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Abstract

This paper presents a novel intrinsic 3D surface dis-
tance and its use in a complete probabilistic tracking frame-
work for dynamic 3D data. Registering two frames of a de-
forming 3D shape relies on accurate correspondences be-
tween all points across the two frames. In the general case
such correspondence search is computationally intractable.
Common prior assumptions on the nature of the deforma-
tion such as near-rigidity, isometry or learning from a train-
ing set, reduce the search space but often at the price of
loss of accuracy when it comes to deformations not in the
prior assumptions. If we consider the set of all possible
3D surface matchings defined by specifying triplets of cor-
respondences in the uniformization domain, then we intro-
duce a new matching cost between two 3D surfaces. The
lowest feature differences across this set of matchings that
cause two points to correspond, become the matching cost
of that particular correspondence. We show that for sur-
face tracking applications, the matching cost can be effi-
ciently computed in the uniformization domain. This match-
ing cost is then combined with regularization terms that
enforce spatial and temporal motion consistencies, into a
maximum a posteriori (MAP) problem which we approx-
imate using a Markov Random Field (MRF). Compared to
previous 3D surface tracking approaches that either assume
isometric deformations or consistent features, our method
achieves dense, accurate tracking results, which we demon-
strate through a series of dense, anisometric 3D surface
tracking experiments.

1. Introduction

Dynamic 3D data has become increasingly popular with
the advances in 3D reconstruction techniques [1, 12, 20, 26,
33]. An important prerequisite for most applications is to
register the 3D data among frames. For applications such
as facial expression analysis/transfer [7, 23], dense and ac-
curate registration is highly desired for capturing subtle de-

tails. However, achieving dense, accurate registration re-
mains challenging when there is noise, large deformations
and lack of reliable features. In this paper, we address
the challenging problem of tracking a deformable template
from dynamic, markerless 3D data.

According to the well-known Riemann uniformization
theorem [8], any simply-connected surface with a Rieman-
nian metric can be conformally deformed onto one of three
canonical spaces: the sphere, the plane and the hyperbolic
disk. By using uniformization, 3D geometric problems are
naturally converted to 2D ones, which in general simpli-
fies computation. Most importantly, when the deformations
between surfaces are isometric, matching between two sur-
faces can be greatly simplified in the uniformization domain
by only searching for a few correspondences [15].

Previously work [25, 26, 29, 30] relied on consistent fea-
ture boundaries or points to determine prescribed sparse
correspondences, in order to match two surfaces in the
uniformization domain. Once the sparse correspondences
are established, a single conformal energy is minimized to
match between the whole surfaces. To avoid relying on
consistent feature points, Lipman et al. [16] observed that
when two surfaces are isometrically deformed, only three
correspondences are needed to determine a unique confor-
mal mapping which is described by a Möbius transforma-
tion. Sparse correspondences are optimized by voting from
different Möbius transformations induced by different com-
binations of correspondences. Recently, based on the fact
that every three correspondences determine a unique con-
formal mapping, leading to a candidate matching point for
every point on the surface, Zeng et al. [31] formulated a
high-order graph matching problem to search for the opti-
mal dense matching result by combining multiple matching
criteria. Despite its success in combining multiple match-
ing criteria to handle more than isometric deformations, the
singleton term that defines textural and geometric similar-
ities for each matching candidate is evaluated only point-
wise and hence such a term is sensitive to noise. Most re-
cently, Lipman et al. [15] proposed a new distance function
that compares two neighborhoods (i.e., disks) around two
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points in the disk uniformization domain, which improves
the robustness of the matching cost for each candidate cor-
respondence. Nevertheless, this distance cannot handle gen-
eral surface matching when the surfaces have inconsistent
boundaries or are anisometrically deformed, because com-
paring two neighborhoods directly in the uniformization do-
main is not straightforward since a disk is no longer mapped
to a disk under Möbius transformations [18].

In this paper, we define a new distance that compares the
neighborhoods between any candidate matching pair even
when the two surfaces have inconsistent boundaries and are
not isometrically deformed. Since every three correspon-
dences determine a unique conformal mapping between the
two surfaces, we can define a matching cost based on fea-
ture differences for every such possible match. However,
globally searching for the best three correspondences that
match the two surfaces is limited because the two surfaces
can be exactly matched only when they are isometrically
deformed and have consistent boundaries. Hence, we de-
fine a cost function for a particular correspondence by the
lowest feature differences across the set of transformations
that cause the two points to match, which only involves
searching for the correspondences of another two points on
the surface. By restricting the comparison of feature dif-
ferences only between the neighborhoods of the correspon-
dence, we can handle surfaces with inconsistent boundaries
or anisometric deformations. A matching cost between two
neighborhoods can be therefore efficiently computed since
only one conformal mapping is needed for one surface and
the other conformal mappings induced from different corre-
spondence matches are computed in a closed form.

With the above mentioned matching cost for any candi-
date correspondence, it is not enough to simply output such
locally best match for each point due to multiple optima,
noisy data and numerical errors. Therefore, regularization
is necessary for a plausible result. In this paper, we formu-
late the surface tracking problem in a unified probabilistic
inference framework that takes into account spatio-temporal
consistency as well as the possibility for drift error. We
show that such an inference problem can be approximated
by standard MRF optimization methods in a discrete setting
and occlusion can be appropriately handled. Combinatorial
methods based on graphical models have become popular
due to their capabilities of solving for more complicated
deformations [10, 11, 21, 24] and avoiding local optimal
solutions [13, 14]. Besides, occlusion handling can be con-
veniently modeled in the same framework [22].

In summary, the primary contributions of this paper are
a robust intrinsic distance function for measuring the cost
of matching two points and a unified framework for intrin-
sic 3D surface tracking. To achieve a robust 3D tracking
system, our framework includes an intrinsic spatial defor-
mation prior that constrains consistency in local deforma-

tions among neighboring points as well as drift and occlu-
sion handling. Our tracking method is computed in the uni-
formization domain, so it is robust to large deformations and
scale changes. Compared to existing tracking algorithms
such as [3, 26], we do not require prescribed feature detec-
tors and do not rely on consistent boundaries. Therefore
our method is able to handle surface tracking under chal-
lenging situations as shown in our experiments with a de-
forming sponge. Unlike the system of Weise et al. [28], we
do not require a pre-defined training set for PCA learning,
which is important for accurately tracking both large pre-
viously unseen variations in object deformation as well as
subtle but significant differences in the case of facial expres-
sion changes. Quantitative results show that our algorithm
achieves a high level of accuracy.

The remainder of this paper is organized as follows. The
new distance of matching correspondences is defined in
Sec. 2. In Sec. 3 we introduce our probabilistic 3D surface
tracking framework. The implementation details are given
in Sec. 4. Experimental results and validation are part of
Sec. 5. Finally we conclude our work in Sec. 6.

2. A robust correspondence matching distance
We assume a shape is represented in a metric feature

space (M, dM, fM), where M is a compact connected and
complete Riemannnian surface, dM : M × M → R is a
measure of distances between pairs of points on M, and
fM : M → Rn is the mapping of each point on M into
the feature space (such as curvatures, texture, etc.). Previ-
ously, a number of metrics have been proposed for measur-
ing the similarities between any two shapes based on geo-
metric information only, e.g., the geodesics distance [4], the
diffusion distance [5] and distances based on the conformal
factor [15, 30]. To compare two shapes (M, dM, fM) and
(N , dN , fN ), we denote the set of possible mappings (e.g.,
diffeomorphism) between them as TM→N . A distance be-
tween any two shapes (M, dM, fM) and (N , dN , fN ) can
be defined as follows:

dT (M,N ) = inf
t∈TM→N

∫
M

|fM(x)− fN (t(x))|dx. (1)

Such a definition resembles the sum of absolute differences
(SAD) metric commonly used in motion estimation. Fur-
thermore, in the context of surface registration, it provides
a flexible way of handling a wide range of deformations be-
tween surfaces. For example, when the feature is the con-
formal factor [30] and the mappings TM→N are restricted
to Möbius transformations in the uniformization domain, it
handles isometric or near-isometric surface matching. To
deal with more general deformations, we may use other fea-
tures such as texture and curvature [31].

In this paper, based on Eq. 1, we consider the following
distance function for measuring the quality of a correspon-
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dence between a point p ∈ M and a point q ∈ N :

dTM,N (p, q) = inf
t∈TM→N
t(p)=q

∫
M

|fM(x)− fN (t(x))|dx, (2)

which is defined by the cost of matching the two surfaces
by fixing the particular correspondence. When there is no
mapping in the group TM→N that maps p to q, we define
the distance to be infinite. Since the distance function of
Eq. 2 is defined on the whole surface, when the transforma-
tion group TM→N is confined to mappings with bounded
area distortions, a small deviation from the true matching
that minimizes Eq. 1 would cause the energy measure to
deviate significantly from the optimum, which guarantees
the robustness of this distance measure. Hence such a dis-
tance is more robust compared to distances based on local
features. It is easy to see that dTM,N (p, q) ≥ dT (M,N ) for
any p ∈ M, q ∈ N and the lower bound is achieved when p
is mapped to q under the transformation that minimizes the
energy of Eq. 1. In the problem of dense surface registra-
tion, the goal is to find on N the correspondences of a point
set P = {pi|pi ∈ M, i = 1, . . . , n}. Since we have

dT (M,N ) ≤
∑

p∈P dTM,N (p, t(p))

|P |
,∀t ∈ TM→N , (3)

the problem of shape registration can be formulated as

arg inf
t∈TM→N

∑
p∈P

dTM,N (p, t(p)). (4)

In the following, we show how the distance function can be
efficiently approximated in the uniformization domain.

2.1. Approximation in the uniformization domain

Although the distance defined in Eq. 2 gives us a ro-
bust way to evaluate the matching cost between points, it
is in general computationally intractable to evaluate such
a distance function directly in the 3D embedding space
since it involves searching among all possible matchings
between two surfaces given a correspondence. For exam-
ple, in [32] the matching cost given a few sparse correspon-
dences is measured by deforming the whole surface to the
target based on a particular deformation energy; minimizing
such an energy is computational possible for only approx-
imately 10 correspondences. In this paper, we propose an
efficient way to approximate the distance function of Eq. 2
by considering a subset of the mapping set TM→N (note
that such an approximation is only used for evaluating the
correspondence cost and the global shape registration prob-
lem of Eq. 4 is considered in a general set of mappings).

In order to take into account mappings between two sur-
faces with inconsistent boundaries, we consider a neighbor-
hood N(p) of p and the points on its boundary ∂N(p) =

{p1, . . . , pr}. For each possible mapping of the neighbor-
ing points p1, . . . , pr ∈ ∂N(p) , the distance function of
Eq. 2 can be approximated by warping the neighborhood
N(p) to the neighborhood of the target. Directly comput-
ing such warping is very costly. However, if we notice that
a mapping between the two surfaces can be computed by
specifying a few feature correspondences and optimizing
a conformal energy to find the mappings of all the other
points [25, 26, 30], we then have an efficient way to ap-
proximate the distance function of Eq. 2. This motivates us
to consider the mappings of the neighborhood N(p) in the
uniformization domain U ⊂ C, where C denotes the com-
plex domain.

Formally, we denote the uniformization (conformal map-
ping) of any surface M as ϕM : M → U . Also we consider
the set of mappings T UNI that is induced by specifying three
correspondences between two surfaces in the uniformiza-
tion domain [16]. For any point p ∈ M, we define the
image of a point p as Img(p) = {t(p)|t ∈ TM→N }, where
TM→N can be arbitrary diffeomorphisms and we only re-
quire that T UNI ⊂ TM→N . For any two points p1, p2 ∈
∂N(p), q ∈ Img(p), q1 ∈ Img(p1) and q2 ∈ Img(p2), let us
denote by Mo : pp1p2 → qq1q2 the Möbius transformation
that maps (p, p1, p2) to (q, q1, q2) in U . We then approxi-
mate the distance of Eq. 2 in the uniformization domain as
follows:

dUNI
M,N (p, q) = inf

p1,p2∈∂N(p),q1∈Img(p1),q2∈Img(p2),
Mo:pp1p2→qq1q2∫

ϕM(N(p))⊂U |fM(ϕ−1
M (z))− fN (ϕ−1

N (Mo(z)))|dz
Area(N(p))

. (5)

Here ϕM(N(p)) denotes the mapping of the neighborhood
N(p) to the uniformization domain and Area(N(p)) de-
notes the area of the neighborhood. When the feature is
only based on geometry (e.g., the conformal factor [15] or
the gaussian curvature), the distance measures the devia-
tion from isometric deformation. However, when the fea-
ture is based on other measures such as texture, the distance
measures how accurately the source surface has been de-
formed onto the target surface, not necessarily by an iso-
metric deformation. Therefore, our definition is general and
subsumes the isometric deformation as a special case.

3. Probabilistic 3D surface tracking
The intrinsic distance dUNI

M,N (·, ·) measures the likeli-
hood of matching between individual points. Such a data
term is then combined with regularization terms towards
solving the problem of surface registration. To this end,
we investigate the 3D surface tracking problem in a proba-
bilistic framework which takes into account geometric and
textural similarities, spatio-temporal consistencies as well
as error drift.
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Let us denote by M1:t ≡ {M1, . . . ,Mt} the dynamic
3D data up to time t, and x1:t ≡ {xi ⊂ Mi|i = 1, . . . , t} as
the trajectory of the given initial dense points x0 = {x0

i ∈
R3|i = 1, . . . , n} where xt = {xt

i ∈ R3|i = 1, . . . , n}. In
order to utilize the intrinsic measure defined in the previous
section, we assume the initial points x0 are represented as a
2-manifold mesh, i.e., a planar graph G = (V, E).

The task of tracking the trajectory of x0 at time t given
the dynamic data M1:t and the previous trajectory x1:t−1

therefore becomes the MAP problem

argmax
xt

p(xt|M1:t,x1:t−1). (6)

Here we assume M1:t′ to be independent of xt given x1:t′

whenever t′ < t. From the Bayes’ theorem, we have
p(xt|M1:t,x1:t−1)

=
p(M1:t|x1:t)p(xt|x1:t−1)

p(M1:t|x1:t−1)

∝ p(M1:t|x1:t)p(xt|x1:t−1)

= p(Mt|x1:t,M1:t−1)p(M1:t−1|x1:t)p(xt|x1:t−1)

∝ p(Mt|x1:t,M1:t−1)︸ ︷︷ ︸
Data fidelity

p(xt|x1:t−1)︸ ︷︷ ︸
Spatio-temporal prior

. (7)

Here p(Mt|x1:t,M1:t−1) denotes the data likelihood de-
fined by intrinsic similarities. p(xt|x1:t−1) denotes the
spatio-temporal priors that ensure the smoothness of the re-
sult. In the following we discuss each of the two terms in
detail.

3.1. Data fidelity terms

The data fidelity terms consider the fidelity of the 3D
data M1:t given the tracking results x1:t. For dense track-
ing, we assume the tracking points x0 are dense enough to
capture the detailed geometry of the surfaces and thus the
trajectory x1:t′ and the data M1:t′ are independent of the
trajectory xt given xt−1 and Mt−1 when t′ < t − 1. We
have

p(Mt|x1:t,M1:t−1)

=
p(Mt,x1:t−2,M1:t−2|xt,xt−1,Mt−1)

p(x1:t−2,M1:t−2|xt,xt−1,Mt−1)

∝ p(Mt,x1:t−2,M1:t−2|xt,xt−1,Mt−1)

= p(Mt|xt,xt−1,Mt−1)×
p(x1:t−2,M1:t−2|xt,xt−1,Mt−1,Mt).

Here p(M t|xt,xt−1,Mt−1) denotes the reg-
istration between successive frames and
p(x1:t−2,M1:t−2|xt,xt−1,Mt−1,Mt) denotes the
consistency between the current frame and the previously
tracked frames, which avoids loss of tracking caused by
accumulation of local registration errors.

3.1.1 Geometry and texture similarities

Intrinsic comparison takes into account both geometry and
texture (if available) consistencies between frames. We de-
fine the inter-frame data similarity term as follows:

p(Mt|xt,xt−1,Mt−1)

∝
n∏

i=1

N (dUNI
Mt,Mt−1(x

t
i, x

t−1
i )|0, σdata). (8)

3.1.2 Error drift term

The intrinsic distance dUNI
Mt,Mt′ (x

t
i, x

t′

i ) allows us to con-
sider the likelihood of a correspondence between time t
and t′. We assume that xt is consistent with the previously
tracked frames if it “agrees” with the majority of them. For
each point, we select the median distance of the set of the
point to its previous matches. This is similar to the use of
median filter, and formulated as

p(x1:t−2,M1:t−2|xt,xt−1,Mt−1,Mt) (9)

∝
n∏

i=1

mediant′∈{1,...,t−2}N (dUNI
Mt,Mt′ (x

t
i, x

t′

i )|0, σdrift)

However, computing consistency between the current frame
and all the previous frames is very costly. An approximate
sampling scheme is to consider a subset of {1, . . . , t − 2},
namely, I. Hence Eq. 9 can be approximated as follows:

n∏
i=1

mediant′∈IN (dUNI
Mt,Mt′ (x

t
i, x

t′

i )|0, σdrift). (10)

3.2. Spatio­temporal priors

The probability p(xt|x1:t−1) represents the prior knowl-
edge of the trajectory x1:t, and also regularizes the tracking
result. We decompose the probability into two terms:

p(xt|x1:t−1) =
p(xt|xt−1)p(x1:t−2|xt,xt−1)

p(x1:t−2|xt−1)

∝ p(xt|xt−1)p(x1:t−2|xt,xt−1). (11)

Here p(xt|xt−1) denotes the spatial deformation consis-
tency between consecutive frames and p(x1:t−2|xt,xt−1)
denotes the dynamic motion consistency.

3.2.1 Intrinsic spatial deformation prior

The spatial prior p(xt|xt−1) takes into account the plau-
sible deformation of the surface between frames. In the
definition of the distance in Eq. 5, only the matching costs
for each correspondence xt−1

i 7→ xt
i are considered. There

is no constraint on the consistency between two neighbor-
ing correspondences xt−1

i 7→ xt
i and xt−1

j 7→ xt
j where
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(i, j) ∈ E . Since each of the distance functions (Eq. 5)
takes into account the locally best Möbius transformation
mapping a neighborhood of xt−1

i to a neighborhood of xt
i,

it is reasonable to assume that such a locally optimal trans-
formation also maps xt−1

i ’s neighbor xt−1
j to a position

nearby xt
j . Let Moopt

p,q denote the optimal Möbius trans-
formation that results in the distance defined in Eq. 5. To
constrain the deformation consistency between neighboring
points (i, j) ∈ E , we define the following distance in the
uniformization domain:

dti→j = |(Moopt

xt−1
i ,xt

i

(ϕt−1(xt−1
j )))− ϕt(xt

j)|. (12)

Here ϕt(·) denotes the uniformization of the data Mt. This
distance measures how close ϕt(xt

j) is to the point z, where
z is obtained by transforming ϕt−1(xt−1

j ) using the optimal
transformation Moopt

xt−1
i ,xt

i

(·) that maps xt−1
i to xt

i. When
this distance is small, it means such optimal transforma-
tion produces consistent mappings with the neighbors. For-
mally, we define,

p(xt|xt−1) ∝
∏

(i,j)∈E

N ((dti→j + dtj→i)/2|0, σspa). (13)

3.2.2 Dynamic motion prior

The dynamic prior imposes temporal consistency of each
vertex i by assuming the curve traced by each vertex i to be
smooth, i.e., we assume the acceleration to be small. If we
define the angle between the vectors xt

i − xt−1
i and xt−1

i −
xt−2
i as Angt

i, the dynamic prior can be defined as

p(x1:t−2|xt,xt−1) ∝
n∏

i=1

N (Angt−1
i |Angt

i, σdyn). (14)

In practice, the smoothness assumption is only applicable
when the motion between two frames is not too large.

4. Implementation details
The above mentioned objective function (Eq. 7) does not

have a closed form in continuous space, making global op-
timization difficult. Instead, in this paper, we employ the
discrete MRF framework [9] to take into account the ob-
jectives discussed in the previous section. For each frame
at time t, we select L matching candidates for each point
xt
i, i = 1, . . . , n. As a result, by applying the − log operator

to the probability of Eq. 7, our tracking problem is equiva-
lent to solving for the optimal configuration xt ∈ Ln:

argmin
xt

∑
i∈V

θi(x
t
i) +

∑
(i,j)∈E

θij(x
t
i, x

t
j), (15)

where the energy functions θi(x
t
i), θij(x

t
i, x

t
j) are de-

fined according to the probabilistic framework discussed in

(a) Base mesh (b) Dense mesh

Figure 1. Mesh template. The base mesh (a) is resampled to pro-
duce the dense mesh (b).

Sec. 3. In this section, we give the detailed definition of the
energy.

4.1. Initialization

In the first frame M0, an initial mesh template x0 =
{x0

1, . . . , x
0
n} is constructed. The template can be con-

structed either automatically [28] or manually [3]. In our
experiments, we constructed the template using the re-
topology tool provided in MeshLab1. In this way, we spec-
ify less than 100 base vertices and obtain a dense mesh with
around 1000 vertices (Fig. 1).

4.2. Candidate selection

To decide the matching candidates for each node xt
i in

the next frame t + 1, we consider the embedding space
neighborhood, the view space neighborhood and the in-
trinsic space neighborhood. (1) For the embedding space
neighborhood, we uniformly sample L1 points on Mt+1 in
the neighborhood of each xt

i within radius R. (2) For the
view space neighborhood, we project the point xt

i to an im-
age plane where xt

i is visible. Then we back-project L2

neighboring points of the the projection of xt
i on the image

plane back to the surface Mt+1. For 3D data obtained from
the depth map of 2D images, the selection of the neighbors
on the image plane is done in a hierarchical manner in order
to take into account large deformations as in [11]. (3) For
the intrinsic space neighborhood, we randomly select L3

triplets of initial correspondences (by closest point registra-
tion or results from previous iteration) among the vertices of
the base mesh and obtain a correspondence for each point
from every triplets of correspondences [31]. Such intrinsic
space sampling can achieve sub-sample accuracy [31]. In
our experiments, we consider L = 64 candidates for each
point, L1 = 24 from embedding space sampling, L2 = 25
from view space sampling and L3 = 15 from intrinsic space
sampling. R is set to be 0.1 of the diameter of the mesh M0.

1http://meshlab.sourceforge.net/
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4.3. Computation of intrinsic distance

The computation of the intrinsic distance dUNI
M,N (p, q) for

any correspondence p 7→ q involves selection of the neigh-
borhood N(p), sampling of points p1, . . . , pr ∈ ∂N(p)
and the numerical approximation of the integration in Eq. 5
from the N(p) to all its possible mappings on the target
surface in the uniformization domain. We select the bound-
ary points p1, . . . , pr among the vertices of the base mesh
(Fig. 1(a)). If p is not on the boundary of the template and
papbpc is the face of the base mesh that covers p, we choose
N(p) to be the largest triangle among the three triangles
△ppapb, △ppbpc and △ppcpa and we evaluate the integra-
tion of Eq. 5 only in the region covered by the selected tri-
angle. If p is on the boundary, we choose N(p) to be the two
largest triangles among its neighboring triangles mentioned
above. In our implementation, we select 81 sampling points
in each neighborhood. The distance function can be effi-
ciently computed in parallel because each of the functions
dUNI
M,N (p, ·) is independent of the others.

4.4. Occlusion handling

Occlusions are handled by introducing an additional la-
bel {Occ} for each vertex xt

i, with a cost function:

docc(xt
i, x

t′

i ) =


0 if dUNI

Mt,Mt′ (x
t
i, x

t′

i ) < δ, xt
i ̸= Occ

E1 if dUNI
Mt,Mt′ (x

t
i, x

t′

i ) > δ, xt
i = Occ

E2 otherwise

.

Here t′ is the last frame before time t that the point i is vis-
ible and we set E1 = 1, E2 = 10 and δ = 0.05. Intuitively,
when the cost of matching a correspondence xt′

i 7→ xt
i is

higher than a threshold δ, it is likely that i is occluded at
frame t, where a constant penalty E1 is imposed. When oc-
clusion occurs at a point, we set its default position as the
position computed by the ICP algorithm [2] registering the
un-occluded points.

4.5. Composite MRFs and optimization

Combining the energy functions defined above, we opti-
mize for the MAP problem of Eq. 6 under the discrete MRF
optimization framework. The singleton terms include the
data-fidelity, dynamic motion consistency, error drift and
occlusion handling priors, i.e., for all i ∈ V , we define

θi(x
t
i) =



dUNI
Mt,Mt−1 (x

t
i,x

t−1
i )2

σdata
+

(Angt−1
i −Angti)

2

σdyn

+
(mediant′∈T dUNI

Mt,Mt′ (x
t
i,x

t′
i ))2

σdrift

if dUNI
Mt,Mt′ (x

t
i, x

t′

i ) < δ, xt
i ̸= Occ

E1 if dUNI
Mt,Mt′ (x

t
i, x

t′

i ) > δ, xt
i = Occ

E2 otherwise

The pairwise terms include the spatial deformation prior in
Sec. 3.2.1 and the smoothness of the occluded part, i.e.,

θij(x
t
i, x

t
j) =


(dt

i→j+dt
j→i)

2

4σspa
if xt

i, x
t
j ̸= Occ

0 if xt
i = xt

j = Occ

E3 otherwise

(16)

In our experiments, E3 = 1. Intuitively, such an energy
encourages the smoothness of the occluded part. We em-
ploy the TRW-S algorithm [13] for the optimization. The
energy is optimized iteratively until convergence or up to a
maximum allowed number of iterations. For the drift han-
dling term of Eq. 10, we randomly select 5 frames from
previous tracking results {1, . . . , t− 1}. The weights of the
energy are selected as σdata = 1, σdyn = 500, σdrift = 2,
σspa = 20.

5. Results
Data: We test our tracking system on a dynamic face

data set captured by the 3D scanning system described in
[27]. The data set consists of four actors with 24 different
facial expressions, including coy flirtation, devious smirk,
soft affection and fake smile, etc. Each of the expressions is
captured with a frame rate of 24fps for around 10−20 sec-
onds. The number of vertices for each frame is 79, 000 on
average with only gray-scale textural information (the gray
level is normalized as in [0, 1]). Some of the captured raw
3D data frames suffer from scale ambiguities. In such cases,
we remove the dynamic prior defined in Sec. 3.2.2. In our
experiments, we use texture as the feature for computing the
intrinsic distance (Eq. 5) as it is less sensitive to anisomet-
ric deformation. Fig. 2 shows four different sequences from
four different actors2. Fig. 3 shows a tracking result in a
very challenging situation (largely inconsistent boundaries,
occlusions and anisometric deformations between frames).
For this example, the average texture difference per point
between every frame and the first frame is 0.0235. The max-
imal average area ratio change (to the first frame) is 1.26
and the maximal percentage of surface occlusion occurring
between two frames is around 30%.

Analysis of intrinsic distance function: A key factor
to achieve high accuracy of surface tracking is the distance
function dUNI

M,N (·, ·) defined in Sec. 2. To see the sensitivity
of the distance in distinguishing subtle differences in cor-
respondences for a given point p, we sample 7 × 7 closest
neighboring points in the next frame as matching candidates
in the embedding space (Sec. 4.2). Fig. 4(a) shows the eval-
uation of the 49 values of the function dUNI

M,N (p, ·) for dif-
ferent points on the surface. We compare the distance with
simple per-point texture difference.

Furthermore, we compare our cost function with the re-
sult obtained by the optical flow algorithm in [17] based
on [6]. We project the left part of the face to a 640 × 480
perspective view selected to maximize visibility and apply

2See the complete sequences: http://www.cs.sunysb.edu/∼ial/.
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Figure 2. Tracking results selected from our data set.

Figure 3. A challenging result with both anisometric deformation
and inconsistent boundaries.
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Figure 4. (a) Our cost function of Eq. 5 vs. per-point texture dis-
tance on distinguishing subtle differences in correspondences and
(b) comparison with optical flow method for inter-frame registra-
tion (details of comparison are described in the text).

the optical flow algorithm to establish correspondences be-

tween two frames. For the template points that belong to
the projected part, we compute the cost function and choose
the correspondence with lowest cost as the matching result.
We linearly interpolate the correspondence of other points
within the template that are visible. We compare the av-
erage texture per-point differences based on the correspon-
dences obtained by optical flow and by our method (Fig. 4
(b) shows the comparison for one sequence). It can be seen
that when the deformation between two frames is large, the
optical flow degrades more significantly than our method.

Error and performance analysis: Fig. 5(a) shows the
error evaluation based on the complete 24 tracking results.
The error measures the average per-point texture difference
compared to the first frame. Fig. 5(b) shows the amount of
area ratio change (anisometry) between the first frame the
the current frame for 23, 000 randomly selected triangles
among the tracking results.

We compare the influence of the regularization terms in
the optimization of Eq. 15. The error is evaluated based on
the average texture difference between every frame and the
first frame. Fig. 6 (a) shows the comparisons for sequence
A coyfirtion. Even by considering the data term only, our
method is more accurate for most frames than a previous
intrinsic surface tracking method based on Harmonic maps
[26]. Fig 6 (b) is the comparison for 5 more sequences on
the average per-point texture difference.

Computation time: Our algorithm is implemented on
an Intelr Core(TM) 2 Duo 3.16G PC with 4G RAM and
a NVIDIAr Geforce 9800GTX+ graphics card with 128
CUDA cores. The preprocessing (mesh loading, nearest
neighbor search data structure construction, candidate se-
lection) takes 2–3s. The computation of the mid-edge uni-
formization [19] for each mesh takes less than 1s using GPU
implementation. With the hardware acceleration described
in Sec. 4.3, the computation of the L = 64 cost functions
from Eq. 5 for one tracking point takes only 3ms on aver-
age. The MRF optimization using the TRW-S algorithm
[13] takes around 1–3s for the 1000 template points de-
scribed in Sec. 4.1 with 65 (64 for matching candidate and
1 for occlusion) labels per point. Therefore tracking one
frame with 5 look-back frames takes only 18 – 25s for each
iteration. In our experiments, we observe that the algorithm
often converges within 5 iterations.

6. Conclusion
We proposed a new cost function that compares two

neighborhoods of a correspondence by searching among all
the possible mappings in the uniformization domain. This
cost function is then combined with regularization terms
that take into account spatio-temporal consistency, error
drift and occlusion problems, into a unified 3D tracking
framework. By employing existing MRF optimization tech-
niques and hardware accelerations, our algorithm becomes
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Figure 5. (a) shows the evaluation of the average per-point texture
difference between every frame and the first frame on the whole 24
data set. (b) is the frequency of the area ratio of randomly selected
triangles between current frame and the first frame, which shows
that a significant number of them deforms anisometrically.
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Figure 6. Results show influence of the regularization term used in
the optimization of Eq. 15 and comparison with previous intrinsic
tracking method used in Harmonic maps [26].

practical for applications where high accuracy is essential.
In the near future, we would like to apply our algorithm to
track additional dynamic 3D databases and explore applica-
tions such as facial expression analysis/transfer, etc.
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