
MPRI Course 2-38-1: Algorithms and Combinatorics for
Geometric Graphs
Exercise Sheet 1

This exercise sheet is to be returned on October 22nd, either via email to arnaud.demesmay@
u-pem.fr, or manually at the end of Vincent Pilaud’s lecture. The language can be either
English or French. This sheet is optional, and will provide bonus points to the final exam. The
harder questions are denoted by (*). Don’t hesitate to ask me questions.

1 Exercise 1

1. A simple bipartite cellularly embedded planar graph is bibipartite if its dual graph is
simple and also bipartite. Give a complete list of all bibipartite planar graphs and prove
that it is complete. Hint: it is non-empty!.

2. Let G be a simple planar graph, and suppose we arbitrarily color each edge of G either
blue or red. Prove that for any embedding of G in the plane, there exists a vertex around
which the incident red edges are consecutive.

3. Find universal constants α, β and γ (not depending on n or g) such that the following
holds: For all integers n and g such that n ≥ γg, every simple n-vertex graph embedded
on a surface of genus g has an independent set1 of size n/α, in which every vertex has
degree at most β.

4. Describe an algorithm to find such an independent set in O(n) time.

2 Exercise 2

A cycle C on a graph G is nonseparating if G \ C is connected.

1. Prove that any n-vertex triangulation of an orientable surface S of positive genus contains
a non-separating cycle C of length at most 2

√
n. Hint: cut S along C, yielding two copies

C1 and C2 of C on the boundary. How many independent paths are there from C1 to C2

and how long are they?

2. Deduce that any n-vertex graph on an orientable surface of genus g has a 2/3-separator
S of size O(g

√
n), and such that each component of G \ S is planar.

1An independent set in a graph G is a subset of the vertices of G, no two of which are connected by an edge
in G.
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3 Exercise 3

Let G be a planar graph, and let G1 and G2 be two isomorphic2 straight-line embeddings of
G, where each face, including the outer face, is a triangle. A morphing step between G1 and
G2 is a straight-line continuous transformation of one into the other, such that the graph stays
planar at all times: for each vertex v of G, we denote by S(v) the segment connecting v1, the
embedding of v in G1 to v2, the embedding of v in G2, and we slide v from v1 to v2 at uniform
speed along this segment. At a time t ∈ [1, 2], we denote by vt the position of v, and for any
edge (uv) in E, we connect vt to ut with a straight segment. This defines a family of drawings
(Gt)t∈[1,2], and this is a morphing step if all these drawings are planar embeddings. A morphing
from G1 to G2 is a sequence of morphing steps G1 → G′ → G(2) . . . → G(k) = G2, where
the graphs G(i) are all straight-line embeddings of G. The integer k is the complexity of the
morphing.

1. Provide an example of a planar graph G and two straight-line embeddings (not necessarily
triangulated) that are not connected by a single morphing step.

The rest of the exercise aims at proving that for any two straight-line embeddings G1 and
G2 with the above conditions, there always exists a morphing of finite complexity between G1

and G2. The proof is by induction.

2. Prove the base case of induction for n = 4.

The visibility kernel of a polygon is the set of points inside or on the polygon that can be “seen”
from any vertex of the polygon, i.e., the set of points p such that for any vertex v of the polygon
the segment pv does not cross the polygon.

3. Prove that for any polygon with at most 5 vertices, one of the vertices is contained in its
visibility kernel.

The link L(v) of a vertex v of G1 or G2 is the polygon defined by the neighbors of v.

4. Prove that there exists a vertex v of G so that both in G1 and in G2, the link L(v) contains
a vertex u that is in the visibility kernel of L(v). (Note that u might be different in G1

and G2.

We first assume that there are no edges in G connecting non-adjacent vertices of L(v).

5. (*) Prove that there exists a straight-line embedding G′ of G \ v so that L(v) is convex.

6. What is the visibility kernel of L(v) in G′? Assuming the induction hypothesis (every two
straight-line triangulations with n− 1 vertices can be morphed one into the other), prove
that one can morph G1 into G2. Hint: contract an edge, and use the induction to morph
into G′.

We now remove the additional assumption.

7. (*) Prove the induction step in the general case. Hint: without the assumption, there is
no hope of finding a straight-line embedding where L(v) is convex, but we can still find an
embedding G′ where all the vertices of L(v) except the non-adjacent ones which are joined
by an edge of G are in the visibility kernel of L(v).

2This means here that G1 and G2 have the same outer face and the same combinatorics as an embedded graph:
same set of facial walks when turning clockwise.
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