
Viewpoint Invariant 3D Landmark Model Inference from Monocular 2D Images

Using Higher-Order Priors

Chaohui Wang1,2, Yun Zeng3, Loic Simon1, Ioannis Kakadiaris4, Dimitris Samaras3, Nikos Paragios1,2

1Center for Visual Computing, Ecole Centrale Paris, Châtenay-Malabry, France
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Abstract

In this paper, we propose a novel one-shot optimiza-

tion approach to simultaneously determine both the opti-

mal 3D landmark model and the corresponding 2D projec-

tions without explicit estimation of the camera viewpoint,

which is also able to deal with misdetections as well as par-

tial occlusions. To this end, a 3D shape manifold is built

upon fourth-order interactions of landmarks from a train-

ing set where pose-invariant statistics are obtained in this

space. The 3D-2D consistency is also encoded in such high-

order interactions, which eliminate the necessity of view-

point estimation. Furthermore, the modeling of visibility

improves further the performance of the method by han-

dling missing correspondences and occlusions. The infer-

ence is addressed through a MAP formulation which is nat-

urally transformed into a higher-order MRF optimization

problem and is solved using a dual-decomposition-based

method. Promising results on standard face benchmarks

demonstrate the potential of our approach.

1. Introduction

3D model inference from 2D images is one of the most

challenging problems in computer vision. This is due to the

fact that both camera estimation and 3D model optimiza-

tion have to be addressed within a single framework. In the

most general case, the camera parameters are unknown, the

3D model itself usually inherits high complexity (high de-

grees of freedom even for non-articulated objects), while at

the same time image features can be ambiguous, occluded

and noisy. There are numerous applications involving the

above scenario, such as traffic monitoring with 3D model

based tracking [18], hand tracking [9], facial analysis [4]

and medical imaging [17]. Such an inference process usu-

ally involves three steps: the first aims to determine a com-

pact representation of the 3D model, the second to associate

such a representation with the 2D image observation, and

the last to recover the optimal parameters of the model.

Modeling variations of the 3D model requires a statisti-

cal parametric representation of the object of interest. Such

representations in most cases are pose-variant, i.e., all train-

ing examples are registered to a same referential frame

where statistics are then built from the training data. One

can cite active shape [8] and active appearance [7] models

(ASMs and AAMs), which offer a good compromise be-

tween computational complexity and model expressiveness

potential. Other representations adopt more complex sta-

tistical models that can vary from Mixtures of Gaussians

(MoG) to non-parametric density functions [3]. In such

a context, one has to address the curse of dimensionality

(the dimensionality of the manifold to be learned versus the

number of training samples).

Once the representation has been built, the next steps

consist of defining an image likelihood and combining it

with a 3D model prior towards optimal estimation of the 3D

model. Since the image likelihood is related to both the 3D

model configuration and the camera parameters, the model

estimation is often achieved through an alternating search

or EM-style approach [14]. Given an initial 3D-2D corre-

spondence map, the camera parameters are first estimated

and then used to define the fitting error between the model

and the image. This error is to be optimized by gradient-

driven methods and iterative search processes so as to esti-

mate both the correspondences and the optimal model con-

figuration. Despite the promising performance of such a

scheme, the fact that explicit estimation of the camera view-

point parameters is required in the process is a major draw-

back, since coordinate-descent approaches are prone to be

trapped in local minima and provide no guarantee on the

optimality of the estimations.

Graphical models have become a dominant approach in

computer vision and have been employed to address a num-



ber of vision problems (e.g., [5, 19, 20]), which is mainly

due to their strength in terms of the quality of the optimum.

The use of higher-order models has raised more and more

attention (e.g., [15, 12, 22]), along with the development of

efficient optimization methods. Higher-order interactions

can naturally introduce invariance to certain class of trans-

formations like translation/rotation/scale, while at the same

time they can deal with vision tasks of important complex-

ity. The objective of our paper is to take benefit of their

strength and propose a unified formulation to estimate 3D

models from 2D images without alternating search.

The main contribution of this paper is a probabilistic in-

ference approach that does not require explicit viewpoint

estimation, while being able to jointly optimize the pose pa-

rameters and the corresponding landmarks selection as well

as explicitly handling missing correspondences and occlu-

sions via a visibility modeling. To this end, we formulate

the problem as a maximum a posteriori (MAP) estimation

task which involves 3D pose parameters, associated 2D cor-

respondences and visibility states. We derive a posterior

probability as the product of an image likelihood, a visibil-

ity prior, a 3D geometric prior and a projection consistency

prior constraining the 2D and 3D configurations. In order

to circumvent the need of viewpoint estimation, we adopt a

high-order decomposition of the 3D model that enables to

determine the projection error between a given 3D config-

uration and the corresponding 2D landmark positions in a

distributed manner. Furthermore, an explicit visibility mod-

eling is also introduced to cope with misdetections and out-

liers. The MAP inference is then naturally transformed into

a higher-order MRF optimization problem and all the latent

variables are inferred using a one-shot optimization over a

factor graph [3] through dual-decomposition [2, 16, 20, 22].

The proposed formulation has been validated in the context

of 3D facial pose estimation from 2D images. Promising re-

sults on standard face benchmarks demonstrate the potential

of our method.

The remainder of this paper is organized as follows. In

Sec. 2, we present the probabilistic formulation for the joint

estimation of the 3D pose, its visibility states and the 2D

correspondences. The individual likelihoods with respect to

geometry, 3D-to-2D consistency, visibility, and image sup-

port are presented in Sec. 3 while the corresponding higher-

order graphical model is discussed in Sec. 4. Experimental

results compose Sec. 5, while discussion and future work

conclude the paper in Sec. 6.

2. Probabilistic 3D-2D Inference Framework

We consider a point-distribution shape model composed

of a set V of landmarks located on the surface of the 3D

object of interest. Let latent variable Xi = (X
(3)
i ,X

(2)
i )

denote the 3D and 2D positions of a landmark i (i ∈ V).

More specifically, X
(3)
i and X

(2)
i , 3-dimensional and 2-

dimensional vectors respectively, denote the 3D position of

landmark i in the model space and the 2D position in the

observed image I. Each variable Xi takes a value xi from

its possible configuration set Xi = X
(3)
i ×X

(2)
i , where X

(3)
i

and X
(2)
i denote the 3D and 2D position candidate sets, re-

spectively. Due to the fact that landmarks may be invisible,

we also introduce a visibility variable Oi for landmark i
[19]. Oi = 1 when the landmark is visible in the 2D image

space, and Oi = 0 otherwise.

Given the observed image I, the estimation of the 3D-2D

positions and the visibility of the landmarks is formulated

as a maximization of the posterior probability of (X,O) =
((Xi)i∈V , (Oi)i∈V) over their domains X =

∏

i∈V Xi and

O = {0, 1}|V|:

(x,o)opt = arg max
(x,o)∈X×O

p(x,o|I) (1)

The posterior probability p(x,o|I) is:

p(x,o|I) = p(x,o, I)/p(I)

∝ p(x,o, I)

= p(I|x,o) · p(x,o)

= p(I|x(2),x(3),o) · p(x(2)|x(3),o) · p(o|x(3)) · p(x(3))

= p(I|x(2),o)
︸ ︷︷ ︸

Image Likelihood

· p(x(2)|x(3),o)
︸ ︷︷ ︸

Projection Prior

· p(o)
︸︷︷︸

Visibility Prior

· p(x(3))
︸ ︷︷ ︸

3D Model Prior

(2)

where p(I|x(2),o) encodes the likelihood of the observed

image given the 2D position configurations x
(2) and the vis-

ibility states o of the landmarks, p(x(2)|x(3),o) encodes the

projection prior from the 3D configuration x
(3) to the 2D

configuration of the landmarks, p(o) denotes the visibility

prior on the landmarks, and p(x(3)) denotes the prior on the

3D configurations of the landmarks.

Note that this probabilistic formulation can be directly

applied to the estimation of 3D (or 2D) configuration of the

landmarks given 2D (or 3D) configuration, simply by in-

stantiating the variables whose configurations are known.

3. Definitions of the Probability Terms

In this section, we define all the probability terms which

are involved in the posterior probability p(x,o|I) (Eq. 2).

3.1. Image Likelihood

The image likelihood p(I|x(2),o) measures the occur-

rence probability of the observed image I, given the 2D po-

sition configurations x
(2) and the visibility states o of the

landmarks. If we assume, without loss of generality, that

the landmarks are independent in terms of appearance, then

we can define p(I|x(2),o) as follows:

p(I|x(2),o) ∝
∏

i∈V

p(I|x
(2)
i , oi) (3)



Regarding p(I|x
(2)
i , oi), there are two cases:

1. When Oi = 1, the landmark’s position is informative

and p(I|x
(2)
i , oi) denotes the likelihood of the observed

image given that landmark i is located at position x
(2)
i ,

which can be defined using the output of a classifier

such as Randomized Forest [6].

2. When Oi = 0, the landmark’s position is not informa-

tive and p(I|x
(2)
i , oi) denotes a uniform distribution,

thus we assume that p(I|x
(2)
i , oi) = p̂ (constant).

3.2. Projection Prior

The projection prior p(x(2)|x(3),o) measures the occur-

rence possibility of the 2D positions x
(2) of the landmarks

when the 3D positions x
(3) and the visibility states o are

given, which is modeled using Gibbs distribution:

p(x(2)|x(3),o) ∝ exp{−
f(x,o)

T
} (4)

where T is temperature, and the energy function f(x,o) en-

codes inconsistency between the 3D and 2D configurations

of the landmarks taking the visibility states into account (the

smaller f(x,o) is, the better is the correspondence between

x
(3) and x

(2)).

Without loss of generality, we use the weak-perspective

camera configuration [1] to model the projection from 3D

points to 2D points1. Let us first consider a triplet t ∈ T =
{t|t ⊆ V and |t| = 3} of landmarks that are all visible.

Their 3D-2D positions xt determine at most two projection

mappings P
(s)
xt

(s ∈ {1, 2}) [1, 11] corresponding to two

reflective symmetric camera configurations. Then for any

additional visible point i, we can measure the error ext
(xi)

between its 2D position x
(2)
i and the value obtained by pro-

jecting its 3D position x
(3)
i , i.e.:

ext
(xi) = min

s∈{1,2}

∥
∥
∥P

(s)
xt

(x
(3)
i ) − x

(2)
i

∥
∥
∥ (5)

where ‖·‖ denotes the Euclidean norm, and between the two

feasible projections we consider the most prominent one

with respect to the considered 2D configuration [1]. On the

contrary, if one or more of these four points are invisible,

we set a constant energy Ê as the projection error ext
(xi),

which can be understood as an upper bound of the aver-

age projection error which is allowed between four points.

Therefore, we define the error function ext,ot
(xi, oi) by tak-

ing the visibility states into account as:

ext,ot
(xi, oi) = wt ·

{
ext

(xi) if oj = 1, ∀j ∈ t ∪ {i}

Ê otherwise

(6)

1In the proposed framework, the weak-perspective camera model can

be easily replaced by other camera models such as the perspective model.

where wt is a confidence weight for the error measure ob-

tained under the mapping determined by the positions of

the points in clique t, which will be presented later in

this section. And then, the 3D-2D consistency between a

quadruplet c of landmarks consists of the sum of the errors

which are determined by taking all possible combinations of

triplets within the quadruplet and evaluating the projection

error on the remaining point:

e(xc,oc) =
∑

t⊂c

ext,ot
(xc\t, oc\t) (7)

Finally, we define the energy function f(x,o) as the sum of

e(xc,oc) over all the quadruplet, i.e.:

f(x,o) =
∑

c∈C

e(xc,oc) (8)

where C = {c|c ⊆ V and |c| = 4} denotes the set of all

quadruplets.

Last, we should note that we can further combine other

cues in this projection prior, such as regional texture simi-

larity.

Robust Confidence Weight

Since the projection matrix estimation is unstable when

considering triplets of 3D points that are nearly collinear

[1], we introduce a confidence weight wt to modulate the

error contribution of each triplet of points. For a triangle

∆
x

(3)
t

consisting of a triplet t of points with 3D positions

x
(3)
t

, we define the non-collinear coefficient NC(x
(3)
t

) us-

ing the square root of its area Area(∆
x

(3)
t

) and its perimeter

Perim(∆
x

(3)
t

) as follows:

NC(x
(3)
t

) =
2 × 3

3
4 × Area

1
2 (∆

x
(3)
t

)

Perim(∆
x

(3)
t

)
(9)

We can observe that NC(x
(3)
t

) = 1 for an equilateral trian-

gle and NC(x
(3)
t

) = 0 when the three points are collinear.

Then we learn the confidence weight wt by averaging the

non-collinear coefficients for each triplet t over the training

data:

wt =
1

M

M∑

m=1

NC(x
(3)
t,m) (10)

where M denotes the number of training samples.

Specification of the Projection Error

Regarding the computation of ext
(xi), we use the efficient

method proposed in [1] to compute directly the projection

of a 3D point under the projection determined by a triplet



of corresponding 3D-2D points without calculating the pro-

jection mapping. We refer readers to [1] for more details.

Collinear triplets of points lead to degenerate configura-

tions from which we cannot obtain a solution for the pro-

jection mapping. In this case, the corresponding error term

ext
(xi) in Eq. 5 is not well-defined. To deal with this,

we consider two different scenarios: (i) When we have a

prior knowledge that the 3D positions of a triplet t of points

have to be collinear, we simply ignore the corresponding

error measure by defining ext
(xi) = 0 (this is consistent

with the confidence weight defined in Eq. 10, i.e., wt = 0
leads to zero contribution to f(x)); (ii) Otherwise, we de-

fine ext
(xi) = +∞ if x

(3)
t

are collinear so that the final

solution of x
(3)
t

cannot be exactly collinear. By doing so,

the term ext
(xi) is well-defined for all the cases. For the

sake of clarity, hereafter, we assume that the definition of

ext
(xi) in Eq. 5 implicitly includes the definition in the de-

generate case.

3.3. Visibility Prior

We introduce the visibility variable O to achieve a more

precise modeling of the 3D-2D estimation, due to the fact

that a landmark can be invisible. The notion of “invisibility”

encodes occlusions and self-occlusions in the 3D space, as

well as misdetection due to insufficient image support or

classification failure.

The inference process is performed by considering, for

each landmark i, a number of 2D positions which lead to

the highest probabilities p(I|x
(2)
i ) towards composing the

set of plausible solutions for X
(2)
i , expecting that at least

one candidate is (or close to) the true position. However,

because of erroneous detection or occlusions, it is possible

that all the candidates are far from the ground truth. In such

a context, we define the notion of “visibility” as whether

the true 2D correspondence of the landmark is captured by

the candidate set. More specifically, Oi = 1 means that at

least one candidate in X
(2)
i is close to the ground truth, and

Oi = 0 stands for the opposite case.

The prior probability p(o) is defined as follows:

p(o) =
∏

i∈V

p(oi) (11)

where p(oi) denotes the prior probability of the visibility of

each individual landmark i and is modeled as a Bernoulli

distribution Bern(oi|µi) with parameter µi = Pr(Oi = 1).
In practice, it is usually reasonable to assume the same pa-

rameter µ > 0.5 for all the landmarks [20].

3.4. 3D Model Prior

The training data are used to learn a 3D shape model. No

assumption on registration between surfaces is being made.

However, we assume that correspondences have been deter-

mined for the landmarks among the samples of the training

set. The key concern of shape modeling is how to capture

the inherent variability of the class of objects from a reason-

able small training set using a compact representation that

can be easily adopted towards an efficient inference. We

adopt the pose-invariant prior in [22] which is based on the

relative lengths of a triplet of points, and extend it in a more

general formulation where the cliques can be of any higher

order. Such a prior does not require the estimation of the

global pose in the training and testing stages and eliminates

the bias caused by such estimations.

Let us consider a clique2
c (c ⊆ V and |c| ≥ 3) of

landmarks, we enumerate all the pairs Pc = {(i, j)|i, j ∈

c and i < j} of points. Let dij =
∥
∥
∥x

(3)
i − x

(3)
j

∥
∥
∥ denote the

Euclidean distance between points i and j ((i, j) ∈ Pc). We

obtain the relative distance d̂ij by normalizing the distance

dij over the sum of the distances between the pairs of points

involved in clique c, i.e.,

d̂ij = dij/
∑

(i,j)∈Pc

dij (12)

Since for clique c, any relative distance d̂ij is a linear

combination of the others (i.e.,
∑

(i,j)∈Pc
d̂ij = 1), we

store all the relative distances, except one in a vector

d̂c = (d̂ij)(i,j)∈P̄c
, where P̄c contains the pairs that are

involved in the vector d̂c. Then, the statistics on d̂c are

learned from the training data. We can model its distri-

bution pc(d̂c) using standard probabilistic models such as

MoGs and Parzen-Windows. Finally, we define the prior

probability of the 3D configuration as:

p(x(3)) ∝
∏

c∈C

pc(d̂c(x
(3)
c

)) (13)

where C denotes the set of all cliques, and d̂c(x
3
c
) denotes

the mapping from the 3D position x
3
c

of the clique c to the

relative distance vector d̂c.

4. Higher-order MRF Formulation

The data likelihood, the 3D-2D consistency, the visibil-

ity prior and the 3D shape model, presented in Sec. 3, can be

naturally encoded within a higher-order MRF model where

latent variables are to be inferred through an energy mini-

mization. In this perspective, the negative logarithm of the

posterior probability (Eq. 2) is factorized into the potentials

of the MRF and constitutes the MRF energy.

To this end, we use a node to model a landmark i (i ∈
V) with its latent 3D-2D position Xi and its visibility Oi.

2As presented in Sec. 4, we use 4-order cliques (quadruplets) in this

work, i.e., |c| = 4. However, other higher-order cliques c (|c| ≥ 3) can

also be used in this shape model.



Actually, we can use a single random variable3 to encode Xi

and Oi compactly by simply defining a special label “occ”

within 2D position candidate set X
(2)
i such that:

xi =

{

(x
(3)
i , x

(2)
i ) if Oi = 1

(x
(3)
i , occ) if Oi = 0

(14)

This compact representation is valid because the 2D posi-

tion x
(2)
i is meaningless when the landmark i is occluded

(i.e., when Oi = 0, the image likelihood p(I|x(2),o) and

the projection prior p(x(2)|x(3),o) are constant with respect

to x
(2)
i .).

In order to factorize the potential functions, we use a

fourth-order clique to model a quadruplet c of landmarks.

Due to the bijective mappings between nodes and land-

marks and between fourth-order cliques and quadruplets,

we reuse V and C to denote the node set and the clique set

which determine the topology of the MRF. The 3D and 2D

positions of the landmarks are estimated through the mini-

mization of the MRF energy E(x):

x
opt = arg min

x∈X
E(x) (15)

Here, the energy of the MRF is defined as the negative loga-

rithm of the posterior probability in Eq. 2 (up to an additive

constant) and can be factorized into the following form:

E(x) =
∑

i∈V

Ui(xi) +
∑

c∈C

Hc(xc) (16)

where xc denotes the configuration (xi)i∈c of clique c.

Singleton potential Ui(xi) (i ∈ V) encodes the data like-

lihood (see section 3.1) and the visibility prior (see section

3.3). After taking the negative logarithm, we obtain its def-

inition as follows:

Ui(xi) =

{

− log p(I|x
(2)
i ) if x

(2)
i 6= “occ”

λ1 if x
(2)
i = “occ”

(17)

where λ1 is a constant coefficient.

Higher-order clique potential Hc(xc) (c ∈ C) is defined

as follows:

Hc(xc) = λ2 · H
(1)
c

(xc) + λ3 · H
(2)
c

(xc) (18)

where λ2 > 0 and λ3 > 0 are two balancing constants,

H
(1)
c (xc) encodes the 3D statistic geometry constraints im-

plied by the shape prior on the 3D configuration of the land-

marks, and H
(2)
c (xc) encodes the 3D-2D projection prior:

{

H
(1)
c (xc) = − log pc(d̂c(x

(3)
c ))

H
(2)
c (xc) = e(xc,oc(xc))

(19)

3In order to reduce the number of symbols used, we reuse Xi to denote

this new random variable. Accordingly, we reuse xi, Xi and the other

related notations.
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Figure 1. (a) The distribution of landmarks; (b) The histogram pre-

senting the distribution of the number of missing 2D correspon-

dences in the first experiment.

where oc(xc) denotes the binary visibility values that are

recovered from xc using Eq. 14, and the definitions of

e(xc,oc) and pc(α(x
(3)
c )) have been presented in Sec. 3.2

and 3.4, respectively.

Dual-Decomposition MRF Inference: Regarding the in-

ference of the proposed higher-order MRF, we adopt the

dual-decomposition optimization framework [2, 16], which

is considered to be the state-of-the-art towards MAP-MRF

inference [16, 20] in particular when handling higher-order

MRFs [15, 22]. Based on this framework, we decompose

the original problem which is difficult to solve directly into

a set of sub-problems which can be solved very efficiently.

The solutions of the sub-problems are combined using pro-

jected subgradient method [16, 20] to achieve the solution

of the original problem. Regarding the decomposition, like

[22], we decompose the original graph into a set of fac-

tor trees which can be solved within polynomial time using

max-product belief propagation algorithm [3].

5. Experimental Results

5.1. Experimental Settings

The performance of the proposed method was evalu-

ated on the publicly-available facial expression datasets BU-

3DFE [24] and BU-4DFE [23]. The former consists of 3D

range data of 6 prototypical facial expressions of 100 dif-

ferent subjects (56 female and 44 male), and the latter is

composed of 3D dynamic facial expressions of 101 differ-

ent subjects (58 female and 43 male). The subjects included

in both datasets are of various ethnic/racial origins.

The considered model consists of 13 landmarks (eyes,

nose, mouth and eyebrows as shown in Fig. 1(a)). In the

inference stage, its 3D initialization was done by randomly

picking one training example. Regarding the 3D positions

of the landmarks, the search was guided by a coarse-to-fine

scheme and sparse sampling strategy in a similar way as

[13]. Upon convergence of the algorithm, we performed

Procrustes Analysis [10] to obtain the similarity transform



(a) (b)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 1  2  3

(c)

Figure 2. Results of the first experiment. (a) and (b): 3D model estimation results. In each sub-figure, 3D face mesh is provided for

measuring visually the error between the resulting positions (in red) of landmarks and the ground truth (in blue). (c): Boxplots for the

distributions of dissimilarity measures for qualitatively evaluating the 3D model estimation. c.1: Results obtained by the proposed method;

c.2: Results obtained by the version without visibility modeling; c.3: Initialization of the model. On each box, the central mark in red is the

median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers,

and outliers are plotted individually.

between the estimated 3D model and the ground truth, then

transformed the estimated one into the referential frame of

the ground truth. In terms of quantitative evaluation, a com-

mon goodness-of-fit criterion is the squared error standard-

ized by the scale of the object. Thus, Procrustes distance

[10] was used as the dissimilarity measure Ed to evaluate

our method quantitatively, which can be computed as fol-

lows:

Ed =
∑

i∈V

∥
∥
∥ẋ

(3)
i − x̂

(3)
i

∥
∥
∥

2

/
∑

i∈V

∥
∥
∥x̂

(3)
i − Ĉ

(3)
∥
∥
∥

2

(20)

where ẋ
(3)
i and x̂

(3)
i denote the resulting and ground

truth 3D positions of landmark i, respectively, Ĉ
(3) =

1
|V|

∑

i∈V x̂
(3)
i is the center of the ground truth model. The

smaller Ed is, the closer the resulting model is to the ground

truth.

In all the experiments, the concept of leave-one-out

cross-validation was adopted towards the evaluation of the

method. In this context, we do the validation on a sam-

ple while using the remaining samples as training data, and

such a validation is done for all the samples contained in

a dataset using the same parameter settings. Regarding the

3D model prior (Eq. 13), we modeled the probability distri-

bution pc(d̂c(x
(3)
c )) between a quadruplet c of points using

a two-component Gaussian Mixture.

5.2. Qualitative Results and Quantitative Analysis

First, we considered 100 samples of the neutral expres-

sion from BU-3DFE, one from each subject. The 2D land-

mark correspondence space was associated with 5 labels,

four corresponding to the 2D position candidates and the

last to the occlusion label “occ”. On top of the ground

truth correspondence, noise was added to generate erro-

neous 2D candidates as well. Furthermore, for 10% of

the landmarks (randomly sampled), the true correspondence

was removed and replaced with a random position in the

image plane, which produced between 0 and 5 missing 2D

correspondences for each test (see Fig. 1(b)). Figs. 2(a) and

(b) present 3D model esitmation results. Fig. 2(c).3 and

Fig. 2(c).1 (i.e., the boxes 3 and 1 in Fig. 2(c)) depict the

statistics of the dissimilarity measure Ed (Eq. 20) for the

initialization and the resulting 3D model obtained by the

proposed method, respectively. The qualitative and quan-

titative evaluations demonstrate that our method leads to

well-estimated 3D models even when correspondences are

partially missing. Furthermore, in order to demonstrate the

impact of the visibility modeling, we have also evaluated

an alternative version (without visibility modeling) of the

proposed method where the “occ” label was removed from

the 2D candidate set of each node, and show the obtained

statistics of Ed in Fig. 2(c).2. Based on the comparison of

Fig. 2(c).1 and Fig. 2(c).2, we can conclude that the visi-

bility modeling indeed leads to significantly better perfor-

mance.

Second, we employed the facial feature point detector

proposed in [21] to obtain the 2D position candidates for

101 samples of BU-4DFE, also one from each subject. Such

a detector is based on Gabor features and boosting classi-

fiers, and can well localize the considered landmarks from

observed 2D images (Figs. 3(a)-(f)), though errors may

still be present in some tests. We also performed a leave-

one-out cross-validation in this experiment. Figs. 3(a’)-(f’)

show six 3D model estimation results of different qualities

and Fig. 3(g) presents the statistics of Ed for the proposed

method and the version without visibility modeling. These

results further demonstrate the potential of the proposed

method to infer the 3D configuration of the model from 2D

observed images with misdetections/occlusion handling.

Last but not least, we compared our method with an al-
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Figure 3. Results of the second experiment. (a)-(f): 2D landmark detection results [21]; (a’)-(f’): The corresponding 3D model estimation

results. (g): Boxplots for the distributions of dissimilarity measures for qualitatively evaluating the 3D model estimation. g.1: Results

obtained by the proposed method; g.2: Results obtained by the version without visibility modeling; g.3: Initialization of the model.

ternative method (ASM+RANSAC) with a relaxed condi-

tion where we assumed that the ground truth 2D correspon-

dences were known. For each test, we first learned an ASM

[8] from the training data. Then, we used RANSAC [11]

to estimate the camera projection function based on the ini-

tialization of the shape model and the given ground truth

2D correspondences. Once the projection function was esti-

mated, we searched for the best shape configuration by min-

imizing the errors between the projections of the 3D points

and their 2D correspondences. Furthermore, we evaluated

both methods using two different initializations: besides

the “random sample” initialization used throughout the ex-

periments, we also tested the “mean-shape” initialization

where we chose one example as the reference, registered

all the other training examples to it and computed the mean

shape as initialization. We performed leave-one-out cross-

validation on all the 2500 samples of BU-3DFE dataset and

the quantitative evaluation is shown in Fig. 4. Figs. 4.1 and

4.4 show that our method performed equally well with the

two different initializations, which demonstrates robustness

with respect to the choice of initialization. The evalua-

tion of ASM+RANSAC is presented in Figs. 4.2 and 4.5.

We observe from Fig. 4 that the dissimilarity measure of

our method is approximately 3 to 5 times lower compared

to ASM+RANSAC, which demonstrates that our method

performs significantly better than ASM+RANSAC and is

highly robust with respect to the initialization.

In conclusion, the results of all the experiments demon-

strate that our method, despite the important variability of

pose and facial geometry, has well estimated the 3D con-

figuration of the model even with the existence of misdetec-

tions, and outperforms significantly the alternative methods.

6. Conclusion

In this paper, we have introduced a novel approach for

3D landmark model inference from a monocular 2D view

that combines the estimation of the 3D pose, the visibil-

ity states and the 2D correspondences. The main inno-

vations of the method are the absence of camera parame-

ters estimation, the ability to model geometric consistency

through local priors, the explicit modeling of visibility and
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Figure 4. Comparison with ASM+RANSAC in terms of dissimi-

larity measures. 1. Our method with random-sample initialization;

2. ASM+RANSAC with random-sample initialization; 3. The

random-sample initialization; 4. Our method with mean-shape ini-

tialization; 5. ASM+RANSAC with mean-shape initialization; 6.

The mean-shape initialization.

the one-shot optimization to jointly infer all the variables.

We have evaluated our method on standard facial datasets

with promising results.

Future work concerns first the achievement of a bet-

ter model decomposition towards recovering the smallest

subset of higher-order interactions that can express the 3D

geometric manifold, which could drastically decrease the

computational complexity of the method. The use of more

advanced parameterizations of the manifold which go be-

yond simple 3D landmark positions (e.g., the entire surface

through some kind of local interpolation) would open new

application domains of our method like body pose estima-

tion or medical image analysis where 2D partial acquisition

of 3D objects is frequent. Last but not least, faster optimiza-

tion algorithms of higher-order MRFs, including potential

implementations of existing optimizers on GPUs, could be

beneficial to our approach both in terms of the considered

application as well as in terms of modularity with respect to

other 3D pose estimation problems from 2D images.
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