Saturation algorithms for model-checking pushdown systers

Arnaud Carayol Matthew Hague
LIGM Department of Computer Science
Université Paris-Est & CNRS Royal Holloway University of London
arnaud.carayol@univ-mlv.fr matthew.hague@rhul.ac.uk

We present a survey of the saturation method for model-chgg@ushdown systems.

1 Introduction

Pushdown systems have, over the past 15 years, been pojithidihevsoftware verification community.
Their stack can be used to model the call stack of a first-aetrirsive program, with the control state
holding valuations of the program’s global variables, atatls characters encoding the local variable
valuations. As such the control flow of first-order recurgiregrams (such as C and Java programs)
can be accurately modelled [29]. Pushdown systems havedglaykey role in the automata-theoretic
approach to software model checking and considerable ggedras been made in the implementation of
scalable model checkers of pushdown systems. These toglB@bop([3] and Moped [21, 39, 52,/50])
are an essential back-end components of high-profile médeekers such as SLAM][2].

A fundamental result for the model-checking of pushdownesys was established by Biichi in
[12]. He showed that the set of stack contents reachable theninitial configuration of a pushdown
system form a regular language and hence can be represgradihlie state automaton. The procedure
provided by Biichi to compute this automaton from the pushdsystem is exponential. In[15], Caucal
gave the first polynomial time algorithm to solve this probleT his efficient computation is obtained by
a saturation process where transitions are incrementdtlgdhto the finite automaton. This technique,
which is the topic of this survey, was simplified and adapteiti¢ model-checking setting by Bouajjaati
al. in [7] and independently by Finkelt al. in [22].

The saturation technique allows global model checking shpown systems. For example, one may
construct a regular representation of all configuratioashiable from a given set of initial configurations,
or, dually, the set of all configurations that may reach argiset of target configurations. As well as
providing direct solutions to simple reachability propest(e.g. can an error state be reached from a
designated initial configuration), the representationsstrocted by global analyses may be reused in
a variety of settings. For example, once may perform mati@gnd dynamic) queries on the set of
reachable states without having to re-run the model chgakiantine. Additionally, these representations
may be combined as part of a larger algorithm or proof. Fomgta, Bouajjaniet al. provided solutions
to the model checking problem for the alternation freealculus by combining the results obtained
through multiple global reachability analyses [7].

In this survey, we present the saturation method underfitrent forms for reachability problems in
Sectiorl 8. The saturation technique also generalises artilgsis of two-players games played over the
configuration graph of a pushdown systems. This extensisedan the work of Cachat [1L3] and Hague
and Ong([28] is presented in Sectidn 4. In Seclibn 5, we retimwarious model-checking tools that

*We thank Didier Caucal and Olivier Serre for helpful diséoss. This survey was supported by the Engineering and
Physical Sciences Research Council [EP/K009907/1].

© A. Carayol and M. Hague
This work is licensed under the
Creative Commoris Attribution License.

Z. Esik and Z. Fulop (Eds.): Automata and Formal Languagéd 28FL 2014)
EPTCS 151, 2014, pp. =24, d0i:10.4204/EPTCS.151.1

http://dx.doi.org/10.4204/EPTCS.151.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Saturation algorithms for model-checking pushdown system

implement the saturation technique. We conclude in Seiby giving an overview of the extensions
of the basic model of pushdown system for which the saturagohnique has been applied.

2 Preliminaries

2.1 Finite automata

We denote byE* the set of words over the finite alphal¥etForn > 0, we denote by =" the set of words
of length at mosh.

A finite automatong’ over the alphabek is a tuple(S,.#,.%#,8) whereS is a finite set of states,
J CSis the set of initial states# C S is the set of final states a®dC S x ~ x S is the set of transitions.
We ertes—>t to denote thats, a,t) is a transition ofe/. For a wordw € Z*, we Wr|tes:> t to denote

the fact thatzz% can reach the statewhile reading the wordv starting from the state. The language
accepted by from a statesis

Lo(A) = {we P2y

Ist e?.s%sf}

and the language accepted $yis

— | (o

scd

2.2 Pushdown system

A pushdown systerR is a given by a tupl€Q,I", L,A) whereQ is a finite set of control statek, is the
finite stack alphabet]. € I" is a special bottom of stack symbol aAdd- (Q x I') x (Q x '=?) is the set of
transitions. We writdqg, A) — (p,w) for the transition((g,A), (p,w)). A configuration is a tupléq, w)
whereq is a state inQ andw is a stack content ifl" \ { L})* L. In the configuratiorc = (q,Aw), the
pushdown system can apply the transitionA) — (p,u) to go to the configuratioe’ = (p,uw). As is
usual, we assume that transitions of the pushdown systemragop the bottom of stack symbol or
does not push it on the stacke(all transitions involving the symbal are of the formgl — pL or
gL — pLAfor someAc Tl \{L}). We denote by;> (or simply — if P is clear from the context) the

relation on configurations defined by the transition®of\Ve denote by:P> the reflexive and transitive
closure of?.

3 Reachability problems for pushdown systems

A fundamental result for the model-checking of pushdowriesys is the fact that the set of stack con-
tents:

{WE r ‘ g€ Q, (q07—]-) = (q,W)}

that are reachable from an arbitrary initial configuratidnhe system, form a regular set of words over
the stack alphabédt.

A more elegant formulation of this result can be obtainedx}igreding the notion of regularity to sets
of configurations. A set of configuratiofis regular if for every statep € Q, the set of associated stack
contents{w € I'* | (p,w) € C} is regular. AP-automaton is a slight extension of the standard notion

A. Carayol and M. Hague 3

of finite automaton to accept configurations. The only extsumption is that the set of states of the
P-automaton contains the set of states of the pushdown sygtermally, aP-automaton is of the form
(S,Q,#,d) whereQ s the set of states of the pushdown systr configuration is(p,w) is accepted
by <7 if wis accepted byy starting from the state (i.e. we Lp(«)).

Theorem 1 [12] The set of configurations of a pushdown system reacHatnethe initial configuration
(i.e. the configuration(qo, L) for some arbitrary stateq) is regular. Moreover a P-automaton accepting
it can be effectively constructed from the pushdown system.

To the authors knowledge, the first proof of this result is ttuBichi in [12]. The formalism used
by Buchi is not that of pushdown automata but that of prefixdmewriting systems (which he calls
regular canonical systemsThese systems syntactically include pushdown autonmat@@nversely can
be simulated by pushdown automata.|Ini[23], Greibach fdsesalthe correspondence between the two
models and gives a simple proof based on a result on comextlinguages proved by Bar-Hillet
al. in [4]. Greibach also says that the result (for pushdown raata) was part of the folklore at the
time but never appeared in print. Even though effectiveséh@oofs do not provide a polynomial time
algorithn{ﬂ. The first polynomial time algorithm is due to Caucall[15, télich is based on a saturation
procedure of a finite state automaton. The idea behind thead@in method can be traced backlto [5].
This method was independently rediscovered and used foekubecking purposes by Bouajjaeii al.
in [7] and Finkelet al. in [22].

A more general problem is, given a regular set of configunaii® to compute the set:

Posf(C) = {c | IceC,c - c}

of configurations that can be reached from a configuratid in

The regularity ofPost'(C), for any regular se€, can be derived from Theorem 1. Indeed starting
from a pushdown systei and a regular set of configuratioBs we can create a new pushdown system
P’ which using new states builds any configuratiorCiand afterwards behaves like Clearly the set
of configurations reachable from the initial configuratidriPocoincide withPosg(C) when restricted to
the states oP.

As mentioned in the introduction, for model-checking puwgmit is often interesting to compute the
set of configurations that can reach a given sdtaaf configurations. This leads to consider the set

Prei(C) = {¢ | Ice C,d = ¢}

of configurations that can reach a configuratioin

The regularity ofPre*(C) for any regular se€ can be deduced from the regularityRdst (C). The
intuitive idea is to construct, fromR, a new pushdown systeRi whose derivation relation is the inverse
of that of P. For a transition of the forgA — p of P, we add the transitiongX — gAX for all symbols
X € T'. For a transitiorgA — pBC of P, we add two transitiompB — r ¢ g a) andrc qa)C — gA where
rcgA) IS @new intermediary control state. For any two configuretivandc’ of P, it holds thatc =-p ¢
if and only if ¢ =p c. HencePre;(C) is equal to the restriction dPost, (C) to the states oP and is
therefore regular.

The section is structured as follows. We present Buchigimal proof in Sectiof 3J1. In Sectién 3.2,
we present the saturation algorithm to compRBte*(C) introduced in[[7]. Finally in Sectioh 3.3, we
characterise the derivation relation of the pushdown aatamsing the saturation technique following
[15].

1we will see Sectiof 311 that it can easily be adapted to peoaigolynomial time algorithm.

4 Saturation algorithms for model-checking pushdown system

3.1 Bichi’s proof

We present a proof of Theorelm 1 adapted from [12]. In the waigproof, Buchi first reduced the
problem to a very simple form of pushdown system where ttiamsi are either of the forrpA — q or

p — gA. This model (callededuced regular systentsy Blichi) is completely symmetric and therefore
computingPre* or Post' is essentially the same thing. However to adapt the prodfaddrmalism used
in this article (recall that our formalism does not allowesilof the formp — gA), it is more convenient
to work with Pre* than withPost".

Given a pushdown system= (Q,F, L,A), we construct &-automaton acceptinBreis({(qs, L)})
whereq; is an arbitraryfinal state of the pushdown system.

The construction is based on the following remark: to re&ehdonfigurationqs, L) from a con-
figuration(p,Aw.L) it is necessary, at some point, to reach a configuration dfotfme (g, w_L) for some
stateq € Q. Moreover the first time such a configuration is reached, thierzs taken by cannot depend
onw since at no point was exposed at the top of the stack. Hence it must be the caspAhatq.

The P-automaton when accepting a stack contént.. A, L from the statep will guess the states
P1,- .., Pn Such thatpAy :P> p1 and piAi+1 :P> pit+1 for i € [0,n— 1] and will enter a final state upon

reading the symbal if p,L :P> qrL.

Consider theP-automatone” with set of state® U {s, } wheres, is a new state and the only final
state of the automaton. The transitions of the automatoare defined as follows:

e p2 qgifand only if pA:P>qfor all pge QandAel\{L},

. pi>sl if and only if pJ_?qu_for allpeQ.

A simple induction on the length of the stack content shows.4h accepts a stack contewtl. from
the stateg € Q if and only if (g,w.L) belongs taPre*({(qs, L)}).

To make the construction effective, it remains to compugertiationspA=- g and pL = g.l for
all statesp andq € Q and stack symboh € I'. The procedure provided by Bichi is exponefitidHe
first establishes a bound on the height of the stack necessaujld a derivation path witnessing these
relations. As the bound is polynomial in the size of the pashtsystem, the problem is reduced to a
simple reachability problem in a finite graph of exponendiaé with respect to the size of the pushdown
system.

To obtain a polynomial algorithm, it is enough to efficientiympute the relatioRew= {(pA gB) |
pA:P> gB}. Indeed pA:P> g if and only if there exists € Q andB € I" such thatpA? rB (i.e.

(p,A,r,B) € Rew) and’B — qis a transition of.

The key idea which is at the hedf the saturation algorithm presented in Secfion 3.2 is pess
Rew as a smallest fixed-point.

The relation Rew is the smallest relation (for the inclu¥ionQI" x QI such that:

e (pA pA) € Rewforall pe QandAeT,

2|n [A2], the P-automaton constructed is deterministic (essentiallyaiitematon obtained by applying the power-set con-
struction to the automaton presented here). With the addestr@int of determinism, it not possible to obtain a potyiel
algorithm as the smallest deterministic automaton is iregarexponential in the size of the pushdown system. To ocasvi
oneself, it is enough to consider a pushdown system thataiesa non-deterministic finite state automaton (NFA) bypiog
its stack until the bottom of the stack is reached and whebdftem of the stack is reached goes to the sjatiéthe NFA has
reached a final state.

SWe will see that the algorithm presented in Secfiod 3.2 perfoa fixed-point computation for the relatigfipA,q) |
PA=>a}.

A. Carayol and M. Hague 5

(pA gB) € Rew if pA— gBis a transition oP,
(pA qC) € Rew if (pA rB) € Rew and(rB,qC) € Rew,
(

pA gC) € Rew if pA— rBC is a transition ofP and there exists € Q andD € I' such that
(rB,tD) € Rew andD — g is a transition oP.

The property(1) expresses that Rew is reflexive ai® that it is transitive. Propert{2) ensures that
Rew contains the relevant transitionshfProperty(4) describes the case wh@mzp> gC is obtained

by a sequence of the foanA? rBC :P> qC whererB :P> .

Using the Knaster-Tarski theorem, we can compute Rew asrttiiedf an increasing sequence of
relations(Rew)i>o overQ x I'. The relation Reycontains the elements satisfying propgity and(2).
The relation Rey 1 is obtained from Rewby adding all the elements that can be derived by property
(3) or (4) in Rew. The sequencéRew);-q) is increasing for the inclusion and its limitg. the first set
such that Rey; = Rew) is equal to Rew. As at least one element is added at eachafieqe the limit
is reached, the limit is reached in at m@t?|"|? steps. Furthermore as the computation of Rerom
Rew can be done in polynomial time with respect to the sizB,dhe resulting algorithm is polynomial.
However the exact complexity is not as good as the algorittesgnted in Sectidn 3.2.

3.2 Saturation algorithm of [7]

In [7], Bouajjaniet al. present an algorithm that given a pushdown sysiem (Q,I", L,A) and aP-
automatons = (S,Q, d,.%#), constructs a new-automatonZ acceptingPre; (.2 (<7)). The only re-
quirement on< is that no transition i® goes back to a state ﬂiﬁ This restriction also implies that
none of the states i@ are final.

The algorithm proceeds by adding transitionsatofollowing a unique rule until no new transition
can be added. The resultifiyautomatonZ accepts the set of configuratioRse) (£ (7).
More precisely, the algorithm constructs a finite sequengg;con) of P-automata. Thé-automaton
0 is the automatonZ. All the P-automatas are of the form(S,Q,.#, &), meaning that they only
differ by their set of transitions. The construction gudiesnthat for alli € [O,N —1], & C &1 and
terminates whed, 1 = §. As at least one transition is added at each step, the digotérminates in at
most|Q|?|I"| steps.

The set of transitions . 1 is obtained by adding té;, the transition:

p 2 sif g % sandpA— qwis a transition of.

Note that only transitions starting with a state@are added by the algorithm. In particular, the language
accepted the automatoy from a state irS \ Q never changes.

The construction o, 1 from & ensures that the configurations that can reach in one stapfigwo
ration in.Z (%) belong to.Z (<% 1). Consider two configurations= (p,Au) andc’ = (g,wu) such that
pA— qwis a transition oP (and hence ? c’). Now assume that belongs taZ (). This means that

for some stats € S and some final statg € .%, q %Vf s%} st. The rule of construction a1 ensures
/| /|

thatp A sis a transition ofe 1. Hencep %:A> sy{:“> st and the configuration = (p,Au) is accepted by
141 141

1. As Z is the limit of the saturation procesise(Z = aiy_1 = 9\), £ () is closed under taking

4This requirement is easily met by adding a copy of each staeif necessary. This restriction is required to ensure that
the first invariant maintained by the algorithm holds irijia
5Recall that initially the states i@ are not the target of any transition

6 Saturation algorithms for model-checking pushdown system

the immediate predecessor for the relatJ}Fgr(i.e. if ¢ € £(#)andc = c thence £(A)). As ¥ (B)
includes.Z (), it follows thatPre; (£ (7)) C L (A).

The proof of the converse inclusion requires a more carefalyais. The algorithm maintains two
invariants on the transitions i§y. For alli € [0,N], the presence of a transitiqmi sin § guaranties
that:

1. pA:P> sif sbelongs taQ.

2. the configuratior(p,Au) belongs toPre* (£ (<)) for anyu € Zs(.o4) = Z(/) if s belongs to
S\ Q.
From these invariants, it follows that for alb> 0, (<) C Pres(£(<7)). In particular,.Z (%) C
Prep(Z(</)).

Remark 1 As indicated by the first invariant, if we restrict our attemt to transitions with both source
and target in Q, this algorithm is performing a fixed-poinhgoutation for the relation? restricted to

(QxT) x (Qx{e}). Indeed this relation can be characterised as the smaligdation (for the inclusion)
Z such that:

1. pAZqif pA— g belongs ta\,
2. pAZqifrBZqand pA— rB belongs t\,
3. pAZq if pA— rBC belongs ta\ and for some states Q, rB#s and sC#2q.

In fact, the algorithm performs the computation of the sastlisuch relation following the procedure
given by Knaster-Tarski theorem.

A naive implementation of this algorithm yields a complgxit &(|P|?|<7|®). However a more
efficient implementation presented in [20] lowers the camity to & (|Q|2|A|).

In [20], an adaptation of the algorithm for computiBge" is given to computéost'. The algorithm
is slightly less elegant as it requires the addition of neatest before the saturation process. In fact, it is
very similar to first applying the transformation to invdretpushdown system presented at the beginning
of this section and then applying the algorithm to comirrte.

In [39], Schwoon shows how to use the saturation algorithmatastruct for any configuration
accepted byZ a derivation path to some configuration#i(.<7).

3.3 Derivation relation of a pushdown system

In this section, we will see that the saturation method camdepted to characterise the derivation
relation of a pushdown system. Let us fix a pushdown sﬂl@m (Q,I,A), an initial stateqo and a
final stateq;. We aim at giving an effective characterisation of the foilog relation between stacks:

Derivp = {(u,v) € ' | (qo,u) = (as,Vv)}.

In [15], Caucal showed that DepvC I'* x I'* is a rational relationi.e. it is accepted by a finite state
automaton with output (also called a transducer).

The proof presented here is based|on [17] but similar idea®edound in[[38], 22]. The idea of the
proof is to use symbols to represent the actions of the pualhdystem on the stack: one symbol for

6To simplify the presentation, we do not take the bottom aflseymbol into account.

A. Carayol and M. Hague 7

pushing a given symbol and one symbol for popping it. The gogim system is transformed into a finite
state automaton that instead of performing the actions erstidick outputs the symbols that represent
these actions (see Sectibn 313.1). This finite state autmmatthen transformed using a saturation
algorithm so that it erases sequences of actions corresgptapushing a symbol and then immediately
popping it (see Sectidn_3.3.2). From théxlucedlanguage, the relation Degivis easily characterised
(see Sectioh 3.3.3).

3.3.1 Sequences of stacks actions
For every symboA € I', we introduce two symbols:
e A, which represents the action of pushing the symboh top of the stack,
e andA_ which represents the action of popping the symibéiom the top of the stack.

We denote by ;. the set{A, | Ac T} of pushactions, byl _ the set{ A_ | A€ '} of popactions and by
T the set” , UT _ of all action symbols.

Intuitively a sequencer = a;...a, €T is interpreted as performing the actian, followed by the
actiona, and so on. For instance, the effect on the stack of the trangitA — qBC s represented by
the wordA_C, B, . First the automaton removes tAdrom the top of the stack and then puslazand
thenB.

For two stacksi andv € I'*, we writeu <5 v if u can be transformed intoby the sequence of actions

a. For instance, we havaBB~> DCB for the o sequencé_B_C,D,. Note that some sequences of

actions such aB, C_ cannot be applied to any stack. We say that such sequenae=non-productive
i.e. there are na andv € [* such that ~> v.

From the pushdown systelfy we can construct a regular set of action sequences denetel/iBup
which contains all the sequences (even the non-produatigs)dhat can be performed Byvhen starting
in stategg and ending in statg;. Consider for instance the finite state autorﬂzt@,{qo} {ar},9)
where the set of transition®is given by:

pACByqes if pA—gBCeA
pﬂqeé if pA—qgBcA

pA—’>q65 if pA—gedl
It is clear that Behaviowrcharacterises Derivin the following sense:

(u,v) € Derivp ifand only if u~>v for somea € Behavioup.

However this representation of Desivs not yet very helpful. For instance, Behavipuran con-
tain non-productive sequences or sequences sughBsA. A C,C_ which is equivalent to the more
informative sequencA_B,.

"The finite state automaton does not strictly conform to tHmifien we gave in Sectiofil 2 as its transitions are labelled b
words and not single letters. This can be easily avoidedeatdist of adding intermediate states.

8 Saturation algorithms for model-checking pushdown system

3.3.2 Reducing sequences of actions

To simplify Behavioup, we first erase all factors of the fort, A_ for A€ I'. These factors can safely
be omitted as they do not affect the stack: the symbol is glhen immediately popped. A sequence
that does not contain any such factors is cafktliced

To perform this erasure, we introduce the relatierwhich relates a stadke I'* and a stack € '
if v can be obtained by erasing a facorA_ from u (i.e. u= uiA A _u, andv = uiup). Clearly, if
a — B then the sequencesandf are equivalent with respect to their actions on the stack :

for u,ve I, u% vif and only if u 2 v.

As the rewriting relation— is confluent and decreases the length of the sequence, eamrgree
o can be iteratively rewritten by» into a reduced sequence denoted ed For instance the reduced
sequence associatedBoA;AA A C,isB_C, asB_ A/ A/ AAC, B AAC, —B.C,.

In [5], Benois showe@ithat the set of reduced sequences corresponding to a regtilair sequences
is again regular.

Theorem 2 [5] 6] For any regular set R of action sequences, the corresliing set of reduced action
sequences:
RedR) = {Reda) | a € R}

is regular. Moreover given a finite automate# accepting R, an automaton acceptiRgdR) can be
constructed ing(|.«7|3).

The proof of this theorem is the essence of the saturatiohadetStarting with the automatos,
e-transitions are added until no nesatransition can be added. Tleetransitions are added according
to the following rule. We add ase-transition from a state to a stateq if it is possible to reacly from
p reading a word of formA, £*A_. It can be shown that the resulting saturated automatorpesctiee
language:

{BeT |a—*p forsomea € R}.

The construction is concluded by taking theclosure of the saturated automaton and restricting the
language to the set of reduced sequences (which is a regolgudge as it is the complement of the lan-
guageUacrT AL A_T"). A careful implementation of the procedure presentedjjyiées an algorithm
ino(|3).

3.3.3 Characterisation ofDerivp

One of the advantages of working with RB&havioup) is that we can easily remove non-productive
sequences. Indeed a reduced sequence is non-productivé @indy if it contains a factor of the form
A.B_forA#BerT.

We can hence compute the regular language:

RR = RedBehavioup) N (r*\ U T*A+Br*>

A£Bel

which is composed of the reduced and productive action seggecharacterising Degy

8Benois consider the erasure of all factor of the fokmA . as well asA, A_ but the proof is identical.

A. Carayol and M. Hague 9

The languageRR does not contain any factor in,_ and is hence included iR*I*. We can
express it as a finite union:
U X

i€[1,N]

where for alli € [1,N], X; is a regular language in* andY; is a regular language i, .

Let us denote by; the regular sefAl---A"c *| | Al ... A" € X;} of words inl"* that can be popped
by a sequence iX; and byV; the regular sefAt---A" e r*| | AT --- Al €Y;} of words inl* that can be
pushed by a sequenceYn

The relation Derig can be characterised as follows: a paw,w») belongs to Derip, if for some
i € [1,N], wy can be written aawwith u € U; andw, can be written aswfor somev € V,. In other terms,
the relation Derig can be written as a finite union of relations that remove ayoffihe stack belonging
to a certain regular language and replace any word in anotgetar language. As these relations are
easily accepted by finite transducer, so is Deri@ombining all the steps, we obtain a polynomial time
algorithm for computing a transducer accepting Defrom P.

4 Winning regions of pushdown games

The saturation technique also generalises to the anafysisshdown games with two playerSloise and
Abelard. The two players may, for example, model a progrémi$e) interacting with the environment
(Abelard). While the program can control its next move baseds internal state, it cannot control the
results of requesting external input. Hence, the extenmaltiis decided by the second player.

A pushdown game may be used to analyse various types of fiexpeyVe will consider three, in-
creasingly expressive, types of properties here: reakfyaBitichi and parity. We will begin by defining
games with generic winning conditions and then consideiink@ntiations of this generic framework
for each winning condition in turn. We will simultaneousliscuss the saturation algorithm for each of
these properties and show how they build upon each other.

The saturation algorithm was first extended to pushdowrhegality games by Bouajjaret al. [7].
Their algorithm was extended to the case of Blichi games loh&te13] and then to parity games by
Hague and Ongd [28]. Our presentation will follow that of Hagand Ong since it provides the most
general algorithm, though we remark that all the esserdieds of the algorithm were in place by the
introduction of the Biichi algorithm. The main contributiof Hague and Ong was a proof framework
that simplified the technical arguments by Bouajjanal. and Cachat and allowed the full parity case to
go through.

4.1 Preliminaries
4.1.1 Pushdown games

We can obtain a two-player game from a pushdown sy$day the addition of two components: a par-
tition of the configurations o into positions controlled bij‘:loise and positions controlled by Abelard;
and the definition of a winning condition that determineswuliener of any given play of the game.

In the following, for technical convenience, we will assufoeeachqg € Q andA € I there exists
some(qg,A) — (p,w) € A. Together with the bottom-of-stack symbol, this condit@rsures that from
a configuration(g,w.L) it is not possible for the system to become stuck; that isshre@aconfiguration
with no successor.

10 Saturation algorithms for model-checking pushdown system

A two-player pushdown game is a tupte= (Q,I", L,A,W) such thatQ,I", L,A) defines a pushdown
system,Q is partitionedQ = Qg W Qa into Eloise and Abelard positions respectively, aiids a set of
infinite sequences of configurationsf

A play of a pushdown game is an infinite sequeriqggwo), (q1,W1),... where (gop,Wp) is some
starting configuration antj;1,wi;1) is obtained from(g;,w;) via some transitiorig;, A) — (Qi+1,W) €
A. In the case wherg € Qg itis Eloise who chooses the transition to apply, otherwise Aldethooses
the transition.

The winner of an infinite playdo,wo), (01, W1), ... is Eloise if (o, Wo), (01, W1),. .. € W; otherwise,
Abelard wins the play. The winning regio#f of a pushdown game is the set of all configurations from
which Eloise can always win all plays, regardless of the transitichosen by Abelard.

4.1.2 Alternating automata

To extend the saturation algorithm to compute the winnimgpore of a pushdown game, we augment the
automata used to recognise sets of configurations witmalien. Bouajjankt al. first used alternating
automata to analyse pushdown reachability games via siatufd], however, they used the equivalent
formalism ofalternating pushdown systerrather than pushdown games. An alternating automaton is a
tuple« = (S,I",.#,d) whereS is afinite set of state§, is a finite alphabet# C S is the set of accepting
states, and C S x ' x 25 is a transition relation. Note that we do not specify a sehitial states. This

is because it is more convenient to present the followingltgesn terms of the stacks accepted from
particular states, rather than fixing a set of initial states

Whereas a transitios> t of a non-deterministic automaton requires the remaindtrenfvord to be

accepted from, a transitions 2> Sof an alternating automaton requires that the remainddreoivord is
accepted from all statese S It is this “for all” condition that captures the fact thiatoise must be able
to win for all moves Abelard may make.

More formally, a run over awordy ... A, € I'* from a states; is a sequence

A An
§ M A,

where eacl§ is a set of states such that= {5}, and for each X i < nwe have

VseS§.3s % Se 5ASC S, 1.

The run is accepting §,,1 C .#. Thus, for a given statg we define%;(.«7) to be the set of words over
which there is an accepting run of from {s}.

When§ is a singleton set, we will often omit the set notation. Faaraple, the run above could be
written

Aq A
N

Further more, whew = A; ... A, we will write s % Sas shorthand for a run frosito S.

4.2 Pushdown reachability games

One of the simplest winning conditions for a game is the rebitiy condition. Given a target set of
configurationsC, the reachability condition states thHalbise wins the game from a given configuration
if she can force all plays starting at that configuration tmea@onfiguration irC.

A. Carayol and M. Hague 11

That is, a pushdown reachability game is a tuj@del”, L,A,C) such thatQ,I",A,W) is a pushdown
game where
W = {cp,Cy,... | Ji.c;eC}

is the set of all sequences of configurations containing smméguration irC.

4.2.1 Characterising the winning region

In the sequel we will need to combine least and greatest firgttp We will useu to denote the least
fixed point operator, and to denote the greatest fixed point operator.

In the simple case of reachability for a pushdown sydReamd set of target configuratio@swe can
characterise the winning regio#i = Pre;(C) as

UZ.CUPrep(2)
where

Pres(Z) = {(p,w>

That is, to appear i for a configuration belonging thloise, it must be possible for her to choose a
transition that progresses towafdsFor configurations belonging to Abelard, it must be the ¢hathe
cannot help but choose a transition that progresses towards

peQe = 3d(pw)—=ccezZ A
peQa = VY(pw)—c.ceZ ’

4.2.2 Computing the winning region

Fix a pushdown reachability gante= (Q,I",A,C). We will show how to construct an automatc#
whose state set includes the stptlor all p € Q andw € £ (%) iff (p,w) € 7.

Computingéloise’s winning region is a direct extension of the saiaratlgorithm forPrej(C)
in the non-game setting. We assufés a regular set of configurations represented by an aliaghat
automatones = (S,I",8,.%) such thaQ C S and there are no-incoming transitions to any stai®.in

The saturation algorithm constructs the automatbthat is the least fixed point of the sequence of
automatae, o4, ... whereap = o = (S,I, &, %) andef 1 = (S,I", &11,.%) whered ;1 is the smallest
set of transitions such that

1. & C d4q, and

2. for eachg € Qg, if (g,A) — (p,w) € Aandp = Sis a run of., then
a
q— S€ g1
and
3. foreachg € Qa andA T andSC S such that for all
(@A) = (p,w) €A
there exists a rup Y g of o with S C S, we have
a
q—S€di1-

One can prove thdtp,w) € # iff w e Z,(%). Thus we obtain regularity of the winning region. Since
the maximum number of transitions of an alternating automas exponential in the number of states
(and we do not add any new states), we have #h& constructible in exponential time.

Theorem 3 The winning region of a pushdown reachability game is regatad constructible in expo-
nential time.

12 Saturation algorithms for model-checking pushdown system

4.2.3 Winning strategies

Cachat has given two realisationsEibise’s winning strategy in a pushdown reachability garoenfa
configuration in her winning region [13] . The first is a pamital strategy that requires space linear in
the size of the stack to compute. That is, he gives an algorittat reads the stack and prescribes the
next move thaEloise should make in order to win the game. The algorithngasscosts to accepting
runs of % for configurations irn#” by summing costs assigned to individual transitions.

Alternatively, Cachat presents a strategy that can be mghted by a pushdown automaton that
tracks the moves of Abelard and recommends mov&kdise. Since the automaton tracks the game, the
strategy is not positional. However, the prescription @fiext move requires only constant time.

In his PhD. thesis [14], Cachat also argues that similatesii@s can be computed for Abelard for
positions in his winning region.

4.3 Pushdown Richi games

Plays of a game are infinite sequences. The reachabilityittamdnly depends on finite prefixes of these
plays, hence games are won within a finite number of moves {ilevents the specification of liveness
properties such as “every request is followed by an ackragvient”. Since it is not possible to know
when to “stop waiting” for an acknowledgment to arrive, ihist possible to specify such conditions as
simple reachability properties.

Biichi conditions allow liveness properties to be definedteideciding the winner of a particular
play can take the whole infinite sequence into account. Weaeefipushdown Biichi game as a tu-
ple (Q,I, L,A/F) — whereF C Q is a set of target control states — which defines a pushdowre gam
(Q,I, L,A,W) with

W = {(po,Wo), (p1,W1),... | Vi.3j>i.pjeF} .

That is,Eloise wins the play if there is some control staté-ithat is visited infinitely often.

Cachat generalised the saturation method to construct thieing region of a pushdown Biichi
game [13] by introducing the nesting of fixed point compuwtasgi and projection described below.

To characterise the winning region of a pushdown Biichi gaarsngle least fixed point computa-
tion no longer suffices. Intuitively this is because satigfythe Biichi condition amounts to repeatedly
satisfying a reachability condition; that is, repeatedigahing a control state iR. We will begin by
giving the characterisation, and then decoding it in thiovahg paragraphs. By abuse of notation, we
will write F to also denote the set of configuratiofig,w) | p € F } andF to denote its complement.
The winning region oEloise can be defined as

VZo.uZ;. (F NPrep(Zo)) U (FNPrep(Zy)) .

There are two pre-steps in the formuRrep(Zy) andPrep(Z;1). When a configuration is iff then we
require thatEloise can force the next step of play to stay witdij When the configuration is not ia
we require thaEloise can force play to stay withif.
To understand the role of the different fixed points, imagingame where there is only one move
from some configuratio(p, w)
(p,w) — (p,w) .

In the case wherg@ € F it will be the case thafp,w) appears in the greatest fixed poii This is
because greatest fixed points can be “self-supporting”:eifrvelude(p, w) in an approximation o¥y,
then it will appear in the next approximation 4§ by virtue of the fact that it was in the old valuation.

A. Carayol and M. Hague 13

In the other case, wham¢ F, we would requirg p,w) to appear in the least fixed poifit. However,
since the least fixed point is the smallest possible fixedtpigmembers cannot be self-supporting. That
is, if we took (p,w) out of our approximation, the next approximation would maiide (p,w): there is
nothing external compellingp, w) to be in the least fixed point. This is why a reachability propées a
least fixed point: it must contain only the configurations taentually reach a target configuration — it
cannot put off satisfying this obligation for an infinite nbar of steps.

In terms of Biichi games this difference makes sense: a pityrépeatedly visits only the configu-
ration (p,w) is only winning if p € F. If p ¢ F then a configuration can only be winning if it eventually
(after a finite number of steps) moves to a configuration thatehcontrol state iR. Thus, the least fixed
point represents configurations that must eventually reatipood” configuration, while the greatest
fixed point represents good configurations that are ablepgpastithemselves.

4.3.1 Computing the winning region

Automaton representation of multiple fixed points The saturation method for reachability properties
computed a single fixed point with a single fixed point vagate can think of the successive automata
a, 911, ... as successive approximations of the valug.of he final automaton computed gives the value
of Z that is the solution to

HZ.CUPrep(Z) .

In the case of Biichi games, there are two nested fixed pomputations over the variableg and
Z1. The winning region is the greatest fixed point ¥yt However, in order to compute this fixed point
we also have to compute the least fixed pointZgrHence, we will need an automaton that can represent
two different sets of configurations: the approximatiorZgfas well as the approximation &@j. Thus,
instead of having a stajgof the alternating automaton for each control sagteve will have two states
p® and p'. A configuration(p,w) appears in the current approximationZfif it is accepted fromp®,
and it appears in the current approximatiorzZeff it is accepted fromp!. We will also use control states
of the formp? to hold intermediate values of the computation.

Finally, the automata we build will have two additional s&fthese will be the only states that are
not of the formp? for somea). There will be one stats, that will be the only accepting state. Since
all stacks finish with the bottom-of-stack symhb] this state will have no outgoing transitions, and all

incoming transitions will be of the forrm— {s. }. No other transitions in the automaton will be labelled
1.
The other additional state & from which all stacks are accepted. This state has the aggoi

transitionss® 2 {s*} forall Ac T with A% L, ands EN {s. }.

Evaluation strategy The saturation method computes fixed points following Kela$arski theorem.
That is, to compute a least fixed point, it begins with the $stlpotential value (the set of target
configurationsC in the case of reachability properties, and the empty séidrcase of Buchi properties).

It then adds configurations to this set (by adding new trieomsi) that also necessarily appear in the least
fixed point. This process is repeated until nothing more s¢ethe added — at which point the least fixed
point has been calculated.

To compute a greatest fixed poity we follow the dual strategy. We begin with the largest pdssib
value, which is the set of all configurations, which we wilpresent by stateg® with all possible
outgoing transitions. Next, the least fixed poiitis calculated given the initial approximation 4.
Once the value of; is known, it becomes our new approximationZgf Notice that this approximation

14 Saturation algorithms for model-checking pushdown system

is necessarily smaller than the initial attempt (both imi®iof configurations accepted and transitions
present). We then recalculate the least fixed poinZiowith the new smaller value &p. In this way,
starting from the largest possible value Hyrwe successively shrink its value until a fixed point is found.
This fixed point will be the greatest fixed point.

Projection When computing the greatest fixed point By we repeatedly compute a least fixed point

for Z;. Each fixed point foz; becomes the new approximation4y. Hence, during our algorithm we

need a method of assigning the valu&Zgto Zy. We call this manipulation of transitiorsojection
Suppose the only outgoing transition frquhis

pl ﬁ) {ql’ pO}
and we want to assign the new valuepSf To do this we simply remove all transitions fropf (the old
value) and introduce the transition
p0 i) {qO’ pO} '
There are several things to notice about this new transiffdre first is that it emanates fropf rather
thanp!. Next, we have changed the target sgltéo ¢°. This is because we are renaming all the states
annotated with 1 to be annotated with 0. Finally, notice Whave not changed the target stpie
By leaving p® we are no longer simply transferring the valueZgfto Zy since we are changing the
outgoing transitions fronp°. It is provable that this change in value is benign with respe the fixed
point of Zy: since p® should accept all configuratiori®,w) in the fixed point forZ, the fact that any
run that reacheg® may accept additional configurations coming from the newevalf p° rather than
the old simply means that we are accelerating the computafithe fixed point.
For example, suppose we had a pushdown Biichi gamepndthk N Qg and an automaton with the
transitions
pt & {p°} andp! 5 {s;} andp® = {s, }
and the pushdown game contains (amongst others) thé pde — (p,€). In particular we accept the

configuration(p,AL) from p', and we do so because we can popAfte reach(p, L) (from which we
supposeEloise can win the game). After projection, we will have trensitions

ALAN {p°} andp® S {s}.

Notice we now have a loop from® enabling any configuration of the foriip,A* L) to be accepted
from p°. Thus we have increased the valuation during projectionvéyer, this is benign because, by
repeated applications 0p,A) — (p,€) Eloise can reackp, L) and win the game. Thus, the projection
has collapsed an unbounded sequence of moves into a siagétiton.

To calculate the fixed point faZ; we begin with the empty set as an initial approximation. Then
we compute the new approximation fay. While computing this approximation we will use states of
the form p? to store the new value. Thus, to assign the new approximatiah we simply perform

projection from the stateg? to p! in the same way that we projected when assig@intp Zo.
We thus define a projection function on states

S s=s'Vs=s|
Typ(s)=qS s=p'Ay#a
pP s=p”

which generalises naturally to a function on sets of stages(S) = {1, 5(s) | s€ S}.

A. Carayol and M. Hague 15

Algorithm Fix a pushdown Biichi gameé = (Q,I", L,A,F). We begin our presentation of the algo-
rithm by presenting a simple function for performing the jpotions described above. The function
PrOX<Z, a, B) projects the value of the statp$ to p? and deletes all the states.
function PROJ.<7, a, ()

(S,,0,%) + o

S"S\{p? | peQ}
sAses | Vpe Q.s# pP As# pﬁ}u
PP A Ty (S ‘ p® & se 5}

return (S',I,9',.%)
end function
The main algorithm contains two nested fixed point compantati the outer foEZg and the inner for

Zy. The initial automaton#® contains only the states ands, with transitions as described above. That
is /%= ({s",5,}.,1",5,{s}) with

O

6:{5*@{3*} |Ae r/\A;é_L}U{S*i){SL}} .

The algorithm is then a call to the functionxp(.<7°) defined below. We define two functions for com-
puting the fixed points foZg andZ;. Both of these functions are similar to each other: theyrbégi
setting up an automaton representing the initial approtioneof the fixed point, either by adding no
transitions (the empty set) or all transitions (the largeg). They then enter a loop of computing the
next approximation and then using projection to transfied @ccelerate) the new value to the staier
p! as appropriate. The functionXp(.«”) computes the fixed point fat and uses K1 (<) to compute
the next approximation, whilelk1 (<) computes the fixed point faf; and uses a functionf®(«) to
compute the next approximation. These two functions are defined
function Fixo(<?)
(S,,0,%) + o
S« Su{p’ | peQ}
8 {pAs|peQracTrA#LASCS \{si}}u{p® S (s} |peQ}
B+ (S,1,0,%)
repeat
B+ FIX1(A)
B+ PrROJZ, 1, 0)
until % unchanged
return %
end function

and

function Fix (<)

(S,I,0, %) + o
S'+su{p'|peQ}
B+ (S,T,0,F)
repeat

B + PRE(A)

%« PROJZA, 2, 1)
until % unchanged

16 Saturation algorithms for model-checking pushdown system

return £
end function .

The inner fixed point computation uses a functiockeRz) to compute the step of the calculation corre-
sponding to
(FNPrep(Zo)) U (FNPrep(Zy)) .

This function adds transitions in the same way as the looptofation algorithm for reachability games,
except it is sensitive to the two different fixed point vatesh For convenience, we define the function

Q such that
0 peF
Q(p) =
1 pé¢F.
We can then define

function PRE(«)
(S,[,0, %)+ o
S« Ssu{p® | peQ}
5 P4 s|peQeri(pa) — (qw) eagtP % S}U
P2 A S| peQanv(pa) — (qw) e AIgRP %8S C S}
return (S',I,0',.%)
end function .
The automaton# that is the result of K o(<7°) will be such that p,w) € # iff we Zp(%). Since
there are at most an exponential number of transitions imtitdematon each fixed point may iterate at
most an exponential number of times. This gives us an ovexalbnential run time for the algorithm.

Theorem 4 The winning region of a pushdownighi game is regular and computable in exponential
time.

Note that for the one player cases(all states belong téloise), the computation can be done in
polynomial time[[7| 22].

4.3.2 Winning strategies

Cachat also showed that, like in reachability games, it &siinbe to construct a linear space positional
strategy and a constant time (though not positional) pushdirategy foEloise. However, in his PhD.
thesis [14] Cachat observes that adopting his techniquesdimputing strategies for Abelard is not
clear. However, it is known that, even for the full case ofitgagames, a pushdown strategy exists using
different techniques [57, 40].

4.4 Pushdown parity games

Parity games allow more complex liveness properties to leelad. To define a parity game, each
configuration is assigned a “colour” from a set of coloursrespnted by natural numbers. The winner
of the game depends on the smallest colour appearing ititen in the run: if it is even the&loise
wins the game, else Abelard wins.

More formally, given a sequence of configuratigns- (qo,Wo), (d1,W1),... let Inf(p) be the set of
control states appearing infinitely oftengn That is

Inf(p) ={q |Vidj>igj=q} .

A. Carayol and M. Hague 17

Given a set of control stat€3and maximum colouk, letQ : Q — {0,...,k } be a colouring function
assigning colours to each control state. We can geneflisesets of control staté3by taking the image
of P. Thatis,Q(P)={a | Ipe PQ(p)=a }.

A pushdown parity game is a tupl®,I, L,A,Q) whereQ : Q — {0,...,k} is a colouring function
assigning to each control state a colour from the{8et.., k }. Moreover, the tuple defines a pushdown
game(Q,I", L,A,W) where

W= {p | min(Q(Inf(p))) is even} .

Thus, a Blichi game is a special case of a parity game, whergetof colours i§0,1} and

-2 25F

4.4.1 Characterising the winning region

The characterisation dfloise’s winning region in terms of fixed points is a naturafemsion of the
Buchi version. That is, assumingto be odd and writin@€, to denote{(p,w) | Q(p) = o }, we need

VZo.pZ1.- - VZi-1.uZc. |) (CanPrep(Zy)) .

0<a<k

This formula can be understood as a generalisation of trehiEfarmula, whereF = Cy andF = C;.
When the colour of a configuration is odd, then it is bound l®eat fixed point. Hence, it must eventually
exit this fixed point by visiting a configuration with a smalolour (just like a configuration i had

to visit a configuration ir). When the colour is even, then it is bound by a greatest fixéat p- hence

a plgy can stay within this fixed point, never visiting a smatiolour, and satisfy the winning condition
for Eloise.

4.4.2 Computing the winning region

Fix a pushdown parity game = (Q,I", L,A,Q). Computing the winning region in a pushdown parity
game is a direct extension of the algorithm presented fahBgames. Since a Biichi game is simply a
pushdown parity game with two colours, we generalise thénmgesf the fixed point calls to an arbitrary
number of colours. To this end we introduce a functiors BATCH(2/, a) that manages the level of
nesting, and performs a fixed point or a pre-step analysip@®griate.
function DISPATCH(<7, Q)
if a =k+1then
return PRE(<?)
else
return Fix(<7, a)
end if
end function
Using this function we can define a generic fixed point funtti@sed on the Bichi functions. This
function performs the nested calculations and the prajedis before. The initial transitions from the
new states introduced by the function depend on the parity:oivhen computing an even (greatest)
fixed point, we add all transitions, and when computing an(tefst) fixed point, we add no transitions.

function FIx (<, a)

18 Saturation algorithms for model-checking pushdown system

(S,,0,%) + o
S« {p* | peQ}
if a is eventhen
0 «+ {p“ A>S\ pe QANAeT NA# LASC S’\{sl}}u{p“ EN {si}| peQ}
else
0+ 0
end if
B+ (SUS,T,0Ud, %)
repeat
B + DISPATCHZA, a + 1)
B+ PROJA, a+1,a)
until % unchanged
return £
end function

Finally, we redefine the ®R(.<) function to add transitions to the correct initial statdkte, we were
already usingQ to distinguish between different fixed point variables, deethis function is almost
identical to the Buchi case.
function PRE(%/)
(S,I,0, %) «+ o
S+ Su{p*t|peQ}
pi+l As peQeAd(p,a)— (qw) e AgRP 5 s

U
PH1A S| peQarv(pa) — (qw) e AIgRP % SSC S}
return (S',I,9',.%)
end function

Thus, to compute the winning region of a pushdown parity gameemake the call BSPATCH(.«7©, 0)
whereg7? is the initial automaton with only the statesands, as defined in the Biichi case.

The automator that is the result of BsPATCH(.<7 ©, 0) will be such thatp,w) € 7 iff we Lo (B).
Since there are at most an exponential number of transitiche automaton each fixed point may iterate
at most an exponential number of times. This gives us an thex@onential run time for the algorithm.

O

Theorem 5 The winning region of a pushdown parity game is regular anchgotable in exponential
time.

4.4.3 Winning strategies

Unfortunately, it is currently unknown how to compute thenming strategies foEloise and Abelard
using the saturation technique for pushdown parity gamesvender, using a different approach, both
Walukiewicz [57] and Serré [40] have shown that a pushdovateqy exists for both players.

5 Implementations and Applications of Saturation Methods

In this article, we have presented the saturation methaah fotheoretical standpoint. The method,
however, is an algorithmic approach that is well suited tplamentation, and several tools have been
constructed using saturation as its core technique.

A. Carayol and M. Hague 19

5.1 Single Player Implementations

Perhaps the most famous of these tools is Moped([21, 39] ariddarnation as a model checker for
Java, JMoped [52, 50]. In taking the algorithm from a theoa¢ttool to a practical one, a number of
new concerns had to be taken into account.

The rules of a pushdown system roughly correspond to thersatts in a program. In a program
with thousands of lines, a fixed point iteration that chedksing each iteration, whether each rule leads
to new transitions in the automaton would be woefully ingfit. In constructing Moped, Esparea
al. [20] showed how this naive outer loop can be reorganised thathat each iteration, only the relevant
rules of the system were considered, leading to a signifiogmovement in performance.

A second consideration of applications to the analysis og@mm models is the handling of data
values. Boolean programs are essentially pushdown systhere each control state and stack character
contains a valuation of a set of global and local boolearatses respectively. These boolean programs
are the natural output of predicate abstraction tools ssGPIABS [18] as well as the target compilation
language of JMoped.

Since there are only finitely many valuations of sets of baohariables, they can directly be encoded
as control states or characters and standard pushdowrsentdghniques can be employed. However,
since they are also exponential in number, such an appredohérently inefficient. Hence, Espareg
al. introducedsymbolic pushdown systeffi#&d] which make boolean valuations first class objects. The
saturation technigue was extended by adding BDDs repilingerdriable valuations to the edges of the
P-automata, leading to an implementation capable of amaysymbolic pushdown systems derived
from real-world programs.

Around this time it was observed by Reps that the BDDs coulteptaced by any abstract domain
of values that was sufficiently well behaved, and many statalyses could be derived. This led to the
introduction ofweighted pushdown systed®]] (and, indeedextendedweighted pushdown systems
amongst other improvements [33, 32]), of which symbolichglesvn systems and their BDD represen-
tation were an instance. The developers of Moped createddighted pushdown system librdB8] as
a component of Moped, and Regisal. developed WALI[56] implementing these new algorithms.

5.2 Two-Player Implementations

Perhaps the most straight-forward optimisation to makbecaturation technique as presented for two-
player games is via the observation that a transition

sAs
is effectively redundant if there exists another tranaitio
s&s

with S C S This is because an accepting run fr&aontains within it an accepting run fro®, and
thus the former transition can be removed.

When considering reachability games, it is also possibienfirove the naive fixed point iteration,
as in the single-player case, to avoid checking againstuslhgown rules during each step of the im-
plementation. Such an optimisation was introduced by Swniserabuttet al. and implemented with
applications to certificate chain analysis|[53].

This work has recently been built upon by Song who has deeéleprious tools based upon reduc-
tions to Biichi games and tools for their analysis. Primgatis work has focussed on a specification

20 Saturation algorithms for model-checking pushdown system

language that is an extension of CTL and its translation $gtabolic pushdown Biichi games [44] 46]
resulting in the tool PuMoC [45]. The main application oftinork has been in the detection of malware.
More recently still, this work has been developed for LTkeliproperties to deal with situations where
the CTL approach was insufficient [47], culminating in thevidaDe tool [49].

However, the combination of BDD representations and aérg automata is not an easy one, since
BDDs lack the necessary alternation for a direct embeddiggice, Song’s algorithm pays an extra expo-
nential in its worst-case complexity (doubly exponent&her than exponential), although the practical
runtime is improved. The optimal inclusion of symbolic regentations into the analysis of two-player
games remains an open problem.

The saturation technique for the full case of parity gameslieen implemented in the PDSolver
tool [27] and applied to dataflow analysis problems for Javmams. Due to the interactions between
the several layers of fixed points, it is not clear how to adagptarzeaet al. and Suwimonteerabutt al’s
efficient algorithms to this case, nor how to include symbaddipresentations. These remain limitations
of the tool, and interesting avenues for future work.

6 Extensions of the Saturation Method

In this article we have looked at the different saturatiorthrods for pushdown systems. Across several
articles, the technique has proved to be applicable to warxtensions to the basic model. We briefly
list some of these results here.

Concurrency The reachability problem for pushdown systems with two orerstacks is well known

to be undecidable. Since multiple stacks are needed to mud#tthread recursive programs, a number
of underapproximation techniques have been studied foctwtiie reachability problem is decidable.

One such technique isounded context switchin36] where the number of interactions between the
threads is limited to am priori fixed numberk. While this cannot prove the absence of errors, it is
effective at finding bugs in programs, since, empiricallyg® usually manifest themselves within a
small number of interactions. This restriction can be rethfurther by allowing a bounded number of

phaseq54] (where all threads run concurrently, but during eacasghonly one thread is allowed to pop

from its stack), or a bounded scope |[55] (where, threads credsiled in a round-robin fashion, and

characters may only be removed from the stack if they werbgaliat most a fixed number of rounds

earlier).

The saturation technique has proved useful for each of tlesdgctions. In particular, Moped has
been extended to provide context bounded analysis of mihaltik pushdown systenis [51] by Suwimon-
teerabuthet al. and saturation was used by Seth to provide a regular soltditime global reachability
problem for phase bounded pushdown systémss [43]. The afigioof that the reachability problem for
scope bounded pushdown systems is decidable was itseltemsen of the saturation technique [55].

An alternative restriction that permits a decidable rehiitya and LTL model checking problem
is that ofordered multi-pushdown systemdiere only the leftmost non-empty stack is able to remove
characters. Atig provides two extensions of the saturagghnique in this directiori [1]. First, instead
of each pushdown rule adding a fixed sequence of charactéhe tetack, he allows rules to contain
languages of sequences that may be pushed. If it is deciddigther the language of a rule intersected
with a regular language is empty, then an augmented sanrchnique leads to an effective analysis
algorithm. In particular, the model checking problem fodened pushdown systems can be solved with
this formalism.

A. Carayol and M. Hague 21

Finally, Song generalises his LTL model checking algorghimthe case of pushdown systems with
dynamic thread creation [48], again using a saturationnigcie at its core.

Ground Tree Rewrite Systems and Resources Ground tree rewrite systems can be thought of as
pushdown systems with a single control state and a more exnsphck structure. That is, the stack is
a tree rather than a word. Rewrite rules in this system reptacnplete subtrees. For example a push
rule (p,A) — (p,BC) can be considered to be replacing the subtree consistimg ieaf nodeA with the
subtreeB(C) (i.e. aB-node with eC-leaf as a child). In 1987, Dauchet al. used saturation to show that
the confluence problem for these systems is decidable [19fre Mecently, Lang and Loding adapted
this method to analyse prefix replacement systems with resausage [34].

Higher-Order and Collapsible Pushdown Systems Pushdown systems provide a natural model for
first-order recursive programs. When considering higlideoprograms, we can ukégher-order push-
down systemf85] whose stacks have a nested “stack-of-stacks” strecilinese systems correspond to
higher-order recursion schemeastisfying asafetyconstraint[[30]. Recently, these systems were gener-
alised tocollapsible pushdown systerfwéa panic automatd31]), providing an automata model without
the need for the safety constraint [25].

The saturation technique was first applied to the analyskigbfer-order systems by Bouajjani and
Meyer [8] who considered higher-order pushdown systemi wisingle control state. This algorithm
was generalised by Hague and Ong to permit an arbitrary nuoflzntrol states [26]. An alternative
construction in the case of second order higher-order myshdystems was provided by Sethi[41].

More recently this approach was developed by Broadk¢rt. to obtain a saturation algorithm
for the full case of collapsible pushdown systeims [9], Iagdb the analysis tool C-SHORe [10]. This
algorithm was applied directly to the analysis of recurssachemes (without the intermediate automata
model) by Broadbent and Kobayashi, resulting in the Hor&alt[tL1].

Finally, the case of concurrent higher-order systems has beefly considered. Seth used satura-
tion to show that parity games over phase-bounded highr@ushdown systems (without collapse) are
effectively solvable[[42]. Recently, Hague showed thatdhwiration approaches for first-order phase-
bounded, ordered and scope-bounded pushdown systems adayited to solve the analogous reacha-
bility problems for collapsible pushdown systers|[24].

References

[1] M. F. Atig (2012): Model-Checking of Ordered Multi-Pushdown Automatagical Methods in Computer
Scienced(3), doi10.2168/LMCS-8(3:20)2012.

[2] T. Ball, V. Levin & S. K. Rajamani (2011)A decade of software model checking with SLA®bmmun.
ACM 54(7), pp. 68-76, doin.1145/1965724 . 1965743.

[3] T.Ball &S. K. Rajamani (2000)Bebop: A Symbolic Model Checker for Boolean ProgramsProceedings
of SPIN’0Q pp. 113-130, d0i:0.1007/10722468_7.

[4] Y. Bar-Hillel, M. Perles & E. Shamir (1961)On formal properties of simple phrase structure grammats
Phonetik Sprachwiss. Kommunika#, p. 143172.

[5] M. Benois (1969):Parties rationnelles du groupe librecComptes-Rendus de I'’Acamdémie des Sciences de
Paris, Série 269, pp. 1188-1190.

[6] M. Benois & J. Sakarovitch (1986Y0n the Complexity of Some Extended Word Problems Defined iy Ca
cellation Rules Inf. Process. Let6, pp. 281-287, doi0n.1016/0020-0190(86) 90087-6.

http://dx.doi.org/10.2168/LMCS-8(3:20)2012
http://dx.doi.org/10.1145/1965724.1965743
http://dx.doi.org/10.1007/10722468_7
http://dx.doi.org/10.1016/0020-0190(86)90087-6

22 Saturation algorithms for model-checking pushdown system

[7]1 A. Bouajjani, J. Esparza & O. Maler (1997Reachability Analysis of Pushdown Automata: Applicatimn t
Model-CheckingIn: Proceedings of CONCUR’9Pp. 135-150, doi:0.1007/3-540-63141-0_10.

[8] A.Bouajjani & A. Meyer (2004):Symbolic Reachability Analysis of Higher-Order Contesge-Processes
In: Proceedings of FSTTCS'Q0gp. 135-147, doi:0.1007/978-3-540-30538-5_12.
[9] C. H. Broadbent, A. Carayol, M. Hague & O. Serre (201&)Saturation Method for Collapsible Pushdown
Systemsin: Proceedings of ICALP’12p. 165-176, doi0.1007/978-3-642-31585-5_18.
[10] C. H. Broadbent, A. Carayol, M. Hague & O. Serre (2018}SHORe: a collapsible approach to higher-
order verification In: Proceedings of ICFP’13®p. 13—-24, doit0.1145/2500365 .2500589.
[11] C. H. Broadbent & N. Kobayashi (2013Baturation-Based Model Checking of Higher-Order Recursio
Schemesin: Proceedings of CSL’13p. 129-148, d0i:0.4230/LIPIcs.CSL.2013.129.
[12] R. J Buchi (1964)Regular canonical system#rchive for Mathematical Logi€(3), pp. 91-111, doio.
1007/BF01969548,
[13] T. Cachat (2002):Symbolic Strategy Synthesis for Games on Pushdown Graphs Proceedings of
ICALP’02, pp. 704-715, doi:0.1007/3-540-45465-9_60.
[14] T. Cachat (2003)Games on Pushdown Graphs and Extensid®s.D. thesis, RWTH Aachen. Available at
http://www.liafa.jussieu.fr/~txc/Download/Cachat-PhD.pdf.
[15] D. Caucal (1988)Reécritures suffixes de motResearch Report RR-0871, INRIA.
[16] D. Caucal (1990)On the Regular Structure of Prefix Rewritirlg: Proceedings of CAAP’9Q ecture Notes
in Computer Sciencé31, Springer, pp. 87-102, db@. 1007/3-540-52590-4_42.

[17] D. Caucal (2008)Deterministic graph grammarsin Jorg Flum, Erich Gradel & Thomas Wilke, editors:
Logic and Automata: History and Perspectives in Honor offdéolg ThomasTexts in Logic and Gaméx
Amsterdam University Press, pp. 169-250.

[18] E. M. Clarke, D. Kroening, N. Sharygina & K. Yorav (200ATABS: SAT-Based Predicate Abstraction for
ANSI-C In: Proceedings of TACAS'05p. 570-574.

[19] M. Dauchet, S. Tison, T. Heuillard & P. Lescanne (1982cidability of the Confluence of Ground Term
Rewriting Systemdn: Proceedings of LICS'8pp. 353—359.

[20] J. Esparza, D. Hansel, P. Rossmanith & S. Schwoon (2@fient Algorithms for Model Checking Push-
down Systemsdn: Proceedings of CAV'0Qpp. 232-247, doi:0.1007/10722167_20.

[21] J. Esparza & S. Schwoon (200 BDD-Based Model Checker for Recursive Prograins Proceedings of
CAV'01, pp. 324-336, doi:0.1007/3-540-44585-4_30.

[22] A.Finkel, B. Willems & P. Wolper (1997)A direct symbolic approach to model checking pushdown sysste
Electr. Notes Theor. Comput. S8i, pp. 27-37, doi:0.1007/3-540-45465-9_60.

[23] S.A.Greibach (1967)A note on pushdown store automata and regular systenueeedings of the American
Mathematical Societypp. 263—268, doi:0.1090/50002-9939-1967-0209086- 1.

[24] M. Hague (2013)Saturation of Concurrent Collapsible Pushdown SystdmsProceedings of FSTTCS'13
pp. 313—-325, d0i:0.4230/LIPIcs.FSTTCS.2013.313.

[25] M. Hague, A. S. Murawski, C.-H. Luke Ong & O. Serre (2008pllapsible Pushdown Automata and Re-
cursion Schemesdn: Proceedings of LICS'08p. 452—-461, doi:0.1109/LICS.2008.34.

[26] M. Hague & C.-H. L. Ong (2008)Symbolic Backwards-Reachability Analysis for Higher-€@rBushdown
SystemsLogical Methods in Computer Sciendét), doi10.2168/LMCS-4(4:14)2008.

[27] M. Hague & C.-H. L. Ong (2010)Analysing Mu-Calculus Properties of Pushdown SystémsProceedings
of SPIN’10 pp. 187-192, d0i:0.1007/978-3-642-16164-3_14.

[28] M. Hague & C.-H. Luke Ong (2009)"inning Regions of Pushdown Parity Games: A Saturation bteth
In: Proceedings of CONCUR’'Q9p. 384-398, doi:0.1007/978-3-642-04081-8_26.

[29] N. D. Jones & S. S. Muchnick (1977Even Simple Programs Are Hard To Analyzé ACM 24(2), pp.
338-350, doit0.1145/322003.322016.

http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/978-3-540-30538-5_12
http://dx.doi.org/10.1007/978-3-642-31585-5_18
http://dx.doi.org/10.1145/2500365.2500589
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.129
http://dx.doi.org/10.1007/BF01969548
http://dx.doi.org/10.1007/BF01969548
http://dx.doi.org/10.1007/3-540-45465-9_60
http://www.liafa.jussieu.fr/~txc/Download/Cachat-PhD.pdf
http://dx.doi.org/10.1007/3-540-52590-4_42
http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1007/3-540-44585-4_30
http://dx.doi.org/10.1007/3-540-45465-9_60
http://dx.doi.org/10.1090/S0002-9939-1967-0209086-1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.313
http://dx.doi.org/10.1109/LICS.2008.34
http://dx.doi.org/10.2168/LMCS-4(4:14)2008
http://dx.doi.org/10.1007/978-3-642-16164-3_14
http://dx.doi.org/10.1007/978-3-642-04081-8_26
http://dx.doi.org/10.1145/322003.322016

A. Carayol and M. Hague 23

[30] T. Knapik, D. Niwinski & P. Urzyczyn (2002)Higher-Order Pushdown Trees Are Easy: Proceedings of
FoSSaCS’'02pp. 205-222, doi0.1007/3-540-45931-6_15.

[31] T. Knapik, D. Niwinski, P. Urzyczyn & |. Walukiewicz (Z0b): Unsafe Grammars and Panic Automata:
Proceedings of ICALP’05p. 1450-1461, dain . 1007/11523468_117.

[32] A. Lal & T. W. Reps (2006)improving Pushdown System Model Checkiimg Proceedings of CAV’0&op.
343-357,doit0.1007/11817963_32.

[33] A. Lal, T. W. Reps & G. Balakrishnan (2005Extended Weighted Pushdown Systeins Proceedings of
CAV'05, pp. 434-448, doi:0.1007/11513988_44.

[34] M. Lang & C. Loding (2013)Modeling and Verification of Infinite Systems with Resourtegical Methods
in Computer Scienc@(4), doi10.2168/LMCS-9(4:22)2013.

[35] A.N. Maslov (1976):Multilevel stack automataProblems of Information Transmissias, pp. 1170-1174.
[36] S. Qadeer (2008)fhe Case for Context-Bounded Verification of ConcurrengRrms In: Proceedings of
the SPIN’08 Springer-Verlag, Berlin, Heidelberg, pp. 3—6, d0i: 1007/978-3-540-85114-1_2.

[37] T. W. Reps, S. Schwoon, S. Jha & D. Melski (2008Jeighted pushdown systems and their application to
interprocedural dataflow analysisSci. Comput. Prograns8(1-2), pp. 206—263, ddi0.1016/j.scico.
2005.02.009.

[38] J. Sakarovitch (2009):Elements of Automata Theory Cambridge University Press, doi.1017/
CB09781139195218.

[39] S. Schwoon (2002Model-checking Pushdown SysterR$.D. thesis, Technical University of Munich.

[40] O. Serre (2004)Contributiona létude des jeux sur des graphes de proceaspse. Ph.D. thesis, Uni-
versité Paris 7 — Denis Diderot, UFR dinformatique. Avalidaathttp://tel.archives-ouvertes.fr/
tel-00011326.

[41] A. Seth (2008):An Alternative Construction in Symbolic Reachability Arséd of Second Order Pushdown
Systemsint. J. Found. Comput. Sci9(4), pp. 983-998, dai0.1142/5012905410800608X.

[42] A. Seth (2009):Games on Higher Order Multi-stack Pushdown Systefms Proceedings of RP'Q%p.
203-216, doit0.1007/978-3-642-04420-5_19,

[43] A. Seth (2010)Global Reachability in Bounded Phase Multi-stack Pushd®ystemsIn: Proceedings of
CAV’10, pp. 615-628, doi:0.1007/978-3-642-14295-6_53.

[44] F. Song & T. Touili (2011): Efficient CTL Model-Checking for Pushdown Systerhrs. Proceedings of
CONCUR’11 pp. 434-449, doi:0.1007/978-3-642-23217-6_29.

[45] F. Song & T. Touili (2012):PuMoC: a CTL model-checker for sequential progranis: Proceedings of
ASE’12 pp. 346-349, doi0.1145/2351676.2351743.

[46] F. Song & T. Touili (2012): Pushdown Model Checking for Malware Detectiorin: Proceedings of
TACAS'’12, pp. 110-125, doi:0.1007/978-3-642-28756-5_9.

[47] F. Song & T. Touili (2013)1. TL Model-Checking for Malware Detection: Proceedings of TACAS'13p.
416-431, doit0.1007/978-3-642-36742-7_29.

[48] F. Song & T. Touili (2013)Model Checking Dynamic Pushdown Networks Proceedings of APLAS’13
pp. 33—49, doit0.1007/978-3-319-03542-0_3.

[49] F. Song & T. Touili (2013);PoMMaDe: pushdown model-checking for malware detectlan Proceedings
of ESEC/FSE’13pp. 607-610, dol:0.1145/2491411.2494599.

[50] D. Suwimonteerabuth, F. Berger, S. Schwoon & J. Espé2@a7): jMoped: A Test Environment for Java
Programs In: Proceedings of CAV'0,/p. 164-167, doi:0.1007/978-3-540-73368-3_19.

[51] D. Suwimonteerabuth, J. Esparza & S. Schwoon (20@)mbolic Context-Bounded Analysis of Multi-
threaded Java Programdn: Proceedings of SPIN'Q&p. 270-287, doi:0.1007/978-3-540-85114-1_
19.

http://dx.doi.org/10.1007/3-540-45931-6_15
http://dx.doi.org/10.1007/11523468_117
http://dx.doi.org/10.1007/11817963_32
http://dx.doi.org/10.1007/11513988_44
http://dx.doi.org/10.2168/LMCS-9(4:22)2013
http://dx.doi.org/10.1007/978-3-540-85114-1_2
http://dx.doi.org/10.1016/j.scico.2005.02.009
http://dx.doi.org/10.1016/j.scico.2005.02.009
http://dx.doi.org/10.1017/CBO9781139195218
http://dx.doi.org/10.1017/CBO9781139195218
http://tel.archives-ouvertes.fr/tel-00011326
http://tel.archives-ouvertes.fr/tel-00011326
http://dx.doi.org/10.1142/S012905410800608X
http://dx.doi.org/10.1007/978-3-642-04420-5_19
http://dx.doi.org/10.1007/978-3-642-14295-6_53
http://dx.doi.org/10.1007/978-3-642-23217-6_29
http://dx.doi.org/10.1145/2351676.2351743
http://dx.doi.org/10.1007/978-3-642-28756-5_9
http://dx.doi.org/10.1007/978-3-642-36742-7_29
http://dx.doi.org/10.1007/978-3-319-03542-0_3
http://dx.doi.org/10.1145/2491411.2494599
http://dx.doi.org/10.1007/978-3-540-73368-3_19
http://dx.doi.org/10.1007/978-3-540-85114-1_19
http://dx.doi.org/10.1007/978-3-540-85114-1_19

24 Saturation algorithms for model-checking pushdown system

[52] D. Suwimonteerabuth, S. Schwoon & J. Esparza (200&)ped: A Java Bytecode Checker Based on Moped
In: Proceedings of TACAS’0%p. 541-545, doi0.1007/978-3-540-31980-1_35.

[53] D. Suwimonteerabuth, S. Schwoon & J. Esparza (20@8jicient Algorithms for Alternating Pushdown
Systems with an Application to the Computation of Certiédahains In: Proceedings of ATVA'O6pp.
141-153, doit0.1007/11901914 _13.

[54] S. La Torre, P. Madhusudan & G. Parlato (200A):Robust Class of Context-Sensitive Languagbs
Proceedings of LICS’'Q#p. 161-170, doi:0.1109/LICS.2007.9.

[55] S. La Torre & M. Napoli (2011)Reachability of Multistack Pushdown Systems with Scopesd Match-
ing Relations In: Proceedings of CONCUR’1pp. 203-218, doi:0.1007/978-3-642-23217-6_14.

[56] WALI: Weighted Automata Libraryhttps://research.cs.wisc.edu/wpis/wpds/download.php.

[57] I. Walukiewicz (2001):Pushdown Processes: Games and Model-Checkim§ Comput.164(2), pp. 234—
263, d0i10.1006/inco.2000.2894,

[58] WPDS Library:http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/wpds/.

http://dx.doi.org/10.1007/978-3-540-31980-1_35
http://dx.doi.org/10.1007/11901914_13
http://dx.doi.org/10.1109/LICS.2007.9
http://dx.doi.org/10.1007/978-3-642-23217-6_14
https://research.cs.wisc.edu/wpis/wpds/download.php
http://dx.doi.org/10.1006/inco.2000.2894
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/wpds/

	1 Introduction
	2 Preliminaries
	2.1 Finite automata
	2.2 Pushdown system

	3 Reachability problems for pushdown systems
	3.1 Büchi's proof
	3.2 Saturation algorithm of BEM97
	3.3 Derivation relation of a pushdown system
	3.3.1 Sequences of stacks actions
	3.3.2 Reducing sequences of actions
	3.3.3 Characterisation of DerivP

	4 Winning regions of pushdown games
	4.1 Preliminaries
	4.1.1 Pushdown games
	4.1.2 Alternating automata

	4.2 Pushdown reachability games
	4.2.1 Characterising the winning region
	4.2.2 Computing the winning region
	4.2.3 Winning strategies

	4.3 Pushdown Büchi games
	4.3.1 Computing the winning region
	4.3.2 Winning strategies

	4.4 Pushdown parity games
	4.4.1 Characterising the winning region
	4.4.2 Computing the winning region
	4.4.3 Winning strategies

	5 Implementations and Applications of Saturation Methods
	5.1 Single Player Implementations
	5.2 Two-Player Implementations

	6 Extensions of the Saturation Method

