 2 The bracelet problem then amounts to deciding
whether one can find a homotopy from the boundary of this disk to a point, where at no
moment the length of the curve is larger than L.

In a disk D with a Riemannian metric, we are therefore looking at the following quan-
tity:

2. We view the bracelet as being very elastic and always sitting on the two-dimensional space defined by
the hand. Therefore, the problem only depends on the metric structure of the hand and not on its embedding
in R3
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FIGURE 5.1 – Fitting a bracelet around a hand.

HH(D) := inf
h∈H

max
t∈[0,1]

||h(t, ·)||,

where || · || denotes the Riemannian length, and H denotes the set of homotopies h :
[0, 1]×S1 → D where h(0, ·) = ∂D and h(1, ·) is a trivial curve. If this Homotopy Height
is at most L, we can put on the bracelet, otherwise the bracelet will necessarily break, even
if the target position ∂D is much smaller than L.

Similarly, in a disk D which is endowed with a planar triangulation 1 G, we can look at
the following quantity:

HH(D) := min
h∈H

max
t∈[0,n]

||h(t, ·)||,

where || · || denotes the length of a walk on the graph G, and H denotes the set of discrete
homotopies h : [0, n] × S1 → D where h(0, ·) = ∂D and h(1, ·) is a trivial curve. Here,
a discrete homotopy is a sequence of walks on G, such that two adjacent walks h(k, ·) and
h(k+1, ·) differ by either a spike/unspike or a triangle flip (see Figure 5.2). Such a discrete
homotopy is a natural discrete analogue of the continuous notion of homotopy used in the
Riemannian case above. As before, if the Homotopy Height is at most L, we can put on
the bracelet, otherwise the bracelet will break.

1. We restrict our attention to triangulations for simplicity, but similar definitions exist for any cellularly
embedded graph (see Section 5.4).
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FIGURE 5.2 – The discrete moves in a homotopy: face-flips (left) and spikes/unspikes
(middle). Edge-slides (right) will be added in Section 5.4.

γ1 γ2

a

b c

d

γ1
γ2

1. 2. 3.

4. 5.

FIGURE 5.3 – Five variants of homotopy height.

One can also define homotopy height in other settings where one wants to quantify how
much a curve needs to be stretched to go from a starting position to an ending position
using a continuous deformation. Possible settings include (see Figure 5.3):

1. A graph embedded on a disk and we are trying to contract the boundary of the disk
to a point (the case discussed above).

2. A graph embedded on a disk, where the boundary is partitioned into two edge-disjoint
paths γ1 and γ2 and we are trying to move continuously between γ1 and γ2 using paths
with fixed endpoints. This is the original version of HOMOTOPY HEIGHT as defined
in [30].
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3. A graph embedded on a disk, with four marked vertices on the boundary a, b, c and
d and we are trying to move continuously between ab and cd, using paths with end-
points moving respectively on bc and ad. This variant is often called HOMOTOPIC

FRÉCHET DISTANCE [26, 89] since it is closely related to the Fréchet distance [4].

4. A graph embedded on an annulus, and we are trying to move continuously between
one boundary and the other one.

5. A graph embedded on a sphere, and we are trying to sweep the sphere by moving
continuously from some (unspecified) point to some other point. In this variant,
we need to add a topological constraint to enforce non-triviality, for example by
enforcing that each triangle is flipped exactly once algebraically. 1

By a slight abuse of language, we will call in this chapter all of these variants HO-
MOTOPY HEIGHT, since most of our results apply equally well to all of these settings.
However, let us insist that none of these settings allows for curves that go outside of the
region between the starting and the ending curve (i.e., the starting and ending curves al-
ways form the boundary of the underlying manifold). As we shall see later (Figure 5.5),
the problem is significantly harder when curves are allowed to escape their starting and
ending positions.

The computational problem corresponding to all these variants is the following:

HOMOTOPY HEIGHT

Input: A triangulation G and an integer L.
Output: Is the homotopy height of G (using one of the variants defined above) at

most L?

Throughout this chapter, we call a homotopy realizing the minimum an optimal homo-
topy. 2 The mathematical and computational problems surrounding this homotopy height
are of great interest, both in the Riemannian and in the triangulated setting.

Discrete Homotopy Height. From a computational perspective, the study of homotopies
on surfaces has a rich history and dates back at least to Dehn [51] who provided an al-
gorithm to test whether two closed curves on a surface are homotopic. However, adding
a quantitative twist to this question by forcing curves to have at most some fixed length
leads to mostly uncharted territories. The problem of computing the homotopy height was

1. Equivalently, this amounts to requiring that the homotopy, viewed as a map S1 × S1 → S2 has topo-
logical degree 1.

2. In the Riemannian case this is an abuse of language as the infimum may not be a minimum. In that
case the term refers to an ε-approximate optimal homotopy, for some small ε (most of our theorems will be
stated with open bounds on the length, see e.g., Theorem 5.2.2, and thus this perturbation is transparent).
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introduced by E. Chambers and Letscher [30], in the setting where one looks at homo-
topies with fixed endpoints sweeping a boundary from its left side to its right side. Their
study was motivated by the problem of measuring quantitatively the similarity between
two paths, say, in order to cluster such trajectories in a Geographic Information System.
In such a context, one might often encounter two paths with common endpoints which are
close in Hausdorff distance, but if there is a mountain inbetween, the homotopy height can
be arbitrarily big. Therefore, homotopy height is a more discriminating way to compare
paths. Unfortunately, the main result of Chambers and Letscher [30] is erroneous and for
a long time essentially nothing was known on this problem. It was open whether in was
NP-hard, but also simply whether it was in NP! Indeed, since discrete homotopies are al-
lowed to backtrack at will, there is no obvious non-deterministic algorithm that can guess
an optimal discrete homotopy, as it might consist of exponentially many steps. A few years
later, Har-Peled, Nayyeri, Salvatipour and Sidiropoulos [90] provided a polynomial-time
algorithm to compute an O(log n) approximation to the homotopy height in the setting of
paths with common endpoints on the boundary of the disk, which is based on a delicate
construction of a homotopy using iterated planar separators.

Another motivation for studying homotopy height comes from the field of graph search-
ing. This field broadly encompasses a variety of games played on graphs, where a set of k
cops tries to catch a fleeing robber, under various rules. We only sketch some aspects of
the theory and refer to the survey of Bienstock [13] for a more extensive overview. A main
flavor of these games is that the existence of a winning strategy for the cops or the robber
directly translates into structural properties of the underlying graph. For example, in one
of the main variants, a winning strategy for a set of k cops implies that the treewidth of the
graph is at most k + 1, while a winning strategy for the robber implies that it is at least
k + 2, see Seymour and Thomas [169]. Such games are even more important in the set-
ting of embedded graphs: in a celebrated breakthrough, Seymour and Thomas [170] used
such a game-theoretical viewpoint to devise a polynomial-time algorithm to compute the
branch-width of a planar graph. Our HOMOTOPY HEIGHT problem bears similarity with
graph searching games, since the bracelet sliding can be abstracted as a set of cops trying
to catch an invisible robber. Compared to the main variants, the main difference here seems
to be a constraint of connectedness: the fact that the bracelet is a simple curve 1 enforces
connectivity of the two parts of the surface that it separates. While graph searching games
where one side stays connected have been studied [10], the HOMOTOPY HEIGHT problem
seems new in this literature. Furthermore, its similarity with branch-width, which enjoys
similar connectedness properties (see Seymour and Thomas [170]) and the fact that NP-
hardness has proved elusive so far make the possibility of a polynomial-time algorithm not
as unlikely as one might first be tempted to believe.

To conclude, we also remark that very similar questions have been studied in the context
of submodular optimization by Brightweel and Winckler [20], and our work answers one

1. This is not part of the hypotheses, but as we will show later, can be safely assumed.
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of their open questions. There are also other notions of height that homotopy height can be
connected to, as we will see in Section 5.4.

Riemannian Homotopy Height. Following Gromov [81], there has been in the past
decades a strong push to investigate how geometric constraints interact with classical topo-
logical primitives, such as homotopy, homology or topological degree, forming a new field
called Quantitative Homotopy Theory. We refer to the survey of Larry Guth [85] for a
highlight of recent questions and solutions. The homotopy height fits nicely into this line
of study as it adds a geometric twist to the classical (and trivial!) notion of homotopy on
spheres.

The homotopy height has also been studied for a long time (but not under this name)
because it provides a tool to control the length of closed geodesics. In order to explain why,
let us consider the variant where we sweep a sphere. A sweep-out of a Riemannian sphere
S is a map f : S1 × S1 → S of topological degree 1 (this amounts to the constraint on
flipping triangles mentioned earlier). Intuitively, this just corresponds to a homotopy from
a curve to itself, but the topological condition ensures the non-triviality of the homotopy:
one has to sweep the whole sphere before coming back. The width of a sweep-out h is
then the maximal length of the curves: w(h) := maxt∈[0,1] ||h(t, ·)||. The interest in sweep-
outs stems from a classical idea of Birkhoff [15] that sweep-outs can be used to find simple
closed geodesics on spheres. The process is illustrated in Figure 5.4: starting from a sweep-
out S1, one can apply a curve-shortening process to the whole family of curves to obtain
a new sweep-out S2. Continuing our analogy with bracelets, one way to think of such a
curve-shortening process is to endow each curve with an elastic energy and let it relax for a
small amount of time: the elastic energy will move the curve to a position of slightly lower
length. If we denote by γi the longest curve of the sweep-out Si, the idea of Birkhoff is
that the sequence of curves γi converges, as i goes to infinity, to a simple closed geodesic.
This not only proves the existence of such a geodesic, but also provides a natural bound
on its length: by construction the width of the initial sweep-out provides such an upper
bound. Therefore, having good estimates on the minimum width of a sweep-out translates
into good estimates on the shortest simple closed geodesic on the sphere, and this led to
a long line of investigation on these sweepouts, still active nowadays, see for example the
survey of Croke and Katz [43, Section 2.4] and the references therein.

5.2 Structure of optimal homotopies

Our discussion in this chapter focuses on the setting of the disk (discrete or Riemannian),
but the techniques apply in the other settings as well. Our initial foray on homotopy height
came from trying to figure out how pathological optimal homotopies can be. Such an in-
vestigation arises immediately when trying to prove that the HOMOTOPY HEIGHT problem
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FIGURE 5.4 – Starting from a sweep-out of a Riemannian sphere (left), we can tighten
each curve in the family to obtain a new sweep-out (middle). Iterating this process, the
longest curve in the family converges to a geodesic (right).

is in NP: if we could prove that there always exists an optimal homotopy that sweeps the
disk in a polynomial number of steps, this homotopy could be used a NP certificate. Two
questions arise naturally:

• Does there always exist an optimal homotopy that is an isotopy, that is, where at each
step t the curve h(t, ·) is simple?

• If the answer to the first question is affirmative, does there always exist an optimal
homotopy that is monotone, i.e., that never backtracks?

We define monotonicity as follows: each simple curve γt in the disk D bounds exactly
one disk Dt. A homotopy is monotone if for t1 < t2, the curve h(t2, ·) is contained in the
diskDt1 . In a monotone homotopy, curves only move in one direction and never backtrack.
In the discrete setting, non-simple curves occur naturally with spikes, therefore we relax
the usual definition of simple to what is sometimes called weakly simple: throughout this
chapter, a curve is simple if it can be perturbed by an arbitrarily small perturbation so as to
be simple 1. The definition of monotonicity is relaxed likewise so as to allow for arbitrarily
small perturbations. With these relaxed notions, it is expected that the answers to these
questions is the same in the discrete and Riemannian setting, and as we shall see this is the
case.

The first question was answered positively on the Riemannian side by G. Chambers and
Liokumovitch [31]. Their proof is based on a beautiful graph-theoretical argument on all
the possible resolutions of the crossing points appearing in a homotopy, and applies equally
well to the discrete setting. We rephrase their theorem in our setting as follows 2:

1. Equivalently we could be working in a cross-metric setting where these perturbations happen naturally,
i.e. spikes can be realized with simple paths.

2. Their theorem is stated for non-contractible curves, which is definitely not our case here, but this is
mainly to avoid issues with orientation, which we did not consider in our definition of homotopy height.
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Theorem 5.2.1 ([31, Theorem 1.1]). Let D be a Riemannian or a triangulated disk. Then
if there exists a homotopy from the boundary of D to a point with curves of length less than
L, there exists an isotopy from the boundary of D to a point, where all the curves have
length less than L.

An affirmative answer to the second question was claimed on the discrete side by E.
Chambers and Letscher [30], and on the Riemannian side by G. Chambers and R. Rot-
man [32] but unfortunately both proofs were later found out to be flawed. Our first contri-
bution was to finally settle this question in a joint effort:

Theorem 5.2.2 ([G, Theorem 1.2]). Let D be a Riemannian or a triangulated disk. Then if
there exists a homotopy from the boundary ofD to a point, where all the curves have length
less than L, there exists a monotone isotopy from the boundary of D to a point, where all
the curves have length less than L.

We also provide a similar theorem for sweep-outs [G, Theorem 1.3]. Likewise, the
theorem also holds in the setting of sweeping two paths with fixed endpoints or the annular
setting.

We will not provide here a complete proof of Theorem 5.2.2 since such a proof is
already included in [G]. However, since [G] is written in a purely Riemannian language,
which some discrete-minded readers might not be very accustomed to, we provide a short
impressionistic overview of the proof.

Zigzags. The starting point of the proof is to decompose the homotopy we start with
in a finite family of monotone homotopies, which we call a zigzag: a zigzag is a family
(h1, . . . hn) of homotopies so that:

• h1, . . . , hn are isotopies.

• γ0 := h1(0, ·) = ∂D, γi+1 := hi+1(0, ·) = hi(1, ·) for 0 < i < n − 1, hn(1, ·) = p
where p is a trivial loop at a point p.

• hi is monotone for odd i, and h−1
i is monotone for even i. Here ·−1 denotes time-

reversal, i.e., for even i, hi is monotone in the reverse direction.

The height of a zigzag is the maximal length of an intermediate curve. In the discrete
setting, the existence of a zigzag of optimal height connecting the starting and ending curve
of a homotopy height problem is immediate: indeed, an optimal discrete homotopy can
be assumed to be an isotopy by Theorem 5.2.1, and it can be decomposed into a zigzag
since each discrete move either goes forward or backward. In the Riemannian case, this is
slightly more subtle but can be done at the cost of an arbitrarily small ε additive overhead
in the lengths of the curves. Indeed, if a curve wants to move forward at some place, and
backward at the some other place, we can do first the forward move for a short period or
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FIGURE 5.5 – An optimal homotopy between the two blue curves picture on the left es-
capes the annulus that they cobound, and is thus in particular not monotone. Indeed, in
order to minimize the maximal length of the curves, it first climbs over the small bump
before climbing over the left peak.

time, and only then the backward move. By standard compactness arguments, this will
yield a zigzag with a finite number of homotopies.

Once we have decomposed a homotopy into a zigzag, the dream goal is to shortcut the
zigzag: namely, what the zigzag does in three homotopies hi, hi+1 and hi+2, we would like
to do in a single monotone isotopy h′i that goes from γi := hi(0, ·) to γi+3 := hi+2(1, ·) with
curves of length less than L. Inductively, we could then transform a zigzag into a single
monotone isotopy. This runs into two issues. One is that γ and γ′ might cross, making
the existence of this monotone isotopy impossible. The second one, more subtle, is that
monotone isotopies of optimal length may simply not exist if the curves in the homotopy
are allowed to escape the starting curve. This is illustrated in Figure 5.5, which is taken
from Chambers and Rotman [32], who attribute it to Liokumovich.

This tricky example shows that a lot of care must be taken in any kind of inductive
argument. Our main strategy is to rely on shortcutting arguments such as the following
one:

Lemma 5.2.3. [G, Proposition 2.5] Let A be an annulus with boundaries γ1 and γ2 and
let δ denote the shortest non-contractible curve within this annulus. Then if there exists a
homotopy from γ1 to γ2 where intermediate curves have length at most 1 L, there exists a
homotopy between γ1 and δ where intermediate curves have length at most1 L.

The proof consists mostly in observing that a shortest non-contractible curve can be
used to shortcut anything that goes through without increasing the length, see Figure 5.6,
but one must take care that the resulting curves form a homotopy, which requires some
interpolation to avoid discontinuities.

Lemma 5.2.3 applied to the first two homotopies of a zigzag yields the following corol-
lary.

1. In the Riemannian setting, some arbitrarily small offset in the lengths must also be allowed, and there-
fore this lemma is stated with “less than” instead of “at most” in [G, Proposition 2.5].
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FIGURE 5.6 – In an annulus, shortcutting a curve (red) against a shortest non-contractible
curve (dotted blue) yields a new curve (green).

Corollary 5.2.4. From a zigzag Z where curves have length at most1 L, we can define a
new zigzag Z ′ where curves have length at most1 L and γ1 is the shortest non-contractible
curve in the annulus between γ1 and γ2.

The hope would then be to prove a similar lemma with the other homotopies, i.e., to
obtain a zigzag such that γi is the shortest non-contractible curve in the annulus between
γi and γi+1. This would allow us to shortcut the zigzag at the end: if γn−2 is the shortest
non-contractible curve between γn−2 and γn−3, applying the same lemma in reverse for h−1

n

yields a monotone isotopy from p to γn−2, and we have effectively removed two homotopies
from the zigzag.

But already for γ2, the following issue arises: the shortest non-contractible curve δ23

between γ2 and γ3 might cross γ1, destroying any hope of obtaining a monotone isotopy
between γ1 and δ23. In this case, our solution is to use the homotopy between γ2 and γ3 to
push γ1 farther, so that it does not cross δ23. This is done via an argument similar to the one
used for Lemma 5.2.3, but significantly more involved. We refer to [G] for the details.

5.3 Algorithmic implications
This theorem can be leveraged to obtain complexity results. Indeed, a monotone isotopy
only flips at most once each triangle. Furthermore, in an unweighted setting, we can as-
sume that there are never more than L unspikes and L spikes between two triangles flips,
since otherwise the curve would be too long at some point. Therefore, there exists an op-
timal homotopy made of at most 2|T |L steps. Such an optimal homotopy can naturally
be guessed by a non-deterministic algorithm, since it consists of at most 2|T |L curves of
length at most L. Therefore we immediately obtain the following corollary.
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Corollary 5.3.1. The HOMOTOPY HEIGHT problem on unweighted graphs is in NP.

However, when edges are allowed to have weights, the above argument falls short of
providing an NP certificate. Indeed, it could a priori happen that some sequence of edges
of exponentially small weight gets spiked an exponential number of times between two
subsequent triangles flips, for example by forming a spiral. In a second article with Erin W.
Chambers and Tim Ophelders, we showed that this can not happen and were able to prove
the following:

Lemma 5.3.2. [J, Lemma 11] There exists an optimal homotopy such that between two
subsequent face flips, each edge is spiked at most three 1 times.

The proof of this lemma hinges on two ideas. The first one is that one can modify a
discrete homotopy so that spike moves happen as late as possible, and unspike moves as
early as possible, giving what we call a reduced homotopy where spikes and unspikes do
not interfere. The point of reduced homotopies is that they have a nice structure: they start
with a sequence of consecutive unspikes, then a sequence of consecutive spikes, then a face-
flip, and then the structure repeats. The second idea is that in a sequence of consecutive
spikes, we can devise shortcutting arguments not unlike those of Lemma 5.2.3, when an
edge gets spiked more than three times. These shortcutting arguments allow us to provide
an alternative sequence of consecutive spikes leading to the same curve, where no edge
gets spiked more than three times, and thus to prove the lemma. Note that we do not know
of any example where an edge needs to get spiked more than once between two subsequent
face flips in an optimal homotopy.

From this we directly obtain the complexity result for weighted graphs.

Corollary 5.3.3. The HOMOTOPY HEIGHT problem on edge-weighted graphs is in NP.

Our techniques also yield the following polynomial-time approximation algorithm:

Corollary 5.3.4. We can compute in polynomial time an O(log n)-approximation of HO-
MOTOPY HEIGHT.

Har-peled, Nayyeri, Salvatipour and Sidiropoulos [89] provided an O(log n) approx-
imation algorithm for HOMOTOPY HEIGHT in the two variants where one is sweeping a
disk with paths starting and finishing on the boundary. In order to obtain Corollary 5.3.4,
we leverage our shortcutting techniques to generalize their algorithm to the other settings.
For example, in the setting of an annulus with boundaries γ1 and γ2, our approximation
algorithm proceeds as follows:

1. We compute a shortest path δ between the two boundaries of the annulus.

1. Lemma 11 in [J] states this lemma with an upper bound of four, but the proof actually shows three.
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FIGURE 5.7 – To compute an approximation of an optimal homotopy sweeping a cylinder,
we first cut along a shortest path and solve the problem in the rectangle. The key property
to ensure is that some optimal homotopy has the shape illustrated in the middle picture,
i.e., each of the intermediate curve crosses the shortest path exactly once.

2. We cut the annulus along this shortest path, yielding a disk whose boundary is natu-
rally split into four edge-disjoint paths: the starting and ending curve, and two copies
of the shortest path δ.

3. We compute an O(log n) approximation to the corresponding HOMOTOPY HEIGHT

problem using the algorithm [89] of Har-peled, Nayyeri, Salvatipour and Sidiropou-
los.

4. We glue back the disk into an annulus and obtain from item 3. a homotopy between
γ1 and γ2 (using portions of δ if we need to connect mismatching endpoints).

The main property that we rely on to prove the approximation ratio is that some approx-
imate solution has the structure output by this algorithm, namely consists of curves which
only cross the shortest path δ exactly once, see Figure 5.7. This is proved using similar
shortcutting techniques as Lemmas 5.2.3 and 5.3.2.

5.4 Grid-major height
In a subsequent article with Therese Biedl, Erin Chambers, David Eppstein and Tim Ophel-
ders [C], we investigated the connections of homotopy height with other notions of height.
The one I would like to highlight here is grid-major height.

Grid Majors. A graph H is a minor of G if it can be obtained from G by contracting
edges, removing edges and removing vertices. Graph minor theory investigates graphs
based on the minors that they admit, or do not admit. For example, the Wagner theorem
states that a graph is planar if and only if it does not admit K5 as a minor. A cornerstone of
graph minor theory is the grid minor theorem [159], stipulating that there exists a function
f so that any graph G of treewidth at least f(k) contains a grid of size k × k as a minor.
One can turn minors into a height parameter by looking at them in the other direction, i.e.,
investigating graphs based on which grids they are, or are not, a minor of. Since we have
turned the usual notion upside down, we introduce the word major to denote the relation
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⊆ . . . . . .

FIGURE 5.8 – The triangulated planar graph is a minor of the grid on the right, as is
witnessed by the coloring of the vertices.

opposite to minors, and define the grid-major height of a graph G as the smallest h so that
G is a minor of a W × h grid for some integer W > 0. One way to picture this major
relationship is with the following grid-representation: a graph G has grid-major height h
if one can label all the vertices of the h ×W grid with vertices of G in such a way that
(1) every vertex of G appears at least once as a label, (2) for any vertex v, the grid-points
labeled by v induce a connected subgraph of the grid, (3) and for any edge uv in G, there
is a grid-edge where the ends are labeled by u and v. See Figure 5.8 for an example.

In [C], we proved that this notion is equivalent to a variant of homotopy height with the
following rules.

• the homotopy is taken to be between two (unspecified, possibly trivial) paths on the
boundary of a face, which we consider as the outer face,

• one additional move, an edge-slide, is allowed 1 (see Figure 5.2, right),

• there is a topological condition to avoid triviality, namely that every triangle should
be flipped (either via a triangle flip or an edge-slide) algebraically exactly once.

Theorem 5.4.1. [C, Lemmas 3 and 5] The grid-major height and the homotopy height
(with the rules above) of a triangulated planar graph are equal.

To me, the equality between grid-major height and homotopy height is both natural (in
hindsight) and surprising. Let us start with the surprise, which comes from the fact that
these are very different parameters from at least two perspectives.

• Homotopy height is a way to quantify the height of an embedded graph, since the
local rules for homotopies heavily depend on the embedding. On the other side, grid-
major height is purely graph-theoretical and completely oblivious to any embedding
(note however that it is only finite for planar graphs, since a non-planar graph cannot
be a minor of a grid).

1. Since each edge-slide can be decomposed into two face-flips, this new move changes the value of the
homotopy height by an additive value of at most one. Furthermore, optimal homotopies with edge-slides can
also be assumed to be monotone, see [C, Lemma 4]
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• Since minors of minors are minors, grid-major height is trivially closed under mi-
nors. In contrast, we would not expect homotopy height to be closed under minors:
intuitively, removing an edge in a graph can make shortest paths longer, and thus we
would expect homotopy height to sometimes increase when taking minors.

On the other hand, the result is quite obvious because the proof proceeds along a very
natural path:

• If a triangulated planar graph G has grid-major height at most h, then by definition
it can be found as a minor of the h × W grid, for some W > 0. Then in a grid
representation, each column of the grid denotes a path in the graph of length at most
h, and one can view this collection of paths as a homotopy to sweep the graph. A
careful analysis shows that this works, except that this sometimes requires the new
edge-slide move.

• In the other direction, a homotopy sweeping a graphG is a collection of paths, where
each pair of neighboring paths differ by a fixed set of rules. A natural attempt is
to write this collection of paths all next to each other and hope that it yields a grid
representation. For this to succeed, we need some careful padding so that all the
paths have the same length h, and so that the edge spikes and face flips correspond
nicely to edges in the grid representation. But the key difficulty is to prove (2), that
is, connectedness of the subgraphs with a common label in the grid. This turns out
to be equivalent to monotonicity of the original homotopy, which we can assume by
Theorem 5.2.2 and [C, Lemma 4].

This sketch of proof gives us hints as to how to accommodate our surprise. Grid-major
height gives us a way to define homotopy height for graphs that are not triangulated, which
we can interpret geometrically as follows. As hinted above, the naive definition where
triangle flips are replaced with more general face flips is not the correct one, since this
would not yield a minor-closed parameter. The solution is to look at other curves than the
curves on the primal graph of the triangulation. The cross-metric setting is of no help here
either: dual curves suffer from the same issue as primal curves, since contracting an edge in
the primal graph amounts to removing an edge in the dual graph. But one can instead work
with nooses 1 which are curves on a surface that only intersect the graph at its vertices,
and whose length is the number of intersections with the vertices. Nooses in triangulated
graphs can be projected to primal curves while preserving their lengths, but in planar graphs
with higher-degree faces, they differ because they can cut right through high-degree faces.
Furthermore, the length of nooses can only diminish when taking minors. Thus defining an
appropriate notion of local moves on nooses (which naturally includes edge-slides) yields
a good generalization of homotopy-height to planar graphs that are not triangulated.

1. Nooses originate from structural graph theory, where they form the backbone for the geometric inter-
pretation of branch-width in a planar setting, see [170].
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A peculiar corollary of Theorem 5.4.1 is the following.

Corollary 5.4.2. The problem HOMOTOPY HEIGHT can be solved in time fixed-parameter
tractable with respect to the output.

Indeed, grid-major height is trivially closed under taking minors. Thus, via Robertson-
Seymour theory [163], the property of having grid-major height at most k is characterized
by a finite family of forbidden minors. One can therefore test whether a graph has grid-
major height at most k by testing whether it contains any of these forbidden minors, which
can be done in polynomial time [162]. Theorem 5.4.1 tells us that this algorithm equiva-
lently computes homotopy height. Note however that we do not know what the forbidden
minors are, and thus Corollary 5.4.2 is merely an existence theorem: the actual algorithm
is unknown.

Graph Drawing Height. It is a well-known theorem of Fàry [66] that any planar graph
can be embedded in the plane so that the edges are embedded as straight lines. Furthermore,
this can be achieved so that the vertices of the planar graph are put on lattice points Z2, and
a lot of effort has been devoted to finding the best upper bound on the size of the needed grid
(see for example the survey [181]). The graph drawing height investigates this question,
but only tries to control one dimension: Slh(G) is defined as the smallest H so that G
can be embedded in the plane with straight lines, with vertices on the grid {1, . . . ,W} ×
{1, . . . H} for someW > 0. From many perspectives, this height is a mysterious parameter,
in particular it is neither known whether it is computable in polynomial-time nor whether
it is NP-hard. Furthermore, there are only few known techniques to bound this height from
below, most notably relating it to the pathwidth [60, 67] or the outerplanarity [47, 56].
In [C], we also showed that homotopy height can be also used as a tool to bound from
below the graph drawing height, yielding sometimes better bounds than those provided
by pathwidth and outerplanarity, but we also provided examples where the two quantities
differ exponentially.





CHAPTER 6

Hard topological problems in three dimensions

The material in this chapter comes
from the three articles [E, H, L]
which were co-authored with
Benjamin A. Burton, Yo’av Rieck,
Eric Sedgwick, Martin Tancer and
Uli Wagner.

6.1 Introduction

6.1.1 Hard problems in knot theory

The computational complexity of topological problems depends on the dimension of the
ambient manifold in a very sharp manner. Most problems in two dimensions are tractable
in polynomial time, and sometimes even linear time, as is for example the case for the
problem of testing whether two surfaces are homeomorphic (via the Euler characteristic
and an orientability test) or whether closed curves are homotopic [126]. On the other
hand, starting in dimension 4, many topological problems, with the notable exception of
homology computations, which remain computable efficiently in any dimension, become
undecidable. This is for example the case for the problem of deciding whether a closed
curve in a manifold is contractible [18, 147], whether the fundamental group of a manifold
is trivial [1], or whether two manifolds are homeomorphic [132]. The case of dimension
3 provides an interesting middle ground between these two behaviors: most topological
problems in three dimensions are not undecidable, but depending on the problems, the



58 Chapter 6. Hard topological problems in three dimensions

complexity of the best known algorithms generally ranges from exponential to outright
galactic. We first illustrate this phenomenon by surveying the current state of the art of
algorithms for three classic computational problems in knot theory.

UNKNOT RECOGNITION

Input: A knot K described by a knot diagram of complexity n.
Output: Is the knot K the unknot?

UNKNOT RECOGNITION is perhaps the most famous problem in computational low-
dimensional topology. Proving that it is decidable is already delicate, as first observed by
Turing [178]. The first algorithm to solve it was designed by Haken [88], in a seminal ar-
ticle where he invented normal surface theory, which is one of the main algorithmic tools
in low-dimensional topology. From the point of view of complexity classes, the UNKNOT

RECOGNITION problem is known to lie in NP [91, 119], as well as in co-NP [114, 120],
making it most likely to not be NP-hard (under standard complexity theoretical assump-
tions). Yet no polynomial-time algorithm is known for this problem. A very recently
announced [123] algorithm by Lackenby runs in quasipolynomial time.

KNOT EQUIVALENCE

Input: Two knots K1 and K2 described by knot diagrams of complexity n1 and n2.
Output: Are K1 and K2 isotopic?

Perhaps surprisingly, this problem seems (at least according to the current state of the
art) much harder than UNKNOT RECOGNITION. It is known that KNOT EQUIVALENCE is
decidable, and Coward and Lackenby [42] proved that any two diagrams of the same knot
with respectively n1 and n2 crossings can be transformed one into the other using at most

22.
..
2n1+n2

Reidemeister moves, where the height of the tower of exponentials is kn1+n2 , and k =
101000000. This directly gives an algorithm for KNOT EQUIVALENCE, albeit not a very
efficient one. Kuperberg [116] proved that testing homeomorphism for closed orientable
3-manifolds is elementary recursive (which forbids towers of exponentials of unbounded
height and is thus a stronger bound than the previous one), and it seems likely that the
arguments can be generalized to the boundary case, which thus, coupled with the Gordon-
Luecke theorem [79], would also imply that KNOT EQUIVALENCE is elementary recursive.
No better algorithm seems to be known. Strikingly, no lower bound is known either: it is
open whether this problem is NP-hard, and also whether it is at least as hard as GRAPH

ISOMORPHISM (note that the closely related problem of testing whether two 3-manifolds
are homeomorphic is known [121] to be at least as hard as GRAPH ISOMORPHISM).
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FIGURE 6.1 – Left: A crossing change. Right: A single crossing change transforms a
trefoil knot into an unknot.

UNKNOTTING NUMBER

Input: A knot K described by a knot diagram of complexity n and an integer k.
Output: Is there a sequence of k crossing changes on K transforming it into a

trivial knot?

Some precision is in order for the UNKNOTTING NUMBER problem. A crossing change
is a change in the choice of which strands are above and below in a knot diagram, see Fig-
ure 6.1. When we ask for a sequence of crossing changes, these crossing changes are
allowed to happen in any diagram of the knot. Furthermore, there are examples [16, 145]
where the optimal sequence of crossing changes does not start from a diagram with a min-
imal number of crossings. This makes the UNKNOTTING NUMBER resilient to brute-force
algorithms, since one would have to test an infinite number of diagrams of the same knot.
In fact, it is unknown whether computing the unknotting number is decidable. Even testing
whether a knot has unknotting number one is not known to be decidable. The closest result
is a recent work of Lackenby [122], who provided an intricate algorithm to test whether a
link with some mild hypotheses has splitting number 1 one. Here again, no lower bound is
known, and the problem is not even known to be NP-hard.

The wide gaps between the best known lower bounds and upper bounds in these last two
problems beg for a deeper inquiry of the computational complexity questions surrounding
knot theory. With Yo’av Rieck, Eric Sedgwick and Martin Tancer, [E], we undertook this
task and obtained NP-hardness proofs for three problems, yielding the following theorems.

Theorem 6.1.1. [E, Theorem 2(a)] Given a link L1 described by a link diagram and an
integer k, the problem of finding a k-component sublink L2 ⊆ L1 that is trivial is NP-hard.

The NP-hardness of finding a sublink of a fixed type had already been established by
Lackenby [121], and our result strengthened it to trivial links. As we shall see, the proof
of Theorem 6.1.1 is very simple and provides a good warm-up for the next two hardness
reductions.

1. Similar to the unknotting number, the splitting number of a link is the minimal number of crossing
changes (in any diagram) required to split a link, i.e., pull apart at least two of its components.
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Theorem 6.1.2. [E, Theorem 2(b)] Given a link L described by a link diagram and an
integer k, the problem of deciding whether L has unlinking number has most k is NP-hard.

Here, the unlinking number is the generalization of the unknotting number where we
ask for k crossing changes in any diagram of the link L to yield the unlink. The use of links
instead of knots is crucial for the analysis here, hence why we fall short of establishing NP-
hardness for the unknotting number. As a byproduct, our proof also provides NP-hardness
for a wide family of what we call intermediate invariants, which are related to unknotting
numbers and surfaces embedded in four dimensions having the link as a boundary (see
more details in Section 6.2).

Theorem 6.1.3. [E, Theorem 1] Given a diagram K of a trivial knot and an integer k,
the problem of deciding whether there exists a sequence of at most k Reidemeister moves
transforming K into a trivial diagram is NP-complete.

While, as we saw, detecting a trivial knot is not expected to be NP-hard, Theorem 6.1.3
suggests that finding the best way to actually untangle the knot using combinatorial moves
is actually NP-hard. Of particular interest in this theorem is that it is a very rare occurrence
of a hardness result for a problem pertaining to classical knots, i.e., knots embedded in R3.
With the exception of the work on Kuperberg on approximating the Jones polynomial [115]
and the work of Kuperberg and Samperton on coloring invariants [117], all the other known
hardness proofs in 3 dimensions either involved links or different ambient manifolds. Ar-
guably, the problem in Theorem 6.1.3 is a problem on knot diagrams and not knots, yet I
believe Reidemeister moves to be sufficiently natural and well-studied for the problem to
be considered a hard problem on classical knots.

The common point of Theorems 6.1.1, 6.1.2 and 6.1.3 is that in all three cases, the re-
ductions follow a very similar pattern: we start from a 3-SAT instance, which we encode
into a knot-theoretical problem using gadgets based on Borromean rings. Borromean rings
are a 3-component link made of three unknots, with the property that removing any of the
three components yields a trivial 2-component link. This property has a strong similarity
with the 3-SAT clauses which are satisfied as soon as one of the literals is true, and this
simple observation fuels all three of our hardness proofs. But before going into the tech-
nicalities, we first jump into a seemingly uncorrelated topic, where we nevertheless could
make progress using similar techniques.

Let us note that, in an independent and simultaneous work, Koenig and Tsvietkova [111,
112] proved results similar to ours, and that our Theorem 6.1.3 answers one of their ques-
tions.

6.1.2 Embeddability questions and their computational complexity
Another class of hard topological problems, perhaps more intuitive to theoretical computer
scientists, comes from embeddability questions. Here, we say that a k-dimensional sim-
plicial complex K embeds into a topological space Y if there exists a proper injective
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piecewise-linear 1 map i : K → Y . The related computational problem, specialized to
Y = Rd, is the following.

EMBEDk→d
Input: A k-dimensional simplicial complex K.
Output: Does there exist a piecewise-linear embedding i : K ↪→ Rd?

For k = 1 and Y = R2, the embeddability amounts to the GRAPH PLANARITY problem
which can be solved in optimal linear time using the Hopcroft-Tarjan algorithm [98]. Yet
for other values of k, even in this “simple” case where Y = Rd, testing embeddability is a
delicate computational question, where the complexity depends in a subtle manner on the
values of k and d. We refer to the introduction of Filakovskỳ, Wagner and Zhechev [68]
(but see also [103, 171]) for a recent survey on these questions.

One of the reasons why the complexity of embeddability problems differs strongly de-
pending on the ambient dimensions is because high dimension and/or co-dimension allows
for topological tools (e.g., the Whitney trick) which allow to reduce the problem to a purely
algebraic one. Yet in dimensions three and four, these tools are unavailable, giving the em-
beddability questions in these dimensions a very distinct flavor. In dimension four, not
much is known, in particular the main open problem surrounding embeddability is whether
EMBED2→4 is decidable (it is known to be at least NP-hard [138]). In dimension three,
the problems EMBED2→3 and EMBED3→3 were shown to be decidable by Matoušek, Sedg-
wick, Tancer and Wagner [137]. They left as an open problem whether the problem is
NP-hard, hinting that the problem should be at least as hard as 3-sphere recognition, which
is not expected to be NP-hard, since it is in NP [102, 167] and co-NP [185] (assuming the
generalized Riemann hypothesis).

My first foray into this line of work was the following theorem, obtained with Benjamin
Burton and Uli Wagner [L]:

Theorem 6.1.4 ([L]). Given an integer g and a 3-manifold M , deciding whether the non-
orientable surface of genus g embeds into M is NP-hard. If g is odd, the problem is
NP-complete.

This hardness proof suffered from two key drawbacks to be applied to EMBED2→3:
first the target manifold is not R3 but something more complicated, but even more, the
manifold M is part of the input and changes as part of the reduction. Indeed, most of the
hardness comes from the 3-manifold M getting more and more complicated. In contrast,
in EMBED2→3, the hardness has to come from the complex since the target manifold is
fixed. The proof of NP-hardness in Theorem 6.1.4 follows a construction similar to the

1. We could also consider other categories, e.g., continuous or smooth maps. In dimensions two and
three, the resulting embeddability problems are equivalent, but not in higher dimensions (see e.g. [138]).
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NP-hardness of KNOT GENUS of Agol, Hass and Thurston [2], while the NP-membership
relies on standard techniques in normal surface theory with a small amount of additional
work.

A few years later, with Yo’av Rieck, Eric Sedgwick and Martin Tancer [H], we used a
completely different approach to show that the problems EMBED2→3 and EMBED3→3 are
indeed NP-hard:

Theorem 6.1.5. [H, Theorem 1.1] The problems EMBED2→3 and EMBED3→3 are NP-hard.

The proof of Theorem 6.1.5 relies heavily on knot theory. This might sound odd for the
uninitiated since the embeddability problems do not really feature 1-dimensional embed-
dings. The connection is that the processes of Dehn filling and Dehn surgery allow to use a
knot to transform a 3-manifold into another one. Using this formulation, a special instance
of EMBED3→3 asks whether a given 3-manifold with boundary can be Dehn filled along its
toroidal boundaries to yield R3, and this is the problem that we prove to be NP-hard. The
gadgets involved in this reduction rely on Borromean rings and are very similar to those
used for the proofs of Theorems 6.1.1, 6.1.2 and 6.1.3.

Organization. The motivation of Theorem 6.1.4 via embeddability questions make it
superseded by Theorem 6.1.5, and therefore in this chapter we will not discuss its proof,
referring the reader to the corresponding article [L]. Then, while Theorem 6.1.5 came first
in chronological order, it turns out that Theorems 6.1.1, 6.1.2 and 6.1.3 feature similar
but simpler constructions and proofs, and thus it makes more sense to start with them in
Section 6.2 and use them as a warm-up for the more intricate Theorem 6.1.5 in Section 6.3.

6.2 Borromean gadgets and hardness proofs

6.2.1 The trivial sublink problem
We start by explaining how to establish the NP-hardness of the following TRIVIAL SUB-
LINK problem:

TRIVIAL SUBLINK

Input: A link L described by a link diagram and an integer k.
Output: Does L admit a trivial sublink with k components?

We first observe that there is a very easy reduction to prove NP-hardness of this problem
from the INDEPENDENT SET problem, which is NP-hard [74]. I learned this reduction
from Martin Tancer after we finished our project. Indeed, starting from an INDEPENDENT

SET instance, one can simply replace each vertex with an octopus-shaped trivial knot in
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FIGURE 6.2 – Encoding INDEPENDENT SET in a TRIVIAL SUBLINK instance.

such a way that the knots corresponding to two adjacent vertices have linking number one,
see Figure 6.2. Then a k-component sublink is trivial if and only if there exists a k-sized
independent set.

However, the following different reduction will be more instructive. We start with a
3-SAT instance made of n variable and m clauses and embed it into a TRIVIAL SUBLINK

in the following way:

1. Each pair of literals is represented as a Hopf link.

2. Each clause is represented by a Borromean link.

3. Then each literal is banded to its occurrences in the clauses, i.e. the corresponding
unknots are connected via a small band, as in Figure 6.3. When a pair of such bands
cross, one gets put under the other arbitrarily.

This reduces the 3-SAT problem into the TRIVIAL SUBLINK problem with k = n.
Indeed, the proof that this works follows immediately from the key property of Borromean
rings: as soon as one of the components gets removed, the link unravels and becomes an
unlink. Indeed, if we have a satisfying assignment for our 3-SAT instance, we can remove
from our link the corresponding literals. In each Hopf link, one of the components got
removed, and in each Borromean ring, at least one component got removed, and therefore
what remains is a trivial sublink made of n components. In the other direction, if we have
a trivial sublink with n components, it means that we removed at least one component in
each Hopf link, and at least one component in each Borromean ring. Since there are exactly
n components in our trivial sublink and n variables, it means that exactly one component
was removed from each Hopf link: this indicates our satisfying assignment.

6.2.2 Unlinking number and 4-dimensional problems

We now explain how almost the same reduction can be used to prove hardness for the
following UNLINKING NUMBER problem:
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FIGURE 6.3 – The clause t ∨ y ∨ x ∧ -x ∨ y ∨ z is encoded into a TRIVIAL SUBLINK

instance.

FIGURE 6.4 – The Whitehead double of a trivial knot.

UNLINKING NUMBER

Input: A link L described by a link diagram and an integer k.
Output: Can L be turned into a trivial link using at most k crossing changes?

The key construct involved here is the operation of Whitehead Doubling, which con-
sists in taking two parallel copies of a link component and closing them with a clasp in
the manner 1 described by Figure 6.4. While it may seem rather innocuous at first glance,
turning an unknot into another unknot, it does change the topological type when applied to

1. To be precise, we describe here the untwisted Whitehead double, defined by the fact that the two
parallel copies have linking number zero. There are actually two ways of doing this, depending on the signs
of the two added crossings, which are called the positive and the negative Whitehead double. We work with
the positive one in this section.
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FIGURE 6.5 – The clause t∨ y ∨ x∧ -x∨ y ∨ z is encoded into an UNLINKING NUMBER

instance.

more complicated links made of multiple unknots. Furthermore, the connection with un-
linking number is immediate: doing one crossing change at the location where the White-
head double of an unknot is tied to itself allows to unravel the resulting link component,
transforming it into an unknot isolated from the rest of the link. We call such a crossing
change a standard crossing change.

The reduction to prove hardness of the UNLINKING NUMBER problem is obtained by
taking the reduction for the TRIVIAL SUBLINK problem and replacing every link com-
ponent with its Whitehead double, as pictured in Figure 6.5. The number k of crossing
changes is taken to be the number of variables. One side of the proof that this reduction
works is now immediate: if the SAT instance is satisfiable, we can look at the satisfied lit-
erals, and unravel each corresponding link components using the standard crossing change.
After doing this, by the key property of the Borromean rings, everything in the diagram
unravels and we have an unlink.

The reverse direction is trickier however, as we need to account for any possible cross-
ing change, and not only the standard ones. However, we can still proceed with the proof
using the following result:

Lemma 6.2.1 (Follows from [E, Lemma 18]). The Whitehead double of the Hopf link and
the Borromean rings are not unlinks.

We use this result as follows. In each pair of literals x and -x, at least one cross-
ing change has to happen since otherwise we do not have an unlink as per Lemma 6.2.1.
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Since the allowed number of crossing changes is n, there is exactly one crossing change
happening on the link components x and -x. This crossing change does not involve both
components, since otherwise they would end up having linking number ±1, and therefore
they could not be the unlink. Therefore it only involves one of the components, and we
choose the corresponding literal to be true. Now, in each of the Borromean rings, at least
one of the link components must have had a crossing change, since otherwise we do not
have an unlink as per Lemma 6.2.1. Therefore, the corresponding clause is satisfied by the
assignment that we have defined, and this concludes the proof.

Let us make two remarks on this reduction:

1. In the previous argument, it is crucial that we have different link components to
invoke linking numbers. Getting a hardness proof for the UNKNOTTING NUMBER

problem requires therefore a different approach.

2. Unknotting and unlinking numbers can be interpreted topologically in the following
way. The 3-sphere S3 can be thought of as the boundary of the 4-dimensional ball
B4, and thus given a link in S3, one can ask whether there exists a smooth surface
in this ball B4 having the link as a boundary, and what its genus is. It turns out that
a sequence of crossing changes turning the link into an unlink can be interpreted as
such a surface, with each crossing change contributing to the genus of the surface.
Using this connection and a strengthened form of Lemma 6.2.1 due to Levine [127]
allows us to also prove NP-hardness for a whole family of 4-dimensional invariants
that we call intermediate invariants. We refer the interested reader to our paper [E]
for more details.

6.2.3 Optimal number of Reidemeister moves
We now turn our attention to the problem of finding an optimal sequence of Reidemeister
moves to untangle a diagram. We first introduce the problem for links, where hardness is
easier to establish, and will then discuss how to turn this into a hard problem for knots.

MINIMAL NUMBER OF REIDEMEISTER MOVES TO THE UNLINK

Input: A link diagram L of the unlink and an integer k.
Output: Can we transform L into the unlink using at most k Reidemeister moves?

Let us first ponder about how effective the various Reidemeister moves are at untangling
a diagram. A Reidemeister move of type II- removes two crossings, a Reidemeister move
of type I- removes a single crossing and a type III Reidemeister move removes none. So
if we start with a diagram with n crossings and want to turn it into an unlink, there is
a natural lower bound of n/2 moves, reached if and only if all the moves are type II-.
From that perspective it makes sense to not count the number of Reidemeister moves in
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FIGURE 6.6 – The candy-wrapper gadget.

an untangling sequence, but to which extent they are slower than this (perhaps impossible)
optimal sequence. The defect of a sequence of Reidemeister moves is twice the number
of Reidemeister moves that we use minus the number of crossings in the initial diagram.
Minimizing the defect is equivalent to minimizing the number of moves used, and the
defect has the additional feature that it is invariant under Reidemeister moves of type II-.

The reduction to establish hardness for MINIMAL NUMBER OF REIDEMEISTER MOVES

TO THE UNLINK also starts the same way as for the TRIVIAL SUBLINK problem. Here
instead of replacing each link component with a Whitehead double, we replace it with the
candy-wrapper gadget pictured in Figure 6.6. The interesting feature of this candy-wrapper
is the following: by itself, it forms a trivial knot that one can untangle using a single type
II- Reidemeister move. However, when it is crossed transversely by other strands, the best
way to untangle it is to do a type I- Reidemeister move at each end, and then type II- moves
all the way. Therefore, in the first case we have a sequence of moves of defect zero, while
in the second case we have defect two.

This gadget allows us to encode the hardness of a satisfiability instance inside the or-
der in which candy-wrappers are unmade, in the following way. Start with the reduction
for TRIVIAL SUBLINK, and replace each link component with a candy-wrapper as in Fig-
ure 6.7. Assume that we have a satisfying assignment for a 3-SAT instance. Then we can
untangle the corresponding diagram with defect 2n, where n is the number of variables, as
follows. For all the literals that are satisfied, we untangle the corresponding components,
which costs us defect 2n, as per the discussion in the previous paragraph. Then, as usual, in
each Borromean ring, one of the components disappeared, and thus we can unravel those
using only Reidemeister moves of type II-, contributing zero to the defect. Afterwards,
we only see candy-wrappers with no transverse strands, which therefore can be untangled
using only type II- Reidemeister moves. This completes the untangling sequence, using
defect 2n.

The reverse direction works similarly to the previous arguments. Assume that we have
an untangling sequence with defect 2n. Then in particular each pair of candy-wrappers for
a variable must have been untangled. At least one move that is not of type II- must be spent
for each of them (since there are no type II- moves available). Since the total budget for
the defect is 2n, we can show that the only possibility is that exactly two type I- moves are
spent on each pair of literals involved in a variable. Such a move only involves one literal,
which we can set to be true. Then, looking at the Borromean rings, there are also no type



68 Chapter 6. Hard topological problems in three dimensions

t -t

x -x

y

-y

z

-z

z

y

-x
x

y

t

FIGURE 6.7 – A short sequence of Reidemeister moves to untangle this unlink provides a
satisfying assignment for the clause t ∨ y ∨ x ∧ -x ∨ y ∨ z.

II- moves available, and thus one the link components must be untangled using a type I-
move. This therefore shows that our assignment is a satisfying assignment for the 3-SAT
instance, finishing the proof.

The same caveat as in the previous paragraph applies: in the argument, we relied cru-
cially on analyzing link components separately, making the analysis hard to apply for the
same problem with a single component, i.e., a knot:

MINIMAL NUMBER OF REIDEMEISTER MOVES TO THE UNKNOT

Input: A knot diagram L of the unknot and an integer k.
Output: Can we transform L into the unknot using at most k Reidemeister moves?

Yet it is possible to use these gadgets to prove NP-hardness of MINIMAL NUMBER OF

REIDEMEISTER MOVES TO THE UNKNOT. In order to do that, we start with the reduction
for the link case, and attach everything to a common frame. Even the pictures start getting
complicated, and we refer to [E, Part II, Figure 11] for an illustration.. Then the proof for
one side of the reduction stays the same: given a satisfying assignment, we know in which
order we should untangle the various gadgets for the literals in order to get to the unknot
using defect n. The reverse direction however requires a delicate analysis, based on the
local structure of the gadgets, in order to rule out the possibility that a strange sequence of
Reidemeister moves outperforms the optimal one. We refer to [E, Part II] for the details.
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↪→

FIGURE 6.8 – We can embed the 2-dimensional faces (colored) in the triangles indicated
by the barycentric subdivisions of the 1-skeleton (gray) (to simplify the picture, only one
barycentric subdivision is realized here).

6.3 Hardness of embeddability into 3 dimensions

In this last section, we explain the connection between the hardness proof of the embed-
dability problem and the different gadgets that we introduced in the previous section.

Embedding 3-complexes via 2-complexes. The first step in the proof of Theorem 6.1.5
is to provide a polynomial-time reduction from EMBED3→3 to EMBED2→3. Therefore,
proving NP-hardness for the former problem also establishes it for the latter problem. This
reduction originates in the algorithm of Matoušek, Sedgwick, Tancer and Wagner [137,
Section 12] and the main idea can be sketched as follows. Ideally, we would like to ar-
gue that a 3-dimensional complex embeds into S3 if and only if its 2-dimensional skeleton
does. This is a bit too naive to be true: if we think about it one dimension lower, this is
contradicted by the existence of planar graphs that admit non-planar embeddings. Yet if
one rigidifies such a non-planar embedding by taking a few iterated subdivisions, then the
1-skeleton will no longer embed in the plane. Likewise, it turns out that embeddability of
a 3-dimensional complex K amounts to embeddability of the 2-skeleton K(2) obtained by
first cutting along all the cut-vertices, and then doing an iterated barycentric subdivision.
Indeed, assume that we have embedded the 2-skeleton of this iterated barycentric subdivi-
sion. Then, the boundary of a tetrahedron of K is a 2-sphere, which has been embedded
into S3. Topological embeddings of a 2-sphere into R3 can be wild (think of the Alexander
horned sphere), but PL embeddings cannot: the PL Schoenflies theorem (see [137, Theo-
rem 12.3] who cite Bing [14, Theorem XIV.1]) guarantees that this sphere is homeomorphic
to a standard embedding of the 2-sphere in S3. Now we want to verify that one side of this
sphere is empty, so that we can embed the tetrahedron τ inside: the idea is to choose the
side where the iterated barycentric subdivision has been embedded, as it stands in the way
of anything there being inside, except possibly components originating from cut-vertices,
which have been treated separately. We refer to Figure 6.8 for an illustration one dimension
lower.
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Hardness of embeddings 3-complexes A particular subclass of 3-dimensional com-
plexes is formed by 3-dimensional manifolds with boundaries. We can even restrict further
and specify that the boundaries are tori. We will establish the hardness of deciding the
embeddability of these very restricted 3-manifolds into S3.

A first step into understanding these embeddings is the following theorem of Fox, which
we specialize here to toroidal boundaries:

Theorem 6.3.1. [69] Let M be a 3-manifold whose boundary consists of a disjoint union
of tori. Then if M embeds into S3, there exists such an embedding f : M → S3 so that the
complement S3 \ f(M) consists of a union of solid tori.

Therefore, if M embeds into S3, such an embedding can be obtained by plugging in
solid tori in the "holes" of M . This suggests the following naive algorithm: do plug the
holes, test whether the resulting manifold is S3 using one of the known algorithms, e.g.,
[167], and output the result. This fails because the plugging-in operation is ambiguous:
attaching a solid torus T to a toroidal boundary ∂M requires an attachment map, i.e., a
homeomorphism f : ∂T → ∂M , and up to isotopy there are infinitely many of those
homeomorphisms.

So we need to understand these homeomorphisms better. This forms the topic of Dehn
fillings: we only give a hasty introduction here and refer to the article [H] or the book
of Rolfsen [164, Chapter 9] for more background. One can see that the homeomorphism
classes are parameterized by the homology class in ∂M of the image of a specific closed
curve on ∂T called the meridian, which is the unique (up to homotopy) closed curve bound-
ing a disk in T . Indeed, once one knows where to map this meridian, one can map the
corresponding disk, and cutting the solid torus along this disk yields a 3-ball, which can
be embedded in a unique orientation-preserving way (up to isotopy). Thus, this homology
class in H1(∂M) specifying where the meridian goes is of paramount importance: it is
called a slope. The operation of filling a boundary torus with a solid torus along a given
slope is called a Dehn filling. Reformulating with this language, our embeddability prob-
lem has now become the problem of deciding whether there exists a collection of slopes
such that Dehn filling the boundary tori of M along these slopes yields S3.

The connection with knot theory is not yet apparent, and we explain it now. Given a
knotK in a 3-manifoldM , one can remove a tubular neighborhoodN(K) ofK (which is a
solid torus) and perform a Dehn filling on this new toroidal boundary, effectively plugging
back a solid torus in place of the previous one. If the slope of the Dehn filling is different
from the slope of the original solid torus, this might yield a different manifold, which we
denote by M ′. This operation is called Dehn surgery, it provides an effective way to define
a 3-manifold out of a classical knot and a slope (this combination is called a framed knot).
Furthermore, when starting with a classical knot K, there is a nice way to parameterize the
homology group H1(∂N(K)): one can take a meridian (the only curve bounding a disk in
N(K)), and a longitude, the only curve bounding a surface in S3 \ N(K). This provides
us with a canonical identification of H1(∂N(K)) with Z2, and therefore a slope for Dehn



6.3. Hardness of embeddability into 3 dimensions 71

t -t

x
-x y

-y

z

-z

z

y

-x
x

y

t

FIGURE 6.9 – Starting from a 3-SAT instance, we build a link as for the TRIVIAL SUB-
LINK problem, except that the literals are connected with clasps. Then the clasps (colored
orange) are Dehn filled using a specific slope, and we dig out a tubular neighborhood of
the other link components, yielding a 3-manifold with toroidal boundary.

filling can simply be described by a pair of integers (p, q). Furthermore, it is easy to check
that a pair (p, q) corresponds to a simple closed curve if and only if p and q are relatively
prime, and therefore it is standard to identify the set of slopes with the extended rationals
p
q
∈ Q ∪ {∞}.

Let us conclude this quick introduction with the following two facts:

1. Doing Dehn surgery on a knot K along a slope 1/0 amounts to removing a solid
torus and plugging it back exactly the way it was (since we map the meridian to the
meridian), and thus doing nothing.

2. Let L be a Hopf link, and do Dehn surgery on one component with a slope 3
2
. Then

if one does Dehn surgery on the other component with a slope 1
1
, the two surgeries

cancel out and we obtain S3. This is one simple instance of the study of how different
surgeries on link components interact, which is the topic of Kirby calculus [107].

We can now describe the prototype of our reduction. We will start from a 3-SAT in-
stance and build a link out of it very similar to the TRIVIAL SUBLINK reduction: Bor-
romean rings for the clauses, but instead of Hopf links for the literals we connect them
with a clasp, as pictured in Figure 6.9. Then we will do Dehn surgery on the clasps with a
well chosen slope (for example 3/2, as above). For the other link components, we simply
remove a tubular neighborhood and leave them unfilled, providing us with a 3-manifold
with boundary M .
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FIGURE 6.10 – Compared to the prototype described above, the actual reduction uses
torus knots in place of unknots for the literals, and the clasp (in orange) that we use is
more complicated.

The idea is now the following: the surgery that was done on each clasp has locally
transformed the manifold into a more complicated one. In order to embed it into R3, we
should use one of the two literals to undo this transformation. The other literal will simply
be filled with a 1/0 slope, which amounts to forgetting about that link component. Starting
with a satisfying assignment for our 3-SAT instance, we can choose the true literal to be
filled with a 1/0 slope, and the false literal to be tasked with canceling the clasp (here with
the slope 1/1). Now, in each Borromean ring, one of the link components will thus have
disappeared since one of the literals of the corresponding clause is satisfied. Therefore the
whole picture unravels and we just have a family of Dehn surgeries on Hopf links, where
the slopes have been carefully chosen to cancel each other. Thus we have embedded our
3-manifold into S3.

The reverse direction requires much more work. We want to argue that any family
of Dehn fillings on M that yields S3 is of the form that we have just described, and thus
that we can derive a satisfying assignment of variable for our 3-SAT instance from based
on which literal is mapped to 1

0
. Unfortunately, having a precise understanding of which

Dehn surgeries on links give which 3-manifold is a very intricate topic, home to some
of the deepest theorems in twentieth-century knot theory, such as the Property R theorem
proved by Gabai [72] or the Gordon-Luecke theorem [79]. While it seems plausible that
the construction described above works and is a valid reduction, we fell short of proving it,
and relied on a slightly different reduction, with the following two changes:

1. The clasp involved in the literals has a different shape, as in Figure 6.10. This allows
us to leverage some results on the topology of the complementary space [100].

2. We use (2, 1) torus knots instead 1 of unknots for the literals. This allows us to
leverage results of Gordon and Litherland [80] on essential planar surfaces in cable
spaces.

1. The attentive reader might notice that (2, 1) torus knots are unknots! But once attached with the clasp,
they will yield a different link than if we start with usual unknots.
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Intuitively, by using more complicated gadgets, we rigidify the construction, making it
more unlikely that Dehn fillings with the wrong slope "accidentally" yield S3. And indeed,
we can prove it does not happen. The proof relies, in addition to the aforementioned ingre-
dients, on an iterated application of a theorem of Culler, Gordon, Luecke and Schalen [44]
relating the compressibility of surfaces before and after Dehn filling. We refer to the arti-
cle [H] for the details.





CHAPTER 7

Other works on surfaces

7.1 Shortest path embeddings and crossing numbers

The material in this section comes
from the article [M] which was
co-authored with Alfredo Hubard,
Vojtěch Kaluža and Martin Tancer.

A graph embedded on a surface can be concisely encoded using a combinatorial map,
but this encoding is not very practical for representing, or visualizing the graph. When the
graph is planar, an important literature has been devoted to the question of how to actually
draw the graph so that its salient features are easily identifiable, a cornerstone being perhaps
Tutte’s "How to draw a graph" [179] where it is proved that for a planar triangulation, if we
consider edges as springs, figuratively "nail" three vertices forming a triangle, and then let
the system relax, we obtain a planar embedding of the graph. In particular this provides a
proof of Fàry’s theorem [66] that was mentioned at the end of Chapter 5, stipulating that a
planar graph can always be embedded such that the edges are represented by straight lines.
We refer to the Handbook of Graph Drawing [177] for an extensive study of the topic of
drawing planar graphs.

Representing graphs embedded on surfaces is a much less studied topic. The aforemen-
tioned theorem of Tutte was generalized by Y. Colin de Verdière [39] in the following way:
if one is given a surface S endowed with a Riemannian metric of non-positive curvature
and a graph triangulating this surface, then, by considering the edges as springs and letting
the system relax, one obtains an embedding of the graph where each edge is realized by a
geodesic. But this theorem is much less useful from the perspective of visualizing an em-
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FIGURE 7.1 – Two grids embedded on a torus. While in both embeddings, all the edges
are represented as geodesics, the second picture is clearly less informative than the first
one.

bedded graph: even disregarding the numerical issues involved in the relaxation process,
this requires visualizing the surface itself, for example in R3, and the geodesics might not
provide a nice representation of the graph (see Figure 7.1). Another way to represent graphs
on surfaces is provided by the Koebe-Andreev-Thurston circle-packing theorem [175]: the
lesser-known version for graphs on surfaces shows that for any triangulated graph on a
surface of genus at least two, there exists a hyperbolic metric on that surface such that the
graph can be realized as the contact graph of a family of circles. In particular, in this real-
ization, the edges of the embedded graphs can be realized as geodesics, and even better, as
shortest paths. The drawback with this approach is that the metric depends on the graph,
and therefore is not canonical.

Another approach, which relies less on geometric structures on the surface, is to fol-
low the path laid out at the start of Chapter 5.3.4: an efficient way to manipulate a graph
embedded on a surface is to compute a cut-graph, cut along it and investigate the resulting
planar graph. But in contrast to the techniques presented in that chapter, in order to com-
pare different graphs embedded on the same surface, it makes sense to enforce that the cut
graphs used are identical. In this direction, the prototypical, and pretty much only result is
a theorem of Lazarus, Pocchiola, Vegter and Verroust [125], which we formulate here in a
cross-metric setting:

Theorem 7.1.1. Let G be a graph of complexity n embedded cellularly on an orientable
surface S of genus g. Then there exists a canonical system of loops for S that is transverse
to G and has O(gn) intersections with G.

Here, a canonical system of loops is a family of loops based at one point forming an em-
bedded graph with a single vertex and a single face, where the facial cycle is described by
the word a1b1a1b1 . . . agbgagbg. The canonical system of loops provided by Theorem 7.1.1
is computable in time O(gn), and therefore, one can represent any graph embedded on
a surface of genus g by first cutting along this system of loops and then representing the
planar graph. The bound ensures that each edge does not get subdivided too many times
during the cutting.
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The proof of Theorem 7.1.1 heavily relies on the structure of the canonical system
of loops and does not seem to easily generalize to any other cut graph that one might
want to use. In particular, it is an open question whether the same upper bound holds
for a non-orientable system of loops (a single vertex and single face graph embedded on
a non-orientable surface with facial cycle a1a1 . . . agag), see Lazarus [124, Section 4.3].
While investigating the structure of flip graphs of triangulations of surfaces, Negami [146]
encountered similar questions and conjectured that a similar bound should exist for any
fixed cutting shape:

Conjecture 7.1.2. Let G1 and G2 be two graphs embedded cellularly on a surface S of
genus g. Then there exists a homeomorphism h : S → S so that G1 and h(G2) intersect
transversely O(n1n2) times.

Note that when choosing G2 to be a canonical system of loops on an orientable surface,
one recovers Theorem 7.1.1. Negami proved the weaker upper bound O(gn1n2) in both
the orientable and the non-orientable cases. Similar questions regarding upper bounds on
crossing numbers have appeared in various works, for example in Matoušek, Sedgwick,
Tancer and Wagner [136] in connection to embeddability questions and Geelen, Huynh
and Richter [77] in connection to structural graph theory, and there is a related conjecture
of Mohar [141]. Yet to my knowledge, no progress has been made on Negami’s conjecture
since its inception (see Archdeacon-Bonnington [5] and Richter-Salazar [158] for related
results).

In a joint work with Alfredo Hubard, Vojtěch Kaluža and Martin Tancer, motivated
by the above questions, we initiated the study of the following generalization of Fàry’s
theorem:

Problem 7.1.3. Given a surface S, does there exist a Riemannian metric on S such that any
simple graph G cellularly embeddable on S can be embedded such that edges are realized
as shortest paths?

Such a metric would constitute a best of both worlds scenario between the Y. Colin de
Verdière theorem and the metric obtained by circle-packing. On the one hand we would
get shortest paths and not geodesics, and on the other hand the metric would not depend
on the graph one wants to embed. We called such a hypothetical metric a universal short-
est path metric. A positive answer to Problem 7.1.3 would immediately yield a proof of
Conjecture 7.1.2, since shortest paths cross at most once. 1

While we could not solve Problem 7.1.3 in full generality, and the main question is still
open, we provided the following partial answers. In the following theorem, a k-universal

1. There is a slight discrepancy here: Problem 7.1.3 is stated for simple graphs as there is no hope of
realizing loops as shortest paths, while Conjecture 7.1.2 is stated for more general graphs. One switches
to the other setting by a constant number of subdivisions, which gets absorbed in the O() constant of the
conjecture.
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shortest path metric is a metric such that any embeddable graph on a surface can be em-
bedded with an embedding in which edges are drawn as concatenations of k shortest paths.

Theorem 7.1.4 ([M]). 1. The sphere, the projective plane, the torus and the Klein bottle
can be endowed with a universal shortest path metric.

2. The standard square metric on the Klein bottle is not a universal shortest path metric.

3. On an orientable surface of genus g, for any ε > 0, with probability tending to 1 as
g goes to infinity, a random hyperbolic metric is not a O(g1/3−ε)-universal shortest
path metric. In particular, with probability tending to 1 as g goes to infinity, a random
hyperbolic metric is not a universal shortest path metric.

4. For every g > 1, there exists an O(g)-universal shortest path hyperbolic metric on
the orientable surface of genus g.

An interesting aspect of Theorem 7.1.4 is that its proof leverages results from many dif-
ferent areas. The first item is obtained via a reduction to irreducible triangulations, which
are in finite and small number for the relevant surfaces. The second item uses basic argu-
ments from covering space theory. The third item builds on results on random hyperbolic
metrics and Teichmüller theory from Mirzakhani [139] and Guth, Parlier and Young [86]:
here, a random hyperbolic metric denotes a metric chosen uniformly at random for the
so-called Weil-Petersson volume on the space of such metrics (see Farb and Margalit [65]
for an introduction to Teichmüller theory). The last result follows from an octagonal de-
composition devised by É. Colin de Verdière and Erickson [38] which we couple with the
aforementioned theorem of Y. Colin de Verdière [39]. We refer to the article [M] for more
background, details and proofs.

7.2 Homotopy moves

The material in this section comes
from the articles [A] and [I] which
were co-authored with Hsien-Chih
Chang, Jeff Erickson, David
Letscher, Saul Schleimer, Eric
Sedgwick, Stephan Tillman and
Dylan Thurston.

In various applied and theoretical settings, a question that comes up naturally is how
to efficiently tighten a closed curve or a path. For example, given a set of obstacles in the
plane and a path with fixed endpoints avoiding these obstacles, the classical SHORTEST
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H1 H2 H3

FIGURE 7.2 – The three homotopy moves.

HOMOTOPIC PATH problem asks to compute the shortest path homotopic to the input path
in the space R2 \ obstacles, and there are efficient algorithms for this problem [12, 25, 97].
A generalization of this problem was studied by É. Colin de Verdière and Erickson [38],
where they provided efficient algorithms to compute a shortest homotopic path or closed
curve on a combinatorial (or a cross-metric) surface.

In this chapter, we investigate a similar problem related to tightening a curve on a sur-
face, but we are trying to control the number of elementary combinatorial moves involved
in such a tightening. The setup is the following: we fix a surface S, and the input is a
non-simple closed curve γ on the surface S. Putting γ in minimal position means finding
another curve γ′ which is homotopic to γ and with a minimal number of self-crossings.
Similarly to the Reidemeister theorem for knots that we mentioned in Chapter 3, transver-
sality arguments show that any homotopy can be realized by a finite sequence of homotopy
moves, which are pictured in Figure 7.2 (these are the same as Reidemeister moves without
the decorations at vertices) and isotopies. Then the following questions come naturally:

1. Can we compute a minimal position of a curve? How efficiently?

2. How many homotopy moves are are needed to bring a curve to a minimal position?

3. Can a curve be put in minimal position using a monotonic sequence of homotopy
moves, i.e., such that that the number of intersections never increases? If yes, how
many moves are needed?

Furthermore, the above questions can also be asked for the more general setting of a
multi-curve, i.e., a family of closed curves, for which the minimal position is a family of
closed curves homotopic to the input ones with a minimal number of intersections. An
answer to the first question was provided by Despré and Lazarus [55], who provided a
polynomial-time algorithm for the case of a single closed curve. An answer to the second
question is provided by my first result on this topic, in a joint work with seven co-authors:

Theorem 7.2.1. [I] On an orientable surface with or without boundary, a closed curve
with n self-intersections can be tightened using O(n4) homotopy moves.

Before that theorem, the only known bound was exponential, following from the work
of de Graaf and Schrijver [48] or Hass and Scott [94] and an exponential bound on the num-
ber of surface maps [11]. We also provided a lower bound: a closed curve on an annulus
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requiring Ω(n2) homotopy moves to be simplified. The proof of Theorem 7.2.1 builds on
a strong structural result of Hass and Scott [93] on the self-intersections of closed curves
on surfaces, and involves repeatedly identifying so-called singular bigons and providing
a way to simplify those with a controlled number of moves. This requires some intricate
bookkeeping: while bigons in general are easy to simplify using homotopy moves, here
the bigons are degenerate enough that we need to be very careful of not making one more
complicated during the process of undoing it.

The answer to the third question is positive, and follows from independent work of de
Graaf and Schrijver [48] and Hass and Scott [94]. In a follow-up paper with Hsien-Chih
Chang [A], we refined these techniques to provide a polynomial upper bound for the third
question, and at the same time generalize the results for the other questions to the more
general setting of multicurves.

Theorem 7.2.2 ([A]). • On an orientable surface of genus g with non-empty bound-
ary, any multi-curve with n self-intersections can be tightened monotonically using
O((g + b)n3) homotopy moves.

• On an orientable surface without boundary that is not a torus, any multi-curve with
n self-intersections can be tightened monotonically using O(n5 log3 g/g2 + gn3) ho-
motopy moves.

Furthermore, the moves can be computed efficiently, thus also yielding the first algo-
rithms to put a multi-curve in minimal position in polynomial time. It is a striking fact that
this theorem does not apply to the torus, as problems on tori tend generally to be easier than
on surfaces of higher genus. The reason here is that our arguments leverage hyperbolic ge-
ometry, which has distinctive features which are lacking for the Euclidean geometry that a
torus can naturally be endowed with. A second tool that we rely on to prove Theorem 7.2.2
is a combinatorial model that we call a pipe system and that gets iteratively refined as the
tightening process happens. It originates from recent algorithms to draw planar graphs with
restrictions [35, 40, 71].

Let us now provide some additional motivation for Theorem 7.2.2 by explaining its
connections to electrical transformations on (embedded) graphs. Given G an embedded
graph on a surface S, the set of electrical moves pictured in Figure 7.3 provides rules
to transform G into another graph 1. The origin of these moves (and of their names) is
that they provide simplification rules to compute the equivalent resistances of resistance
networks (see for example [3]), but these moves also have numerous applications in other
fields. For example they are used in Steinitz’s original proof of his theorem that 3-connected
planar graphs coincide with the graphs of three-dimensional convex polyhedra [174], or
they are prominently featured in the structural theory of linkless graphs [160]. In many

1. We focus in this chapter on embedded electrical moves, i.e., we insist that faces pictured in Figure 7.3
be empty for the move to be allowed. The more general theory is more subtle, we refer to the thesis of
Chang [34] for more details.
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H1 E2

H3

E2

FIGURE 7.3 – The four electrical moves (top), their effect on the medial graph (middle)
and their similarity to homotopy moves (bottom)
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applications, the goal is to simplify as much as possible a graph using these transformations,
i.e., transform the graph into a graph with a minimal number of vertices.

The connection between electrical transformations and homotopy moves operates via
the medial graph, which obtained from an embedded graph by placing a vertex on each
edge, and connecting two vertices placed on adjacent edges, where two edges are consid-
ered adjacent if they occur consecutively on a facial cycle. Note that a medial graph has
all its vertices of degree 4, and thus can be interpreted as a multicurve. As pictured in Fig-
ure 7.3, electrical transformations almost amount to homotopy moves on this multicurve.
The key difference is that the second homotopy move is different, instead of an H2 move
we get what we denote by an E2 move, which yields interesting difficulties.

Our Theorem 7.2.2 can be applied to the problem of simplifying an embedded graph
using electrical transformations as much as possible as follows. We first compute the me-
dial graph. Then we compute a monotonic sequence of homotopy moves to tighten these
curves, and apply them, until we encounter an H2 move. At this stage, we apply the E2
move instead. This completely rearranges the multicurve and their homotopy classes, but
we can start the process again: compute a new monotonic sequence of homotopy moves,
and apply them until we encounter an H2 move, etc. Since the E2 moves reduces the
number of self-intersections by 1, this process only lasts for a polynomial time, and thus
we obtain a polynomial sequence of electrical transformation moves to simplify our graph.
At this stage, two remarks are in order:

• It is not clear that we are done. It could be that we obtain an embedded graph,
and the corresponding medial multicurve is in minimal position from the perspective
of homotopy moves, but that applying a well-chosen E2-move in reverse shuffles
everything and provides a way for further simplification. It is a delicate theorem of
Chang, Cossarini and Erickson [33] that this actually does not happen.

• For this argument to work, it is crucial that we work with a monotonic sequence of
homotopy moves, and thus that we have at our disposition Theorem 7.2.2 instead of
just Theorem 7.2.1. Indeed, in a non-monotonic sequence, a move H2 increasing the
number of vertices would have to be exchanged with an increasing E2, completely
shuffling the topology of the curves, and there would be no way of controlling the
resulting number of moves.

Thus, the previous discussion yields the following corollary.

Corollary 7.2.3. [A] Any graph embedded on a surface can be reduced as much as possible
using electrical transformations in polynomial time.

This result also applies in a setting with terminals, i.e., vertices that have to be left
invariant by the electrical transformations, although this involves some subtleties regarding
terminal-leaf reductions that we will not discuss here (we refer to [A, Section 5.3]). Before
our work, the result of Corollary 7.2.3 was only known in the setting of planar graphs with
up to four terminals [53].
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Other works on knots and 3-manifolds

8.1 Treewidth of knots

The material in this section comes
from the article [F] which was
co-authored with Jessica Purcell,
Saul Schleimer and Eric Sedgwick.

As we surveyed in Chapter 6, computational problems involving knots are generally
hard, or at least they seem to be in the sense that we do not know efficient algorithms
to solve them. In the past decades, a vast literature in theoretical computer science was
devoted to developing new angles of attacks to solve hard problems, primarily focusing on
two directions: approximation algorithms (see for example Vazirani [180]) on the one hand,
and parameterized algorithms (see for example Cygan et al. [45]) on the other hand. This
section is devoted to the latter approach. A widely beloved parameter enabling tractability
of hard problems is the treewidth of a graph: in intuitive terms, it measures quantitatively
how close to a tree a graph is. This parameter is very relevant for algorithmic purposes
since most algorithmic problems are easy to solve on trees (generally using some form of
dynamic programming), and therefore can also be solved efficiently for graphs that "look
like trees". More precisely, many NP-hard problems are FPT when parameterized by the
treewidth, i.e., can be solved on graphs of treewidth at most k in time f(k)poly(n), where
f is some computable function.

Parameterized algorithms can be applied to problems in knot theory via knot diagrams.
Indeed, a knot diagram, once one forgets the information of which strand goes over or under
at a crossing, is merely a 4-valent planar graph, with a well-defined treewidth, and thus
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one can hope that standard knot-theoretical questions become easier under the hypothesis
that this treewidth is small. Unfortunately, even this is unknown for the most important
questions: in particular it is unknown whether UNKNOT RECOGNITION can be solved in
polynomial time when the input diagram has fixed treewidth (the best known result is such
an algorithm for inputs of treewidth 2 [17]). Yet this approach is known to be successful
for a host of easier questions, notably for the problem of computing a wide family of
knot invariants, such as the Jones polynomial [130], the HOMFLY-PT polynomial [22] and
more refined versions of those [131]. Note that a well-known conjecture posits that the
Jones polynomial detects the unknot, which thus would yield a positive answer to the FPT
status of UNKNOT RECOGNITION parameterized by the treewidth.

A question that immediately arises from these endeavors is to understand which knots
admit knot diagrams of small treewidth. The question was asked in the reverse direction
by Burton [21]: does there exist a constant c such that every knot K admits a diagram of
treewidth at most c? Makowsky and Mariño asked a similar question in [130]. The motiva-
tion is clear: if the answer is positive, and furthermore such a small-treewidth diagram can
be computed efficiently, then the previous parameterized algorithms provide a very plausi-
ble approach towards solving UNKNOT RECOGNITION in polynomial time. Of course, the
consensus was that the answer should be negative, but while it is easy to build diagrams
of a given knot with arbitrarily high treewidth, proving the nonexistence of small treewidth
diagrams for a given knot seems much harder.

In a joint work with Jessica Purcell, Saul Schleimer and Eric Sedgwick, we resolved
the question in the negative. A torus knot Tp,q is a knot defined by taking the standard
embedding of a torus as a torus of revolution in R3, and considering a curve winding p
times around a circle in the interior of the torus and q times around the axis of symmetry.

Theorem 8.1.1. [F] Any diagram of the torus knot T (k, k + 1) has treewidth Ω(k).

Our theorem is actually more general, and provides topological criteria for a knot to
not admit a diagram of low treewidth, in terms of its bridge number and the existence
of incompressible planar surfaces in its complement, we refer to the article [F] for more
details.

The idea of the proof is to connect the very combinatorial notion of treewidth to more
topological notions that have been heavily investigated in knot theory. An impressionis-
tic description is as follows: we assume by contradiction that a torus knot T (k, k + 1)
admits a diagram of low treewidth and reach a contradiction. Famous work of Seymour
and Thomas [170] shows that a planar graph of low treewidth can be interpreted geometri-
cally as a graph which can be swept by disjoint simple closed curves such that each of these
closed curves intersects the graph a bounded number of times, and the family that they form
nests in the shape of a tree. When the input graph is a knot diagram, we show that these
closed curves can be lifted to spheres in R3, yielding what we call a sphere decomposition:
a family of disjoint spheres in R3, each of them having small intersection with the knot
K, nested in a tree-like fashion, and such that the layout of the knot with respect to these
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spheres is very constrained. The last ingredient is to show that such a sphere decomposi-
tion is very closely related to the classical notion of a Heegaard splitting of a 3-manifold.
More precisely, we show how to upgrade a sphere decomposition into a multiple Heegaard
splitting (see Hayashi and Shimokawa [96]) for the knot T (k, k + 1) in R3, and the low
treewidth hypothesis implies that the complexity of this splitting has to be low. But lever-
aging the work of Hayashi and Shimokawa [96], we show that such a low-width splitting
would prove the existence of some particular surfaces in the knot complement, which are
known not to exist for torus knots (and other families of knots), concluding the proof.

8.2 Hardness of the link crossing number

The material in this section comes
from the article [B] which was
co-authored with Marcus Schaefer
and Eric Sedgwick.

The crossing number of a knot or a link is the minimum number of intersections in
a diagram of the knot or link. While it is arguably the most natural numerical invari-
ants to consider for knots, and indeed most knot tables classify those by their crossing
number [23], it is also famously intricate, as it is hard to relate the crossing number to
topological properties of the knots. For example, it is a famous open question whether
cr(K1#K2) = cr(K1) + cr(K2), where # denotes the connected sum of knots (see Lack-
enby [118] for the best known bounds on this question). However, the discovery of the
Jones polynomial in the 80s led to renewed interest in the crossing number and more gen-
erally in a diagrammatic approach to knot theory, in particular because it led to easy proofs
of the famous Tait conjectures (we refer for example to the book of Kaufmann [104]).

With Marcus Schaefer and Eric Sedgwick [B], we undertook the study of the crossing
number of knots and links from a computational perspective. Our path here was guided by
the analogous notion in graph theory: the crossing number of a graph G is the minimum
number of crossings of a drawing of G in the plane. The crossing number of graphs is also
a notoriously delicate quantity. For example, computing it is NP-hard [75], and the value of
the crossing number of complete or complete bipartite graphs is famously unknown [165].
This suggests trying to encode a graph crossing number in an instance of computing the
crossing number of a knot or a link, which we succeeded in doing, establishing the follow-
ing theorem.

Theorem 8.2.1. [B] Let L be a link described by a sequence of segments (or a diagram)
and k be an integer. Deciding whether L has crossing number at most k is NP-hard.
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FIGURE 8.1 – A naive reduction from graphs to links.

Let us observe that this is far from telling a complete story on the complexity of com-
puting the crossing numbers of knots and links. Indeed, the best algorithm known for this
problem seems to be to try all the possible diagrams up to k crossings, and for each of them
test whether it is equivalent to the input link, using the galactic algorithms mentioned in
Chapter 6. Bridging the gap between the lower and upper bound seems like a formidable
open problem. Furthermore, Theorem 8.2.1 only applies to links, for the same reason as
most of our reductions in Chapter 6: links provide more rigidity and control than knots,
making it easier to devise reductions. Proving an analogue of Theorem 8.2.1 for knots, or
even for links with a fixed number of connected components, seems out of reach of our
techniques.

The proof of Theorem 8.2.1 follows an expected pattern until one encounters an un-
expected difficulty, which I would like to explain here, leaving the interested reader to
check its resolution in the article [B]. We start from an instance of the graph crossing num-
ber problem that is known to be NP-hard and try to transform it into a link, so that the
crossings of the link necessarily mirror the crossings of the graph. A naive version of this
reduction is pictured in Figure 8.1, where we see a first difficulty: the topological type of
the link that we obtain will depend on the rotation scheme of the starting graph. Therefore,
we want to start from an instance of the graph crossing number that is NP-hard even when
fixing the rotation scheme, we chose one due to Muñoz, Unger and Vrt’o [144].

Then, we want to argue that a diagram of the link with a minimal number of crossings
corresponds to a drawing of the original graph. This is a matter of rigidity: the goal is to
show that the flexibility in diagrams of the link exactly mirrors the flexibility of the graph
drawing. In order to enforce this rigidity, an important trick that is used in many graph-
theoretical reductions on crossing numbers is to put weights on edges, which can easily be
simulated using multiple edges (if these are forbidden, one can subdivide those). Indeed,
in a drawing of a graph of minimal crossing number, one can always arrange parallel edges
so that they are drawn just next to each other, since drawing those in a small neighborhood
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of the one with a minimal number of crossings does not increase the crossing number.
Yet interestingly, this trick is hard to apply in the context of links, as a component might
self-intersect in the optimal diagram, and copies of self-intersecting components yield a
crossing number growing quadratically with the number of components. Basically, we were
unable to argue that in a crossing-minimal drawing, all copies of a knot would have to be
drawn the same way. In order to circumvent this issue, we still rely on a weighting scheme,
but change the equivalence notion that we use for knots to argue about the weighting, before
ultimately connecting back this new equivalence notion with the classical one.





CHAPTER 9

Perspectives

We conclude this habilitation thesis with some perspectives on ongoing and future research
directions. We start by highlighting ongoing work with PhD and Masters students, and
then outline further research topics. In line with the organization of this document, we
place a specific emphasis on the open problems stemming from the three lines of research
presented in Chapters 4, 5 and 6.

9.1 Work with students

I have worked on numerous occasions with PhD students, which are identified with stars in
my list of publications. In particular, the articles [A, I] and [C, G, J] are the results of long
collaborations respectively with Hsien-Chih Chang and Tim Ophelders during their PhD
theses.

I am currently co-supervising three PhD students, and for two of them I have also (co-)
supervised their master theses.

With Niloufar Fuladi, a PhD student co-supervised with Éric Colin de Verdière and
Alfredo Hubard, we investigate topics in the continuation of the results on intersections
of embedded graphs and shortest path embeddings presented in Chapter 7. As mentioned
in that chapter, the directions are multiple as most questions one can ask remain wide
open. Our first focus is on non-orientable surfaces, which were a blind spot of our initial
work [M]. The following preliminary results have already been obtained during Niloufar
Fuladi’s master thesis: first, there is a subtle flaw in Negami’s proof that two graphs embed-
dable on a non-orientable surface of genus g can be reembedded so as to cross O(gn1n2)
times, which we corrected using a different argument. Second, we were able to general-
ize the fourth item of Theorem 7.1.4 to the setting of non-orientable surfaces by providing
a new decomposition scheme for those, akin to the octagonal decomposition defined by
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É. Colin de Verdière and Erickson [38] for orientable surfaces. The next natural direction,
topic of ongoing work that is nearing conclusion, is to obtain an analogue of Theorem 7.1.1
for non-orientable surfaces and non-orientable canonical systems of loops. Here, the main
starting point is a recent result of Schaefer and Stefankovič [166] providing very strong
bounds on how to embed a non-orientable map with a geometrized model of crosscaps.

With Jean Chartier, a PhD student co-supervised with Laurent Hauswirth and Stéphane
Sabourau, we investigate questions related to min-max techniques akin to those presented
in Chapter 5 on homotopy height. As we explained in that chapter, optimal homotopies
and their higher dimensional generalizations (sweep-outs) are widely studied in minimal
surface theory as they provide a powerful tool to prove the existence of geodesics, or more
generally minimal surfaces. These techniques have been under the spotlight in recent years,
leading to the resolution of longstanding conjectures such as the Willmore conjecture [133]
or Yau’s conjecture [173]. Yet many open questions remain, even in two dimensions. We
pursue two directions. First, while geodesics can be proved to exist using minmax tech-
niques, no tools seem to exist to compute those, even in metric structures which should
be amenable to computation. For instance, a theorem of Pogorelov [153] proves that there
always exist at least three distinct simple quasi-geodesics 1 on convex polyhedra, yet it is
an open problem to compute such a quasi-geodesic in polynomial time. As mentioned in
Demaine, Hertserberg and Ku [52], even the existence of an algorithm is not clear, since
there is no obvious bound on the number of edges that these geodesics intersect. We are
investigating how minmax techniques can be made algorithmic to actually compute these
quasi-geodesics. In a different direction, an open question of Hass and Morgan [92] asks
whether any Riemannian 2-sphere possesses a geodesic net with three faces, i.e. an embed-
ded graph with three faces where each edge is a geodesic and the angles at each vertex are
balanced (i.e., the sum of vectors of norm 1 tangent to each incident edge is 0). They proved
the existence of such a net when the manifold has positive curvature, but the argument does
not generalize to a curvature-free setting. Our aim is to develop min-max techniques to
capture the existence of such objects.

With Corentin Lunel, a masters student who is now starting a PhD thesis co-supervised
with Éric Colin de Verdière and Pierre Dehornoy, we pursue the work described in Chap-
ter 8 on treewidth of knots. The main result of our article [F] requires quite a bit of topolog-
ical background, in the form of the reliance on Hayashi-Shimokawa [96], as it aims at prov-
ing the non-existence of some topological sweep-out of the knot, and proving non-existence
is often harder than proving existence. Structural graph theory provides tools to alleviate
this difficulty, in the form of obstructions to small decompositions. For example, such an
obstruction for branch-width is a tangle (completely unrelated to the knot-theoretical con-
cept bearing the same name), and it works like this: a graph has branch-width at least k
if and only if it admits a tangle of size k. This turns the problem of lower-bounding the

1. A quasi-geodesic is a geodesic except at the singular points of the polyhedron, where it is required to
form an angle at most π on both sides.
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branchwidth upside down, instead of proving the non-existence of a specific branch decom-
position, we "just" have to prove the existence of a tangle. The main result of the master
thesis is to properly define a topological version of this concept of tangle in order to recover
Theorem 8.1.1. The technical aspects of this construction build on an unexpected connec-
tion with the tools used by Pardon [149] to bound from below another invariant called the
distortion of the knot. During his PhD thesis, we aim at developing our understanding of
this connection between structural graph theory and knot theory to develop new algorithmic
and combinatorial tools surrounding small-width decompositions of knots.

9.2 Further research directions

Algorithms for graphs on surfaces. In Chapter 4, we saw that topological ideas and al-
gorithms can be crucial when developing algorithms for graphs embedded on surfaces: our
approximation algorithm for the very combinatorial in nature MULTICUT problem relies
under the hood heavily on topological primitives such as covering spaces and homotopic
shortest paths or cycles. A natural extension of this chapter is to develop exact or approx-
imate algorithms for other algorithmic problems, where geometric and topological ingre-
dients can prove relevant. Here, a great pool of problems comes from problems for which
efficient algorithms are known for planar graphs. While this line of work has been very
active in the past decades, leading to extensive algorithmic techniques for graphs on sur-
faces for problems involving shortest paths [24], flows [29] or cuts [28], there are still many
remaining open problems. For example, there is an nO(g) algorithm to compute an optimal
SPARSEST CUT for graphs embedded on orientable surfaces of genus g [151] (generalizing
the planar algorithm of Park and Philips [150]), but it is open whether the problem is fixed
parameter tractable with respect to the genus. The MAX CUT problem is famously solvable
in polynomial time for planar graphs [87], and this has been generalized for unweighted
surface-embedded graphs in [73], but a general, combinatorial algorithm is still elusive.
Computing the BRANCHWIDTH of a planar graph is solvable in polynomial time [170], but
generalizing the algorithm to any other surface (even the projective plane or the torus) is
still open (see Inkmann [99] for an interesting discussion of the challenges involved). In
Chapter 4, we also developed techniques towards proving lower bounds for problems for
graphs embedded on surfaces, and I am hopeful that our 4-Regular Graph Tiling problem
might be used as a general reduction tool for more problems involving non-planar graphs.

Besides these classical algorithmic problems, it is also striking that many algorithmic
questions specific to decompositions of graphs embedded on surfaces remain very unex-
plored. While our work [D] pretty much settled the exact parameterized complexity of the
SHORTEST CUT GRAPH problem, it is still a tantalizing question whether we can improve
on the O(log2 g)−approximation algorithm of Erickson and Har-Peled [63]. Other types
of decompositions yield equally open questions. For example, a pants decomposition is a
family of closed curves cutting a surface into a family of pairs of pants, i.e., spheres with
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three boundaries. It is unknown whether computing the shortest pants decomposition of a
surface is doable in polynomial time or whether the problem is NP-hard. Strikingly, this
even seems to be the case in the case of the Euclidean plane with boundaries (see Epp-
stein [62]). Similarly, while, as we mentioned in Chapter 7, one can compute efficiently a
canonical system of loops for a surface-embedded graph with good bounds on its length,
the complexity of the problem of computing the shortest one is still unknown (see Erickson
and Whittlesey [64]). A more general question is to investigate the best algorithms for the
very general SHORTEST MAP EMBEDDING problem presented in Chapter 4: while it is
W[1]-hard, it seems plausible that that a fixed parameter tractable approximation scheme
similar to the one we presented for MULTICUT could exist.

Homotopy Height and sweep-outs. The main question that motivated most of the
work presented in Chapter 5 is still open: can we compute the HOMOTOPY HEIGHT of
a planar graph (i.e., any of the presented variants) in polynomial time? An even easier
question also begs to be answered: in Section 5.4, we saw that a variant of the problem is
fixed-parameter tractable when parameterized by the output, but the algorithm is unknown.
Figuring out such an algorithm, even for the small values of the output, is a natural first
step towards progress. A more disguised perspective is the following one: homotopy height
can be perceived as an analogue of path-like width parameters (such as path-width or cut-
width) with more topological structure: at any step of the decomposition, both sides of the
decomposition form topological disks. In the case of tree-like width parameters, such a
strong topological structure is already present for free for branch decompositions, as was
demonstrated by Seymour and Thomas [170], and this was efficiently leveraged in order
to design improved algorithms, see for example the sphere-cut decompositions introduced
in [57]. Could it be that the topological structure of homotopy height makes it the correct
parameter to design parameterized algorithms for specific problems on planar graphs?

As discussed in Chapter 5, one reason to be optimistic that HOMOTOPY HEIGHT may
be solvable in polynomial time is that BRANCHWIDTH is, and they display a similar topo-
logical structure. The polynomial-time algorithm for BRANCHWIDTH on planar graphs
leverages deep results in Robertson-Seymour theory [161], and developing an analogue of
those for linear sweep-outs is a natural direction. Furthermore, our study of HOMOTOPY

HEIGHT was partly motivated by similar Riemannian questions on the existence and the
length of geodesics on spheres, and it turns out that tree-like sweepouts are also relevant
for such questions, see for example Balacheff [8], Guth [84] and Liokumovitch [129]. In
ongoing work with Alfredo Hubard and Francis Lazarus, we leverage the strong structural
theory underlying branchwidth on planar graphs to prove new results on the geometry of
Riemannian 2-spheres and obtain improved bounds on the lengths of their geodesics.

Algorithms and hardness in 3 dimensions. As the attentive reader probably noticed,
none of the key questions mentioned in the introduction of Chapter 6 was actually solved in
that chapter, and for the fundamental problems of UNKNOT RECOGNITION, KNOT EQUIV-
ALENCE or UNKNOTTING NUMBER, the gaps between the computational lower bounds
and upper bounds are still significant and beg to be investigated further. Let us insist again
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that for UNKNOTTING NUMBER, no lower bound is known but the problem is not even
known to be decidable: from that perspective, a key natural step for our hardness reduc-
tions is to strengthen them so that they apply to knots instead of links, thus bridging the
gap between UNLINKING NUMBER and UNKNOTTING NUMBER. While we succeeded to
do so for the problem of finding the optimal number of Reidemeister moves to untangle
an unknot, new techniques seem to be required as our arguments currently rely heavily
on linking numbers. On the side of upper bounds, at the time of writing, it is expected
that the new quasi-polynomial time algorithm for UNKNOT RECOGNITION announced by
Lackenby [123] will pave the way towards a host of new results in algorithmic knot theory.
Yet, as a polynomial-time algorithm still seems out of reach, a natural line of inquiry lies
here again on parameterized algorithms: given a knot diagram of bounded treewidth, can
we detect in polynomial time whether it is an unknot? This question seems to be still open
(see [17] for an algorithm for knot diagrams of treewidth 2), despite the fact that many
knot invariants are fixed parameter tractable when parameterized by the treewidth, such as
the Jones polynomial [130] (which is conjectured to detect the unknot), the HOMFLY-PT
polynomial [22] or some quantum knot invariants [131]. A fascinating open question is
whether stronger invariants of homological nature, such as Khovanov Homology [106] or
Knot Floer Homology [148, 156] can also be computed in polynomial time for knot dia-
grams of bounded treewidth– this would be particularly interesting since those are known
to detect the unknot [113] (see Bar-Natan [9] for a proposed approach).

Finally, it is also worthwhile to work the other way around and try to identify simple
3-dimensional problems for which we can design (somewhat) efficient algorithms. Colin
de Verdière and Parsa [49, 50] launched the investigation of the complexity of deciding
whether a (possibly non-simple) closed curve on the boundary of a 3-manifold is con-
tractible, providing an exponential-time algorithm on it. In very recent work with Cham-
bers, Lazarus and Parsa [O], we improved on their algorithm, showing that the problem
is in NP, and more strikingly showing that the problem is fixed parameter tractable when
parameterized by the underlying 3-manifold: in other terms, after a fixed exponential-time
preprocessing depending only on the 3-manifold M one can solve any number of con-
tractibility tests for a curve on the boundary of the manifold in polynomial time. The next
steps are to devise a more general free homotopy test under the same conditions and run-
ning times, and to tackle the case of a curve not on the boundary of the manifold (although
we expect that more general problem to be much more difficult).
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