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ABSTRACT

Segmentation and tracking of tagged MR images is a criti-

cal component of in vivo understanding for the heart dynam-

ics. In this paper, we propose a novel approach which uses

multi-dimensional features and casts the left ventricle (LV)

extraction problem as a maximum posteriori estimation pro-

cess in both the feature and the shape spaces. Exact inte-

gration of multi-dimensional boundary and regional statistics

is achieved through a global formulation. Prior is enforced

through a point-distribution model, where distances between

landmark positions are learned and enforced during the seg-

mentation process. The use of divergence theorem leads to an

elegant pairwise formulation where image support and prior

knowledge are jointly encoded within a pairwise MRF and

the segmentation is achieved efficiently by employing MRF

inference algorithms. Promising results on numerous exam-

ples demonstrate the potentials of our method.

Index Terms— Tagged MR images, Segmentation,

Shape Prior, Markov Random Fields, Divergence Theorem

1. INTRODUCTION

MR-tagging is a modality offering important potentials on the

diagnosis of cardio-vascular diseases. Segmentation, tracking

and in particular motion strain are important features which

can be determined from image sequences and are valuable in-

dicators to assess the heart’s state. On the other hand, these

images are often of low resolution and the extraction of the

myocardial boundaries is far from being trivial. This has

been addressed through the integration of feature extraction

and segmentation methods (e.g. [1, 2]).

Deformable contours/surfaces and templates [3] are

among the most commonly used methods for tagged MR

image segmentation. The use of “homogeneity” hypothesis

in an appropriate feature space is often considered to separate

the left ventricle (LV) from the myocardium, the right ventri-

cle and the remaining anatomical features. Gabor features [4]

using various number of scales and orientations, wavelets [5],

and co-occurrence matrices are examples of feature spaces.

These features are fed to a segmentation algorithm that of-

ten combines them with prior knowledge. The use of active

contours and deformable surfaces [6, 3] are among the most

popular methods to perform knowledge-based segmentation.

The segmentation is solved by seeking a deformation of an

initial contour in the image plane towards optimal “feature”

separation of the myocardium from the left ventricle while

being constrained to be part of a learned manifold. The use

of boundary features is quite problematic due to the texture

nature of images imposed from the tagging, unless proper

edge detectors are defined. Such an approach exhibits two

important limitations. The first is inherited from the contin-

uous formulation of the active contour/surface nature which

makes the recovery of the optimal solution an intractable task.

The second is with the construction of the prior manifold that

often requires a significant number of samples due to the

dimensionality of the representation.

In this paper, we propose a novel approach to address the

above mentioned limitations. Firstly, we propose a graphical

representation [7] to model the LV shape, where the mani-

fold is constructed by accumulating local constraints on the

relative positions of points. Secondly, based on this repre-

sentation, we develop a global approach to jointly encode re-

gional statistics, boundary support, as well as prior knowledge

on the shape within a probabilistic framework, towards opti-

mal separation between the LV and the remaining anatomical

structures. The proposed exact factorization of the regional

data term leads to an elegant pairwise MRF segmentation for-

mulation which jointly models both the shape prior and the

data likelihood. Finally, by employing Gabor features as the

cues from the image support and efficient MRF inference al-

gorithms such as Fast-PD [8], our method has been demon-

strated by experiments to be able to achieve highly accurate

performance with a very fast computational speed.

The reminder of this paper is organized as follows: In

section 2 we discuss the mathematical foundations of our

method. Its discrete variant and the corresponding MRF for-

mulation are presented in section 3. Experimental results are

part of section 4, while discussion concludes the paper in

section 5.



2. PROBABILISTIC FRAMEWORK

One of the most interesting structures in the cardiac image

analysis is the myocardium structure, which is the muscle be-

tween the endocardium and the epicardium. The extraction

of this structure can lead to the estimation of blood volume,

the wall strain motion, etc., which are important diagnostic

measurements. This is particularly the case when referring

to tagged MR images where a pattern has been introduced in

the acquisition, making the segmentation task more complex

due to the resolution, texture and noise. In such a context,

we aim to partition the image domain Ω into three segments

(Fig. 1(a)): (1) the endocardium Ωe; (2) the myocardium

Ωm = Ωo − Ωe; (3) the background Ωb = Ω − Ωo, where

Ωo = Ωe∪Ωm. Obviously, Ωe, Ωm and Ωb should satisfy the

following conditions: (i) Each of them is connected; (ii) They

are mutually disjointed; (iii) Their union is the whole image

domain. Thus, for the joint variable Ω = (Ωe,Ωm,Ωb), we

define the space dom(Ω) as the set of all the possible com-

binations of Ωe, Ωm and Ωb that satisfy the above three con-

straints.

Knowledge-based image segmentation aims to partition

the image domain by searching for a compromise between

data-attraction and shape-fitness with the prior model, and can

be formulated as a maximization of the posterior probability

(MAP) of Ω over the space dom(Ω):

Ωopt = arg max
Ω∈dom(Ω)

p(Ω|I) (1)

where:

p(Ω|I) =
p(Ω, I)

p(I)
∝ p(Ω, I) = p(I|Ω) · p(Ω) (2)

Here, p(I|Ω) encodes the data likelihood of the image I given

the segmentation Ω, and p(Ω) encodes the prior knowledge

on the segmentation. The data term is seeking for discon-

tinuities while optimally separating the statistical properties

of the three populations. Complementary to that, the shape

prior term constrains the segmentation solution to be part of

a learned manifold and imposes smoothness on the extracted

boundary.

2.1. Data Likelihood

We combine the region-based and boundary-based data like-

lihoods within the proposed formulation towards a better per-

formance [9]. To this end, we model the likelihood p(I|Ω) as

follows:

p(I|Ω) =
1

Z
· exp{−Edata(I,Ω)} (3)

where I denotes an image of features (such as intensity values,

Gabor features, Wavelet coefficients, etc.), Z is a normalizing

constant, and the energy function Edata(I,Ω) is defined as:

Edata(I,Ω) = λ1E
(1)
data(I,Ω) + λ2E

(2)
data(I,Ω) (4)
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Fig. 1. (a) Tagged Cardiac MRI with manual segmentation.

(b) Distribution of the control points in the shape model.

where λ1 > 0 and λ2 > 0 are two weight coefficients, E
(1)
data

denotes the regional term which encodes the statistical prop-

erties of the three populations, andE
(2)
data denotes the boundary

term which encodes discontinuities along the boundaries. The
two data terms are defined as follows:

E
(1)
data

(I,Ω) =

∫∫

Ωe

− log pe(I(x, y)) +

∫∫

Ωm

− log pm(I(x, y))

+

∫∫

Ωb

− log pb(I(x, y))

=

∫∫

Ωe

log
pm(I(x, y))

pe(I(x, y))
+

∫∫

Ωe∪Ωm

log
pb(I(x, y))

pm(I(x, y))

+

∫∫

Ωe∪Ωm∪Ωb

− log pb(I(x, y))

=

∫∫

Ωe

log
pm(I(x, y))

pe(I(x, y))
+

∫∫

Ωo

log
pb(I(x, y))

pm(I(x, y))

+ constant

(5)

and

E
(2)
data

(I,Ω) =

∮

∂Ωe

− log p
(1)
d

(I(x, y))+

∮

∂Ωo

− log p
(2)
d

(I(x, y)) (6)

where I(x, y) denotes the feature vector at location (x, y),
∂Ωe and ∂Ωo denote the boundaries which correspond to the

endocardium and the epicardium respectively, p
(1)
d and p

(2)
d

denote the corresponding discontinuity probabilities, pe, pm

and pb denote the distributions of the features for the regions

of the endocardium, the myocardium and the background re-

spectively. We can assume that the discontinuity probability

is independent of the transition between classes, but such an

assumption can be amended as well by employing class spe-

cific transition probabilities.

To deal with the tagged MR images, we use Gabor fea-

tures [4] as the image features instead of the intensities, due to

their abilities to capture micro and macro-texture in different

scales and orientations. Thus each pixel has a multi-resolution

representation given a number of scales and a number of ori-

entations. Regarding the boundary probability, we can con-

sider the transition map between texture classes as suggested

in [9].
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Fig. 2. Image of likelihoods using Gabor features.

Given the feature space, Gaussian Mixture Models (GMMs)

are used to model each of the distributions of the three regions

of interest. Their distributions can be learned from training

data using standard methods such as Expectation Maximiza-

tion (EM) with Bayesian Information Criterion (BIC) [10]:

pr(I) =

Kr
∑

k=1

πk
rN (I|µk

r ,Σ
k
r ), r ∈ {e,m, b} (7)

where for segment r, Kr denotes the number of Gaussian

components, N (I|µk
r ,Σ

k
r ) denotes a component k with mean

µ
k
r and covariance matrix Σk

r , and πk
r denotes the mixing co-

efficient of component k. Fig. 2 shows the results on a test im-

age, where we plot the ground truth boundaries correspond-

ing to the endocardium (in Fig. 2(a)) and the epicardium (in

Fig. 2(b)) to show the quality of the likelihoods.

Given the visual support, the next step consists of model-

ing prior knowledge with respect to the geometric manifold

of allowable shape variations.

2.2. Point-distribution Shape Model

One key problem of knowledge-based segmentation is how

to encode prior information using a compact representation

which can be easily adopted towards efficient segmentation.

We use a point-distribution model due to its advantages such

as: (1) the ability to describe both the generality and the vari-

ability of the object of interest; (2) be easily encoded in an

MRF model which can fuse data term and prior term in a prin-

cipled way and lead to an efficient optimization solution.

The myocardium structure in a 2D image is bounded by

two boundaries C = (Ce, Co), where Ce = ∂Ωe and Co =
∂ΩO correspond to the endocardium and the epicardium re-

spectively.

We model a boundary using a number (16 for Ce and 24

for Co) of control points which are located on the boundary

(Fig. 1(b)). Let us take Ce for example. Ve = {1, 2, . . . , N}
denotes the index set of the control points. The control points

are endowed 2D coordinates ui = (xi, yi) (i ∈ Ve), and

are indexed counter-clockwise along the boundary such that

point i and j are neighbors if (i, j) ∈ EC
e = {(i, j)|i, j ∈

Ve and j%N = (i+ 1)%N}, where “%” denotes the modulo

operator. Without loss of generality, we use linear interpo-

lation based on the position of the control points to model

the boundary and obtain the boundary model Ce(ue) which

consists of the line segments between these neighbor control

points, i.e., Ce(ue) = {
→
uiuj |(i, j) ∈ EC

e }, where ue =
(ui)i∈Ve

. Similarly, we can define the counterparts Vo, EC
o ,

ue and Co(uo) for Co.

We aim to use the statistics on the Euclidean distances

dij = ‖ui − uj‖ between a pair (i, j) of control points to

model the shape [7]. Due to the movement of heart, the

scale/length of the boundaries can vary significantly and

therefore it has to be taken into account during modeling. On

the other hand, the distance between the epicardium and the

endocardium relative position boundaries is less important.

In order to characterize the shape well, we propose to use two

different models to encode these two types of priors.

Since the variation of the boundaries is scale-related, like

[7], we use the normalized distance d̂ij to achieve a similarity-

invariant shape model:

d̂ij =
dij

1
Nr

∑

(i,j)∈Er
dij

(8)

where Er = {(i, j)|i, j ∈ Vr and i 6= j} denotes the set (all

the combinations) of pairs of points for the boundary Cr (r ∈
{e, o}), and Nr is the cardinal of Er, i.e., the number of pairs

of points. By aligning the boundaries in the given M training

data, we learn a Gaussian Mixture to model the distribution

pij ((i, j) ∈ Ee ∪ Eo) of the normalized distance between

each pair of points.

A similar method is adopted for the interactions between

epicardium and endocardium without scale being taken into

account. The statistics of this interaction are learned directly

on the distance between a point i from the boundary Ce and

a point j from the boundary Co to model the geometry con-

straints between the two boundaries. Importantly, such prior

can avoid the intersection of the two boundaries. We also

use Gaussian Mixtures to model the distributions pij ((i, j) ∈
Eint = Ve × Vo) of the distances.

The prior probability on the shape configuration can be

defined as follows:

p(Ω(u)) = p(u) =
1

Z ′
·

∏

(i,j)∈Ee∪Eo

pij(d̂ij)·
∏

(i,j)∈Eint

pij(dij)

(9)

where Z ′ is a normalizing constant, and Ω(u) denotes the

mapping from the positions u = ue ∪ uo of all the control

points to the configuration of the three segments. Within such

a framework, we can further integrate the smoothness prior

using higher-order interaction.



3. MARKOV RANDOM FIELD FORMULATION

In this section, we reformulate the above probabilistic frame-

work within a pairwise MRF, so that we can employ the re-

cently developed MRF inference algorithms such as Fast-PD

[8] and TRW-S [11] to achieve a good optimum with a very

fast speed.

To this end, we use a node to model a control point and

an edge to model the interaction between a pair of points. Let

V = Ve ∪ Vo denote the set of nodes, and E = Ee ∪ Eo ∪ Eint

the set of edges. Each node i (i ∈ V) is associated with a

latent variable Ui which corresponds to the position config-

uration ui of the corresponding control point. Let Ui denote

the candidate space for the configuration ui of node i. With

such an MRF, the segmentation (Eq. 1) can be reformulated

as the inference of the configuration u = (ui)i∈V of all the

nodes over the candidate space U =
∏

i∈V Ui:

uopt = arg min
u∈U

E(u) (10)

where the energyE(u) is defined as the negative logarithm of

the posterior probability p(Ω(u)|I) (Eq. 2) minus a constant:

E(u) = − log p(I|Ω(u)) − log p(Ω(u)) (11)

3.1. Exact Data Likelihood Factorization

While the prior term − log p(Ω(u)) (Eq. 9) and the bound-

ary data term E
(2)
data(I,Ω(u)) (Eq. 6) can be easily factorized

within a pairwise MRF, the factorization of the regional data

likelihood E
(1)
data(I,Ω(u)) (Eq. 5) is much more difficult since

it involves integrals on the regions which are delimited by

the contour depending on the positions of all the control

points. An approximation of this data term based on Voronoi-

decomposition was proposed in [7]. However, we show that

this data term can be exactly factorized within a pairwise

MRF, which leads to significantly better results (see com-

parison in section 4). We present below the proposed exact

factorization of the regional likelihood by using Divergence

Theorem.

The 2D-divergence theorem (in 2D, it is also known as

Green’s Theorem) states the equivalence between a line inte-

gral around a simple closed curve C and a double integral over

the plane region D bounded by C:
∫∫

D

divFdxdy =

∮

C

F·
→
n ds (12)

where F = (Fx, Fy), divF = ∂Fx

∂x
+

∂Fy

∂y
and

→
n= idy

ds
− jdx

ds

denotes the outward-pointing unit normal to C. Let us choose

Fy = 0, then:
∫∫

D

∂Fx

∂x
dxdy =

∮

C

Fxdy (13)

To associate the divergence theorem with the computation

of E
(1)
data, let

∂G(1)(x,y)
∂x

= log pm(I(x,y))
pe(I(x,y)) , and

∂G(2)(x,y)
∂x

=

log pb(I(x,y))
pm(I(x,y)) . By assuming the probabilities are all equal

outside the image, we obtain:

{

G(1)(x, y) =
∫ x

0
log pm(I(t,y))

pe(I(t,y)) dt

G(2)(x, y) =
∫ x

0
log pb(I(t,y))

pm(I(t,y))dt
(14)

In accordance with the divergence theorem (Eq. 12), we trans-

fer the regional data term into integrals of G(1) and G(2) on

the corresponding boundaries, and then factorize it into the

sum of integrals on the directional segments that compose the

boundaries:

E
(1)
data(I,Ω(u)) =

∮

Ce(u)

G(1)(x, y)dy +

∮

Co(u)

G(2)(x, y)dy

=
∑

(i,j)∈EC
e

∫

→

uiuj

G(1)dy +
∑

(i,j)∈EC
o

∫

→

uiuj

G(2)dy

(15)

Furthermore, the computation of this data term can be

done very efficiently. We present the detail of the numeric

computation in Appendix.

3.2. Factorized Energy

Following the above derivation, we factorize the energy ex-

actly within a pairwise MRF. The energy can be written as:

E(u) =
∑

(i,j)∈EC
e

ψ
(1)
ij (ui, uj) +

∑

(i,j)∈EC
o

ψ
(2)
ij (ui, uj)

+
∑

(i,j)∈Ee∪Eo

ψ
(3)
ij (ui, uj) +

∑

(i,j)∈Eint

ψ
(4)
ij (ui, uj)

(16)

where ψ(1) and ψ(2) encode the data likelihood, while ψ(3)

and ψ(4) encode the shape prior. They are defined as follows:


























ψ
(1)
ij (ui, uj) = λ′1 ·

∫

→

uiuj
G(1)(x, y)dy − λ′2 ·

∫

→

uiuj
log p

(1)
d

(I(x, y))ds

ψ
(2)
ij (ui, uj) = λ′1 ·

∫

→

uiuj
G(2)(x, y)dy − λ′2 ·

∫

→

uiuj
log p

(2)
d

(I(x, y))ds

ψ
(3)
ij (ui, uj) = − log pij(d̂ij)

ψ
(4)
ij (ui, uj) = − log pij(dij)

(17)

where λ′1 > 0 and λ′2 > 0 are two weight coefficients.

Given an initial configuration of the myocardium, for each

control point i, we sample uniformly in the neighborhood

centered at its position to get the candidate set Ui [12]. Given

such a label space, the optimal solution is achieved through

the MRF inference. Then we consider it as a new start po-

sition of the myocardium and estimate the current scales of

the boundaries. This step is repeated until there is no more

changes on the position configuration of the control points.

4. EXPERIMENTAL RESULTS

We validate our method on a dataset which consists of 60

tagged cardiac MR images. Standard of reference was



Fig. 3. Segmentation results on different test images using the same initialization. The contours in red represent the obtained

boundaries that partition the image into three segments.

(a) (b) (c)

Fig. 4. Segmentation results with different initializations.

The contours in red represent the obtained boundaries, while

the contours in green represent the initialization of the shape

model.

available, consisting of annotations of epicardium and en-

docardium boundaries provided by experts. These MR im-

ages were acquired by a 3-T Siemens MR imaging system

equipped with a high-performance gradient system (maxi-

mum amplitude: 40 mT/m; minimum rise: slew rate 200

mT.m−1/s) using a 32-channel phased-array cardiac coil.

Images were acquired in the short axis plane at basal, mild

and apical ventricular levels. An ECG-triggered segmented

k-space fast gradient echo sequence with spatial modulation

of magnetization was performed with the following parame-

ters: grid tag spacing: 8 mm; echo time=2.54 ms; repetition

time=48 ms; number of frames: 20-25 (depending of heart

rate); pixel size:1.8 × 1.4 × 7 mm; bandwidth 446 Hz/pixel;

flip angle: 10o; acquisition time: 19 seconds (during one

breathhold).

We performed a leave-one-out cross validation on the

whole dataset. We employed Fast-PD algorithm [8] to per-

form MAP-MRF inference, which leads to a computational

time of 0.781 second for segmenting an image on the av-

erage. For all the images in the dataset, we used the same

parameters and the same initialization (see the two green

circles in Fig. 4(a)). Satisfactory segmentation results on

six test images from different sequences of different patients

are presented in Fig. 3, which shows that our shape model

can represent well the contraction of myocardium during

the cardiac cycle and can deal with different scales of the

Our method Method in [7] ASM
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(c) Myocardial Ωm

Fig. 5. Boxplots of the Dice coefficients. Each sub-figure

presents three boxes corresponding to the Dice coefficients

on the segmentation of a region of interest, obtained by our

method, the one in [7] and standard ASM method, respec-

tively. In each box, the central mark in red is the median, the

edges of the box are the 25th and 75th percentiles.

myocardium boundaries. On the other hand, Fig. 4 shows

the results obtained by giving different initializations with

respect to the location and scale on the same test image. The

consistent results demonstrate the robustness of our method

with respect to the initialization.

For both quantitative evaluation and comparison pur-

poses, we present in Fig. 5 the distributions of the Dice

coefficients of the segmentation results for Ωe (Fig. 5(a)),

Ωo (Fig. 5(b)) and Ωm (Fig. 5(c)). Each sub-figure of Fig. 5

contains three boxes which present the Dice coefficients ob-

tained by our method, the method in [7] and standard ASM

method, respectively. Note that a higher Dice coefficient

implies a better segmentation performance. Therefore, the

obtained Dice coefficients demonstrate that our segmenta-

tion approach performs signficantly better than the other two

methods. In particular, the better performance with respect to

[7] demonstrates the power of the exact factorization of the

regional data likelihood in the MRF. To conclude, our method

performed well consistently throughout the experiments.

5. CONCLUSION

In this paper, we have proposed a novel approach for tagged

cardiac MR image segmentation. The pairwise MRF which

combines both the deformable shape priors and the exact inte-



gration of multi-dimensional regional/boundary statistics, and

together with the Gabor features, leads to promising results

that clearly outperform the prior art.

In the near future, we will deal with 3D tagged MR im-

age segmentation and tracking with fusion of temporal prior,

which is the most natural extension. Furthermore, we will

extend this framework to implicitly account for scale varia-

tions. Last, but not least, the integration of visual support with

anatomical landmark extraction to improve segmentation is a

natural future direction of our research.

Appendix: Efficient regional data term computation

We present the numeric computation of regional data term

E
(1)
data(I,Ω(u)) (Eq. 15). Let us consider the computation

of the integral of G(1)(x, y) along a segment
→
uaub with the

extremities ua = (xa, ya) and ub = (xb, yb). We first split

the line segment into sub-pixel fragments. The extremi-

ties of the sub-pixel fragments are interpolated on
→
uaub by

computing its intersections with the pixel grid, so that each

fragment lies on a unit pixel square. Let ui = (xi, yi) and

ui+1 = (xi+1, yi+1) be the extremities of a sub-pixel frag-

ment
→

uiui+1⊂
→
uaub, we have

k ≤ xi, xi+1 ≤ k + 1

l ≤ yi, yi+1 ≤ l + 1
(18)

k and l are integers.

Using the nearest neighbor interpolation to the likelihood

images, the function f(x, y) = ∂G(1)(x,y)
∂x

= log pm(I(x,y))
pe(I(x,y))

is constant within each unit square region corresponding to

a pixel. Thus G(1) is linear within each pixel and it can be

rewritten as:

G(1)(x, y) =

⌊x⌋−1
∑

u=0

f(u, ⌊y⌋) + (x− ⌊x⌋)f(⌊x⌋ , ⌊y⌋) (19)

And then we can easily calculate the integral over the sub-

pixel fragment
→

uiui+1.
∫

→

uiui+1

G(1)(x(y), y)dy = (yi+1 − yi)G
(1)(xci

, yci
) (20)

while xci
= xi+xi+1

2 , yci
= yi+yi+1

2 are the positions of the

center point between the two extremities ui and ui+1.

We do the same computation process for the line integral

of function G(2). Furthermore, we build two images to store

the functions G(1) and G(2) after obtaining the likelihood im-

ages log pm(I(x,y))
pe(I(x,y)) and log pb(I(x,y))

pm(I(x,y)) . In such a way, the data

term energy can be computed efficiently.
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