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1 Introduction

Pushdown systems have, over the past 15 years, been popular with the software verification community.
Their stack can be used to model the call stack of a first-orderrecursive program, with the control state
holding valuations of the program’s global variables, and stack characters encoding the local variable
valuations. As such the control flow of first-order recursiveprograms (such as C and Java programs)
can be accurately modelled [29]. Pushdown systems have played a key role in the automata-theoretic
approach to software model checking and considerable progress has been made in the implementation of
scalable model checkers of pushdown systems. These tools (e.g. Bebop [3] and Moped [21, 39, 52, 50])
are an essential back-end components of high-profile model checkers such as SLAM [2].

A fundamental result for the model-checking of pushdown systems was established by Büchi in
[12]. He showed that the set of stack contents reachable fromthe initial configuration of a pushdown
system form a regular language and hence can be represented by a finite state automaton. The procedure
provided by Büchi to compute this automaton from the pushdown system is exponential. In [15], Caucal
gave the first polynomial time algorithm to solve this problem. This efficient computation is obtained by
a saturation process where transitions are incrementally added to the finite automaton. This technique,
which is the topic of this survey, was simplified and adapted to the model-checking setting by Bouajjaniet
al. in [7] and independently by Finkelet al. in [22].

The saturation technique allows global model checking of pushdown systems. For example, one may
construct a regular representation of all configurations reachable from a given set of initial configurations,
or, dually, the set of all configurations that may reach a given set of target configurations. As well as
providing direct solutions to simple reachability properties (e.g. can an error state be reached from a
designated initial configuration), the representations constructed by global analyses may be reused in
a variety of settings. For example, once may perform multiple (and dynamic) queries on the set of
reachable states without having to re-run the model checking routine. Additionally, these representations
may be combined as part of a larger algorithm or proof. For example, Bouajjaniet al. provided solutions
to the model checking problem for the alternation freeµ-calculus by combining the results obtained
through multiple global reachability analyses [7].

In this survey, we present the saturation method under its different forms for reachability problems in
Section 3. The saturation technique also generalises to theanalysis of two-players games played over the
configuration graph of a pushdown systems. This extension based on the work of Cachat [13] and Hague
and Ong [28] is presented in Section 4. In Section 5, we reviewthe various model-checking tools that
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2 Saturation algorithms for model-checking pushdown systems

implement the saturation technique. We conclude in Section6 by giving an overview of the extensions
of the basic model of pushdown system for which the saturation technique has been applied.

2 Preliminaries

2.1 Finite automata

We denote byΣ∗ the set of words over the finite alphabetΣ. Forn≥ 0, we denote byΓ≤n the set of words
of length at mostn.

A finite automatonA over the alphabetΣ is a tuple(S,I ,F ,δ ) whereS is a finite set of states,
I ⊆ S is the set of initial states,F ⊆ S is the set of final states andδ ⊆ S×Σ×S is the set of transitions.
We writes

a
−→
A

t to denote that(s,a, t) is a transition ofA . For a wordw∈ Σ∗, we writes
w

=⇒
A

t to denote

the fact thatA can reach the statet while reading the wordw starting from the states. The language
accepted byA from a states is

Ls(A ) =

{

w∈ Σ∗
∣

∣

∣

∣

∃sf ∈F .s
w

=⇒
A

sf

}

and the language accepted byA is
L (A ) =

⋃

s∈I

Ls(A ) .

2.2 Pushdown system

A pushdown systemP is a given by a tuple(Q,Γ,⊥,∆) whereQ is a finite set of control states,Γ is the
finite stack alphabet,⊥∈ Γ is a special bottom of stack symbol and∆⊆ (Q×Γ)×(Q×Γ≤2) is the set of
transitions. We write(q,A)→ (p,w) for the transition((q,A),(p,w)). A configuration is a tuple(q,w)
whereq is a state inQ andw is a stack content in(Γ \ {⊥})∗⊥. In the configurationc = (q,Aw), the
pushdown system can apply the transition(q,A)→ (p,u) to go to the configurationc′ = (p,uw). As is
usual, we assume that transitions of the pushdown system does not pop the bottom of stack symbol or
does not push it on the stack (i.e. all transitions involving the symbol⊥ are of the formq⊥→ p⊥ or
q⊥→ p⊥A for someA ∈ Γ \{⊥}). We denote by−→

P
(or simply→ if P is clear from the context) the

relation on configurations defined by the transitions ofP. We denote by=⇒
P

the reflexive and transitive

closure of−→
P

.

3 Reachability problems for pushdown systems

A fundamental result for the model-checking of pushdown systems is the fact that the set of stack con-
tents:

{w∈ Γ∗ | ∃q∈Q,(q0,⊥)⇒ (q,w)}

that are reachable from an arbitrary initial configuration of the system, form a regular set of words over
the stack alphabetΓ.

A more elegant formulation of this result can be obtained by extending the notion of regularity to sets
of configurations. A set of configurationsC is regular if for every statep∈Q, the set of associated stack
contents{w ∈ Γ∗ | (p,w) ∈C} is regular. AP-automaton is a slight extension of the standard notion
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of finite automaton to accept configurations. The only extra assumption is that the set of states of the
P-automaton contains the set of states of the pushdown system. Formally, aP-automaton is of the form
(S,Q,F ,δ ) whereQ is the set of states of the pushdown systemP. A configuration is(p,w) is accepted
by A if w is accepted byA starting from the statep (i.e. w∈ Lp(A )).

Theorem 1 [12] The set of configurations of a pushdown system reachablefrom the initial configuration
(i.e. the configuration(q0,⊥) for some arbitrary state q0) is regular. Moreover a P-automaton accepting
it can be effectively constructed from the pushdown system.

To the authors knowledge, the first proof of this result is dueto Büchi in [12]. The formalism used
by Büchi is not that of pushdown automata but that of prefix word-rewriting systems (which he calls
regular canonical systems). These systems syntactically include pushdown automata and conversely can
be simulated by pushdown automata. In [23], Greibach formalises the correspondence between the two
models and gives a simple proof based on a result on context-free languages proved by Bar-Hillelet
al. in [4]. Greibach also says that the result (for pushdown automata) was part of the folklore at the
time but never appeared in print. Even though effective, these proofs do not provide a polynomial time
algorithm1. The first polynomial time algorithm is due to Caucal [15, 16]which is based on a saturation
procedure of a finite state automaton. The idea behind the saturation method can be traced back to [5].
This method was independently rediscovered and used for model-checking purposes by Bouajjaniet al.
in [7] and Finkelet al. in [22].

A more general problem is, given a regular set of configurationsC, to compute the set:

Post∗P(C) = {c
′ | ∃c∈C,c=⇒

P
c′}

of configurations that can be reached from a configuration inC.
The regularity ofPost∗(C), for any regular setC, can be derived from Theorem 1. Indeed starting

from a pushdown systemP and a regular set of configurationsC, we can create a new pushdown system
P′ which using new states builds any configuration inC and afterwards behaves likeP. Clearly the set
of configurations reachable from the initial configuration of P′ coincide withPost∗P(C) when restricted to
the states ofP.

As mentioned in the introduction, for model-checking purposes it is often interesting to compute the
set of configurations that can reach a given set ofbadconfigurations. This leads to consider the set

Pre∗P(C) = {c
′ | ∃c∈C,c′⇒ c}

of configurations that can reach a configuration inC.
The regularity ofPre∗(C) for any regular setC can be deduced from the regularity ofPost∗(C). The

intuitive idea is to construct, fromP, a new pushdown systemP′ whose derivation relation is the inverse
of that ofP. For a transition of the formqA→ p of P, we add the transitionspX→ qAX for all symbols
X ∈ Γ. For a transitionqA→ pBC of P, we add two transitionpB→ r(C,q,A) andr(C,q,A)C→ qA where
r(C,q,A) is a new intermediary control state. For any two configurationsc andc′ of P, it holds thatc⇒P c′

if and only if c′ ⇒P′ c. HencePre∗P(C) is equal to the restriction ofPost∗P′(C) to the states ofP and is
therefore regular.

The section is structured as follows. We present Büchi’s original proof in Section 3.1. In Section 3.2,
we present the saturation algorithm to computePre∗(C) introduced in [7]. Finally in Section 3.3, we
characterise the derivation relation of the pushdown automata using the saturation technique following
[15].

1We will see Section 3.1 that it can easily be adapted to provide a polynomial time algorithm.
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3.1 Büchi’s proof

We present a proof of Theorem 1 adapted from [12]. In the original proof, Büchi first reduced the
problem to a very simple form of pushdown system where transitions are either of the formpA→ q or
p→ qA. This model (calledreduced regular systemsby Büchi) is completely symmetric and therefore
computingPre∗ or Post∗ is essentially the same thing. However to adapt the proof to the formalism used
in this article (recall that our formalism does not allow rules of the formp→ qA), it is more convenient
to work with Pre∗ than withPost∗.

Given a pushdown systemP= (Q,F,⊥,∆), we construct aP-automaton acceptingPre∗P({(qf ,⊥)})
whereqf is an arbitraryfinal state of the pushdown system.

The construction is based on the following remark: to reach the configuration(qf ,⊥) from a con-
figuration(p,Aw⊥) it is necessary, at some point, to reach a configuration of theform (q,w⊥) for some
stateq∈Q. Moreover the first time such a configuration is reached, the actions taken byP cannot depend
on w since at no point wasw exposed at the top of the stack. Hence it must be the case thatpA⇒ q.

The P-automaton when accepting a stack contentA1 . . .An⊥ from the statep will guess the states
p1, . . . , pn such thatpA1 =⇒

P
p1 and piAi+1 =⇒

P
pi+1 for i ∈ [0,n− 1] and will enter a final state upon

reading the symbol⊥ if pn⊥=⇒
P

qf⊥.

Consider theP-automatonA with set of statesQ∪{s⊥} wheres⊥ is a new state and the only final
state of the automaton. The transitions of the automatonA are defined as follows:

• p
A
−→ q if and only if pA=⇒

P
q for all p,q∈Q andA∈ Γ\{⊥},

• p
⊥
−→ s⊥ if and only if p⊥=⇒

P
qf⊥ for all p∈Q.

A simple induction on the length of the stack content shows thatA accepts a stack contentw⊥ from
the stateq∈Q if and only if (q,w⊥) belongs toPre∗({(qf ,⊥)}).

To make the construction effective, it remains to compute the relationspA⇒ q and p⊥ ⇒ q⊥ for
all statesp andq∈ Q and stack symbolA ∈ Γ. The procedure provided by Büchi is exponential2. He
first establishes a bound on the height of the stack necessaryto build a derivation path witnessing these
relations. As the bound is polynomial in the size of the pushdown system, the problem is reduced to a
simple reachability problem in a finite graph of exponentialsize with respect to the size of the pushdown
system.

To obtain a polynomial algorithm, it is enough to efficientlycompute the relationRew= {(pA,qB) |
pA=⇒

P
qB}. IndeedpA=⇒

P
q if and only if there existsr ∈ Q andB ∈ Γ such thatpA=⇒

P
rB (i.e.

(p,A, r,B) ∈Rew) andrB→ q is a transition ofP.
The key idea which is at the heart3 of the saturation algorithm presented in Section 3.2 is to express

Rew as a smallest fixed-point.
The relation Rew is the smallest relation (for the inclusion) in QΓ×QΓ such that:

• (pA, pA) ∈ Rewfor all p∈Q andA∈ Γ,

2In [12], theP-automaton constructed is deterministic (essentially theautomaton obtained by applying the power-set con-
struction to the automaton presented here). With the added constraint of determinism, it not possible to obtain a polynomial
algorithm as the smallest deterministic automaton is in general exponential in the size of the pushdown system. To convince
oneself, it is enough to consider a pushdown system that simulates a non-deterministic finite state automaton (NFA) by popping
its stack until the bottom of the stack is reached and when thebottom of the stack is reached goes to the stateqf if the NFA has
reached a final state.

3We will see that the algorithm presented in Section 3.2 performs a fixed-point computation for the relation{(pA,q) |
pA=⇒

P
q}.
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• (pA,qB) ∈ Rew if pA→ qB is a transition ofP,

• (pA,qC) ∈ Rew if (pA, rB) ∈ Rew and(rB,qC) ∈ Rew,

• (pA,qC) ∈ Rew if pA→ rBC is a transition ofP and there existst ∈ Q and D ∈ Γ such that
(rB, tD) ∈ Rew andtD→ q is a transition ofP.

The property(1) expresses that Rew is reflexive and(3) that it is transitive. Property(2) ensures that
Rew contains the relevant transitions ofP. Property(4) describes the case whenpA=⇒

P
qC is obtained

by a sequence of the formpA−→
P

rBC=⇒
P

qC whererB =⇒
P

q.

Using the Knaster-Tarski theorem, we can compute Rew as the limit of an increasing sequence of
relations(Rewi)i≥0 overQ×Γ. The relation Rew0 contains the elements satisfying property(1) and(2).
The relation Rewi+1 is obtained from Rewi by adding all the elements that can be derived by property
(3) or (4) in Rewi. The sequence(Rewi)i≥0) is increasing for the inclusion and its limit (i.e. the first set
such that Rewi+1 = Rewi) is equal to Rew. As at least one element is added at each step before the limit
is reached, the limit is reached in at most|Q|2|Γ|2 steps. Furthermore as the computation of Rewi+1 from
Rewi can be done in polynomial time with respect to the size ofP, the resulting algorithm is polynomial.
However the exact complexity is not as good as the algorithm presented in Section 3.2.

3.2 Saturation algorithm of [7]

In [7], Bouajjani et al. present an algorithm that given a pushdown systemP = (Q,Γ,⊥,∆) and aP-
automatonA = (S,Q,δ ,F ), constructs a newP-automatonB acceptingPre∗P(L (A )). The only re-
quirement onA is that no transition inδ goes back to a state inQ4. This restriction also implies that
none of the states inQ are final.

The algorithm proceeds by adding transitions toA following a unique rule until no new transition
can be added. The resultingP-automatonB accepts the set of configurationsPre∗P(L (A )).
More precisely, the algorithm constructs a finite sequence(Ai)i∈[0,N] of P-automata. TheP-automaton
A0 is the automatonA . All the P-automataAi are of the form(S,Q,F ,δi), meaning that they only
differ by their set of transitions. The construction guaranties that for alli ∈ [0,N− 1], δi ⊆ δi+1 and
terminates whenδi+1 = δi. As at least one transition is added at each step, the algorithm terminates in at
most|Q|2|Γ| steps.

The set of transitionsδi+1 is obtained by adding toδi, the transition:

p
A
−→ s if q

w
=⇒
Ai

sandpA→ qw is a transition ofP.

Note that only transitions starting with a state ofQ are added by the algorithm. In particular, the language
accepted the automatonAi from a state inS\Q never changes.5.

The construction ofδi+1 from δi ensures that the configurations that can reach in one step a configu-
ration inL (Ai) belong toL (Ai+1). Consider two configurationsc= (p,Au) andc′ = (q,wu) such that
pA→ qw is a transition ofP (and hencec−→

P
c′). Now assume thatc′ belongs toL (Ai). This means that

for some states∈ S and some final statesf ∈F , q
w

=⇒
Ai

s
u

=⇒
Ai

sf . The rule of construction ofδi+1 ensures

that p
A
−→ s is a transition ofAi+1. Hencep

A
=⇒
Ai+1

s
u

=⇒
Ai+1

sf and the configurationc= (p,Au) is accepted by

Ai+1. As B is the limit of the saturation process (i.e. B = AN−1 = AN), L (B) is closed under taking

4This requirement is easily met by adding a copy of each state in Q if necessary. This restriction is required to ensure that
the first invariant maintained by the algorithm holds initially.

5Recall that initially the states inQ are not the target of any transition
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the immediate predecessor for the relation−→
P

(i.e. if c′ ∈L (B) andc−→
P

c′ thenc∈L (B)). AsL (B)

includesL (A ), it follows thatPre∗P(L (A ))⊆L (B).
The proof of the converse inclusion requires a more careful analysis. The algorithm maintains two

invariants on the transitions inδi. For all i ∈ [0,N], the presence of a transitionp
A
−→ s in δi guaranties

that:

1. pA=⇒
P

s if s belongs toQ.

2. the configuration(p,Au) belongs toPre∗(L (A )) for any u ∈Ls(Ai) = Ls(A ) if s belongs to
S\Q.

From these invariants, it follows that for alli ≥ 0, L (Ai) ⊆ Pre∗P(L (A )). In particular,L (B)⊆
Pre∗P(L (A )).

Remark 1 As indicated by the first invariant, if we restrict our attention to transitions with both source
and target in Q, this algorithm is performing a fixed-point computation for the relation=⇒

P
restricted to

(Q×Γ)×(Q×{ε}). Indeed this relation can be characterised as the smallest relation (for the inclusion)
R such that:

1. pAR q if pA→ q belongs to∆,

2. pAR q if rBR q and pA→ rB belongs to∆,

3. pARq if pA→ rBC belongs to∆ and for some state s∈Q, rBRs and sCRq.

In fact, the algorithm performs the computation of the smallest such relation following the procedure
given by Knaster-Tarski theorem.

A naive implementation of this algorithm yields a complexity in O(|P|2|A |3). However a more
efficient implementation presented in [20] lowers the complexity toO(|Q|2|∆|).

In [20], an adaptation of the algorithm for computingPre∗ is given to computePost∗. The algorithm
is slightly less elegant as it requires the addition of new states before the saturation process. In fact, it is
very similar to first applying the transformation to invert the pushdown system presented at the beginning
of this section and then applying the algorithm to computePre∗.

In [39], Schwoon shows how to use the saturation algorithm toconstruct for any configurationc
accepted byB a derivation path to some configuration inL (A ).

3.3 Derivation relation of a pushdown system

In this section, we will see that the saturation method can beadapted to characterise the derivation
relation of a pushdown system. Let us fix a pushdown system6 P = (Q,Γ,∆), an initial stateq0 and a
final stateqf . We aim at giving an effective characterisation of the following relation between stacks:

DerivP = {(u,v) ∈ Γ∗ | (q0,u) =⇒
P

(qf ,v)}.

In [15], Caucal showed that DerivP⊆ Γ∗×Γ∗ is a rational relation,i.e. it is accepted by a finite state
automaton with output (also called a transducer).

The proof presented here is based on [17] but similar ideas can be found in [38, 22]. The idea of the
proof is to use symbols to represent the actions of the pushdown system on the stack: one symbol for

6To simplify the presentation, we do not take the bottom of stack symbol into account.
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pushing a given symbol and one symbol for popping it. The pushdown system is transformed into a finite
state automaton that instead of performing the actions on the stack outputs the symbols that represent
these actions (see Section 3.3.1). This finite state automaton is then transformed using a saturation
algorithm so that it erases sequences of actions corresponding to pushing a symbol and then immediately
popping it (see Section 3.3.2). From thisreducedlanguage, the relation DerivP is easily characterised
(see Section 3.3.3).

3.3.1 Sequences of stacks actions

For every symbolA∈ Γ, we introduce two symbols:

• A+ which represents the action of pushing the symbolA on top of the stack,

• andA− which represents the action of popping the symbolA from the top of the stack.

We denote byΓ+ the set{A+ | A∈ Γ} of pushactions, byΓ− the set{A− | A∈ Γ} of popactions and by
Γ the setΓ+∪Γ− of all action symbols.

Intuitively a sequenceα = α1 . . .αn ∈ Γ∗ is interpreted as performing the actionα1, followed by the
actionα2 and so on. For instance, the effect on the stack of the transition pA→ qBC is represented by
the wordA−C+B+. First the automaton removes theA from the top of the stack and then pushesC and
thenB.

For two stacksu andv∈ Γ∗, we writeu
α
 v if u can be transformed intov by the sequence of actions

α . For instance, we haveABB
α
 DCB for the α sequenceA−B−C+D+. Note that some sequences of

actions such asB+C− cannot be applied to any stack. We say that such sequencesα arenon-productive,
i.e. there are nou andv∈ Γ∗ such thatu

α
 v.

From the pushdown systemP, we can construct a regular set of action sequences denoted BehaviourP
which contains all the sequences (even the non-productive ones) that can be performed byPwhen starting
in stateq0 and ending in stateqf . Consider for instance the finite state automaton7 (Q,{q0} ,

{

qf
}

,δ )
where the set of transitionsδ is given by:















p
A−C+B+
−−−−−→ q∈ δ if pA→ qBC∈ ∆

p
A−B+
−−−→ q∈ δ if pA→ qB∈ ∆

p
A−
−→ q∈ δ if pA→ q∈ ∆

It is clear that BehaviourP characterises DerivP in the following sense:

(u,v) ∈ DerivP if and only if u
α
 v for someα ∈ BehaviourP.

However this representation of DerivP is not yet very helpful. For instance, BehaviourP can con-
tain non-productive sequences or sequences such asA−B+A+A−C+C− which is equivalent to the more
informative sequenceA−B+.

7The finite state automaton does not strictly conform to the definition we gave in Section 2 as its transitions are labelled by
words and not single letters. This can be easily avoided at the cost of adding intermediate states.
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3.3.2 Reducing sequences of actions

To simplify BehaviourP, we first erase all factors of the formA+A− for A∈ Γ. These factors can safely
be omitted as they do not affect the stack: the symbol is pushed then immediately popped. A sequence
that does not contain any such factors is calledreduced.

To perform this erasure, we introduce the relation7→ which relates a stacku∈ Γ∗ and a stackv∈ Γ∗
if v can be obtained by erasing a factorA+A− from u (i.e. u= u1A+A−u2 andv = u1u2). Clearly, if
α 7→ β then the sequencesα andβ are equivalent with respect to their actions on the stack :

for u,v∈ Γ∗, u
α
 v if and only if u

β
 v.

As the rewriting relation7→ is confluent and decreases the length of the sequence, every sequence
α can be iteratively rewritten by7→ into a reduced sequence denoted Red(α). For instance the reduced
sequence associated toB−A+A+A−A−C+ is B−C+ asB−A+A+A−A−C+ 7→ B−A+A−C+ 7→ B−C+.

In [5], Benois showed8 that the set of reduced sequences corresponding to a regularset of sequences
is again regular.

Theorem 2 [5, 6] For any regular set R of action sequences, the corresponding set of reduced action
sequences:

Red(R) = {Red(α) | α ∈ R}

is regular. Moreover given a finite automatonA accepting R, an automaton acceptingRed(R) can be
constructed inO(|A |3).

The proof of this theorem is the essence of the saturation method. Starting with the automatonA ,
ε-transitions are added until no newε-transition can be added. Theε-transitions are added according
to the following rule. We add anε-transition from a statep to a stateq if it is possible to reachq from
p reading a word of formA+ε∗A−. It can be shown that the resulting saturated automaton accepts the
language:

{β ∈ Γ∗ | α 7→∗ β for someα ∈ R}.

The construction is concluded by taking theε-closure of the saturated automaton and restricting the
language to the set of reduced sequences (which is a regular language as it is the complement of the lan-
guage∪A∈ΓΓ∗A+A−Γ∗). A careful implementation of the procedure presented in [6] gives an algorithm
in O(|A |3).

3.3.3 Characterisation ofDerivP

One of the advantages of working with Red(BehaviourP) is that we can easily remove non-productive
sequences. Indeed a reduced sequence is non-productive if and only if it contains a factor of the form
A+B− for A 6= B∈ Γ.

We can hence compute the regular language:

RPP = Red(BehaviourP)∩

(

Γ∗ \
⋃

A6=B∈Γ
Γ∗A+B−Γ∗

)

which is composed of the reduced and productive action sequences characterising DerivP.

8Benois consider the erasure of all factor of the formA−A+ as well asA+A− but the proof is identical.
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The languageRPP does not contain any factor inΓ+Γ− and is hence included inΓ∗−Γ∗+. We can
express it as a finite union:

⋃

i∈[1,N]

XiYi

where for alli ∈ [1,N], Xi is a regular language inΓ∗− andYi is a regular language inΓ∗+.
Let us denote byUi the regular set{A1 · · ·An∈ Γ∗| |A1

− · · ·A
n
− ∈Xi} of words inΓ∗ that can be popped

by a sequence inXi and byVi the regular set{A1 · · ·An ∈ Γ∗| | An
+ · · ·A

1
+ ∈Yi} of words inΓ∗ that can be

pushed by a sequence inYi .
The relation DerivP can be characterised as follows: a pair(w1,w2) belongs to DerivP, if for some

i ∈ [1,N], w1 can be written asuwwith u∈Ui andw2 can be written asvw for somev∈Vi . In other terms,
the relation DerivP can be written as a finite union of relations that remove a prefix of the stack belonging
to a certain regular language and replace any word in anotherregular language. As these relations are
easily accepted by finite transducer, so is DerivP. Combining all the steps, we obtain a polynomial time
algorithm for computing a transducer accepting DerivP from P.

4 Winning regions of pushdown games

The saturation technique also generalises to the analysis of pushdown games with two players:Éloise and
Abelard. The two players may, for example, model a program (Éloise) interacting with the environment
(Abelard). While the program can control its next move basedon its internal state, it cannot control the
results of requesting external input. Hence, the external input is decided by the second player.

A pushdown game may be used to analyse various types of properties. We will consider three, in-
creasingly expressive, types of properties here: reachability, Büchi and parity. We will begin by defining
games with generic winning conditions and then consider theinstantiations of this generic framework
for each winning condition in turn. We will simultaneously discuss the saturation algorithm for each of
these properties and show how they build upon each other.

The saturation algorithm was first extended to pushdown reachability games by Bouajjaniet al. [7].
Their algorithm was extended to the case of Büchi games by Cachat [13] and then to parity games by
Hague and Ong [28]. Our presentation will follow that of Hague and Ong since it provides the most
general algorithm, though we remark that all the essential ideas of the algorithm were in place by the
introduction of the Büchi algorithm. The main contribution of Hague and Ong was a proof framework
that simplified the technical arguments by Bouajjaniet al. and Cachat and allowed the full parity case to
go through.

4.1 Preliminaries

4.1.1 Pushdown games

We can obtain a two-player game from a pushdown systemP by the addition of two components: a par-
tition of the configurations ofP into positions controlled býEloise and positions controlled by Abelard;
and the definition of a winning condition that determines thewinner of any given play of the game.

In the following, for technical convenience, we will assumefor eachq ∈ Q andA ∈ Γ there exists
some(q,A)→ (p,w) ∈ ∆. Together with the bottom-of-stack symbol, this conditionensures that from
a configuration(q,w⊥) it is not possible for the system to become stuck; that is, reach a configuration
with no successor.
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A two-player pushdown game is a tupleP=(Q,Γ,⊥,∆,W) such that(Q,Γ,⊥,∆) defines a pushdown
system,Q is partitionedQ= QE ⊎QA into Éloise and Abelard positions respectively, andW is a set of
infinite sequences of configurations ofP.

A play of a pushdown game is an infinite sequence(q0,w0),(q1,w1), . . . where(q0,w0) is some
starting configuration and(qi+1,wi+1) is obtained from(qi ,wi) via some transition(qi ,A)→ (qi+1,w) ∈
∆. In the case whereqi ∈QE it is Éloise who chooses the transition to apply, otherwise Abelard chooses
the transition.

The winner of an infinite play(q0,w0),(q1,w1), . . . is Éloise if (q0,w0),(q1,w1), . . . ∈W; otherwise,
Abelard wins the play. The winning regionW of a pushdown game is the set of all configurations from
which Éloise can always win all plays, regardless of the transitions chosen by Abelard.

4.1.2 Alternating automata

To extend the saturation algorithm to compute the winning region of a pushdown game, we augment the
automata used to recognise sets of configurations with alternation. Bouajjaniet al. first used alternating
automata to analyse pushdown reachability games via saturation [7], however, they used the equivalent
formalism ofalternating pushdown systemsrather than pushdown games. An alternating automaton is a
tupleA = (S,Γ,F ,δ ) whereS is a finite set of states,Γ is a finite alphabet,F ⊆ S is the set of accepting
states, andδ ⊆ S×Γ×2S is a transition relation. Note that we do not specify a set of initial states. This
is because it is more convenient to present the following results in terms of the stacks accepted from
particular states, rather than fixing a set of initial states.

Whereas a transitions
A
−→ t of a non-deterministic automaton requires the remainder ofthe word to be

accepted fromt, a transitions
A
−→Sof an alternating automaton requires that the remainder of the word is

accepted from all statess′ ∈ S. It is this “for all” condition that captures the fact thatÉloise must be able
to win for all moves Abelard may make.

More formally, a run over a wordA1 . . .An ∈ Γ∗ from a states0 is a sequence

S1
A1−→ ·· ·

An−→ Sn+1

where eachSi is a set of states such thatS1 = {s0}, and for each 1≤ i ≤ n we have

∀s∈ Si .∃s
Ai−→ S∈ δ ∧S⊆ Si+1 .

The run is accepting ifSn+1⊆F . Thus, for a given states, we defineLs(A ) to be the set of words over
which there is an accepting run ofA from {s}.

WhenSi is a singleton set, we will often omit the set notation. For example, the run above could be
written

s0
A1−→ ·· ·

An−→ Sn+1 .

Further more, whenw= A1 . . .An we will write s
w
−→ Sas shorthand for a run froms to S.

4.2 Pushdown reachability games

One of the simplest winning conditions for a game is the reachability condition. Given a target set of
configurationsC, the reachability condition states thatÉloise wins the game from a given configuration
if she can force all plays starting at that configuration to some configuration inC.
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That is, a pushdown reachability game is a tuple(Q,Γ,⊥,∆,C) such that(Q,Γ,∆,W) is a pushdown
game where

W = {c0,c1, . . . | ∃i.ci ∈C}

is the set of all sequences of configurations containing someconfiguration inC.

4.2.1 Characterising the winning region

In the sequel we will need to combine least and greatest fixed points. We will useµ to denote the least
fixed point operator, andν to denote the greatest fixed point operator.

In the simple case of reachability for a pushdown systemP and set of target configurationsC we can
characterise the winning regionW = Pre∗P(C) as

µZ.C∪PreP(Z)

where

PreP(Z) =

{

(p,w)

∣

∣

∣

∣

p∈QE ⇒ ∃(p,w)→ c. c∈ Z ∧
p∈QA ⇒ ∀(p,w)→ c. c∈ Z

}

.

That is, to appear inW for a configuration belonging tóEloise, it must be possible for her to choose a
transition that progresses towardsC. For configurations belonging to Abelard, it must be the casethat he
cannot help but choose a transition that progresses towardsC.

4.2.2 Computing the winning region

Fix a pushdown reachability gameP = (Q,Γ,∆,C). We will show how to construct an automatonB

whose state set includes the statep for all p∈Q andw∈Lp(B) iff (p,w) ∈W .
ComputingÉloise’s winning region is a direct extension of the saturation algorithm forPre∗P(C)

in the non-game setting. We assumeC is a regular set of configurations represented by an alternating
automatonA = (S,Γ,δ ,F ) such thatQ⊆ S and there are no-incoming transitions to any state inQ.

The saturation algorithm constructs the automatonB that is the least fixed point of the sequence of
automataA0,A1, . . . whereA0 =A = (S,Γ,δ0,F ) andAi+1 = (S,Γ,δi+1,F ) whereδi+1 is the smallest
set of transitions such that

1. δi ⊆ δi+1, and

2. for eachq∈QE, if (q,A)→ (p,w) ∈ ∆ andp
w
−→ S is a run ofAi , then

q
a
−→ S∈ δi+1

and

3. for eachq∈QA andA∈ Γ andS⊆ S such that for all

(q,A)→ (p,w) ∈ ∆

there exists a runp
w
−→ S′ of Ai with S′ ⊆ S, we have

q
a
−→ S∈ δi+1 .

One can prove that(p,w) ∈W iff w∈Lp(B). Thus we obtain regularity of the winning region. Since
the maximum number of transitions of an alternating automaton is exponential in the number of states
(and we do not add any new states), we have thatB is constructible in exponential time.

Theorem 3 The winning region of a pushdown reachability game is regular and constructible in expo-
nential time.
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4.2.3 Winning strategies

Cachat has given two realisations ofÉloise’s winning strategy in a pushdown reachability game from a
configuration in her winning region [13] . The first is a positional strategy that requires space linear in
the size of the stack to compute. That is, he gives an algorithm that reads the stack and prescribes the
next move that́Eloise should make in order to win the game. The algorithm assigns costs to accepting
runs ofB for configurations inW by summing costs assigned to individual transitions.

Alternatively, Cachat presents a strategy that can be implemented by a pushdown automaton that
tracks the moves of Abelard and recommends moves toÉloise. Since the automaton tracks the game, the
strategy is not positional. However, the prescription of the next move requires only constant time.

In his PhD. thesis [14], Cachat also argues that similar strategies can be computed for Abelard for
positions in his winning region.

4.3 Pushdown B̈uchi games

Plays of a game are infinite sequences. The reachability condition only depends on finite prefixes of these
plays, hence games are won within a finite number of moves. This prevents the specification of liveness
properties such as “every request is followed by an acknowledgment”. Since it is not possible to know
when to “stop waiting” for an acknowledgment to arrive, it isnot possible to specify such conditions as
simple reachability properties.

Büchi conditions allow liveness properties to be defined since deciding the winner of a particular
play can take the whole infinite sequence into account. We define a pushdown Büchi game as a tu-
ple (Q,Γ,⊥,∆,F) – whereF ⊆ Q is a set of target control states – which defines a pushdown game
(Q,Γ,⊥,∆,W) with

W =
{

(p0,w0),(p1,w1), . . .
∣

∣ ∀i.∃ j ≥ i.p j ∈ F
}

.

That is,Éloise wins the play if there is some control state inF that is visited infinitely often.
Cachat generalised the saturation method to construct the winning region of a pushdown Büchi

game [13] by introducing the nesting of fixed point computations and projection described below.
To characterise the winning region of a pushdown Büchi game, a single least fixed point computa-

tion no longer suffices. Intuitively this is because satisfying the Büchi condition amounts to repeatedly
satisfying a reachability condition; that is, repeatedly reaching a control state inF. We will begin by
giving the characterisation, and then decoding it in the following paragraphs. By abuse of notation, we
will write F to also denote the set of configurations{(p,w) | p∈ F } andF to denote its complement.
The winning region of́Eloise can be defined as

νZ0.µZ1.(F ∩PreP(Z0))∪
(

F ∩PreP(Z1)
)

.

There are two pre-steps in the formula:PreP(Z0) andPreP(Z1). When a configuration is inF then we
require thatÉloise can force the next step of play to stay withinZ0. When the configuration is not inF
we require that́Eloise can force play to stay withinZ1.

To understand the role of the different fixed points, imaginea game where there is only one move
from some configuration(p,w)

(p,w)→ (p,w) .

In the case wherep ∈ F it will be the case that(p,w) appears in the greatest fixed pointZ0. This is
because greatest fixed points can be “self-supporting”: if we include(p,w) in an approximation ofZ0,
then it will appear in the next approximation ofZ0 by virtue of the fact that it was in the old valuation.
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In the other case, whenp /∈ F, we would require(p,w) to appear in the least fixed pointZ1. However,
since the least fixed point is the smallest possible fixed point, its members cannot be self-supporting. That
is, if we took(p,w) out of our approximation, the next approximation would not include(p,w): there is
nothing external compelling(p,w) to be in the least fixed point. This is why a reachability property is a
least fixed point: it must contain only the configurations that eventually reach a target configuration – it
cannot put off satisfying this obligation for an infinite number of steps.

In terms of Büchi games this difference makes sense: a play that repeatedly visits only the configu-
ration(p,w) is only winning if p∈ F. If p /∈ F then a configuration can only be winning if it eventually
(after a finite number of steps) moves to a configuration that has a control state inF. Thus, the least fixed
point represents configurations that must eventually reacha “good” configuration, while the greatest
fixed point represents good configurations that are able to support themselves.

4.3.1 Computing the winning region

Automaton representation of multiple fixed points The saturation method for reachability properties
computed a single fixed point with a single fixed point variable. We can think of the successive automata
A0,A1, . . . as successive approximations of the value ofZ. The final automaton computed gives the value
of Z that is the solution to

µZ.C∪PreP(Z) .

In the case of Büchi games, there are two nested fixed point computations over the variablesZ0 and
Z1. The winning region is the greatest fixed point forZ0. However, in order to compute this fixed point
we also have to compute the least fixed point forZ1. Hence, we will need an automaton that can represent
two different sets of configurations: the approximation ofZ0 as well as the approximation ofZ1. Thus,
instead of having a statep of the alternating automaton for each control statep, we will have two states
p0 and p1. A configuration(p,w) appears in the current approximation ofZ0 if it is accepted fromp0,
and it appears in the current approximation ofZ1 if it is accepted fromp1. We will also use control states
of the formp2 to hold intermediate values of the computation.

Finally, the automata we build will have two additional states (these will be the only states that are
not of the formpα for someα). There will be one states⊥ that will be the only accepting state. Since
all stacks finish with the bottom-of-stack symbol⊥, this state will have no outgoing transitions, and all

incoming transitions will be of the forms
⊥
−→{s⊥}. No other transitions in the automaton will be labelled

⊥.
The other additional state iss∗ from which all stacks are accepted. This state has the outgoing

transitionss∗
A
−→ {s∗} for all A∈ Γ with A 6=⊥, ands∗

⊥
−→ {s⊥}.

Evaluation strategy The saturation method computes fixed points following Knaster-Tarski theorem.
That is, to compute a least fixed point, it begins with the smallest potential value (the set of target
configurationsC in the case of reachability properties, and the empty set in the case of Büchi properties).
It then adds configurations to this set (by adding new transitions) that also necessarily appear in the least
fixed point. This process is repeated until nothing more needs to be added – at which point the least fixed
point has been calculated.

To compute a greatest fixed pointZ0 we follow the dual strategy. We begin with the largest possible
value, which is the set of all configurations, which we will represent by statesp0 with all possible
outgoing transitions. Next, the least fixed pointZ1 is calculated given the initial approximation ofZ0.
Once the value ofZ1 is known, it becomes our new approximation ofZ0. Notice that this approximation
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is necessarily smaller than the initial attempt (both in terms of configurations accepted and transitions
present). We then recalculate the least fixed point forZ1 with the new smaller value ofZ0. In this way,
starting from the largest possible value forZ0 we successively shrink its value until a fixed point is found.
This fixed point will be the greatest fixed point.

Projection When computing the greatest fixed point forZ0 we repeatedly compute a least fixed point
for Z1. Each fixed point forZ1 becomes the new approximation ofZ0. Hence, during our algorithm we
need a method of assigning the value ofZ1 to Z0. We call this manipulation of transitionsprojection.

Suppose the only outgoing transition fromp1 is

p1 A
−→
{

q1, p0}

and we want to assign the new value ofp0. To do this we simply remove all transitions fromp0 (the old
value) and introduce the transition

p0 A
−→
{

q0, p0} .

There are several things to notice about this new transition. The first is that it emanates fromp0 rather
than p1. Next, we have changed the target stateq1 to q0. This is because we are renaming all the states
annotated with 1 to be annotated with 0. Finally, notice thatwe have not changed the target statep0.

By leaving p0 we are no longer simply transferring the value ofZ1 to Z0 since we are changing the
outgoing transitions fromp0. It is provable that this change in value is benign with respect to the fixed
point of Z0: sincep0 should accept all configurations(p,w) in the fixed point forZ0, the fact that any
run that reachesp0 may accept additional configurations coming from the new value of p0 rather than
the old simply means that we are accelerating the computation of the fixed point.

For example, suppose we had a pushdown Büchi game withp∈ F ∩QE and an automaton with the
transitions

p1 A
−→
{

p0} andp1 ⊥−→ {s⊥} andp0 ⊥−→ {s⊥}

and the pushdown game contains (amongst others) the rule(p,A)→ (p,ε). In particular we accept the
configuration(p,A⊥) from p1, and we do so because we can pop theA to reach(p,⊥) (from which we
supposéEloise can win the game). After projection, we will have the transitions

p0 A
−→
{

p0} andp0 ⊥−→ {s⊥} .

Notice we now have a loop fromp0 enabling any configuration of the form(p,A∗⊥) to be accepted
from p0. Thus we have increased the valuation during projection. However, this is benign because, by
repeated applications of(p,A)→ (p,ε) Éloise can reach(p,⊥) and win the game. Thus, the projection
has collapsed an unbounded sequence of moves into a single transition.

To calculate the fixed point forZ1 we begin with the empty set as an initial approximation. Then
we compute the new approximation forZ1. While computing this approximation we will use states of
the form p2 to store the new value. Thus, to assign the new approximationto Z1 we simply perform
projection from the statesp2 to p1 in the same way that we projected when assigningZ1 to Z0.

We thus define a projection function on states

πα ,β (s) =











s s= s∗∨s= s⊥
s s= pγ ∧ γ 6= α
pβ s= pα

which generalises naturally to a function on sets of statesπα ,β (S) =
{

πα ,β (s) | s∈ S
}

.
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Algorithm Fix a pushdown Büchi gameP = (Q,Γ,⊥,∆,F). We begin our presentation of the algo-
rithm by presenting a simple function for performing the projections described above. The function
PROJ(A , α , β ) projects the value of the statespα to pβ and deletes all the statespα .

function PROJ(A , α , β )
(S,Γ,δ ,F )←A

S
′← S\{pα | p∈Q}

δ ′←

{

s
A
−→ S∈ δ

∣

∣ ∀p∈Q.s 6= pα ∧s 6= pβ
}

∪
{

pβ A
−→ πα ,β (S)

∣

∣

∣
pα A
−→ S∈ δ

}

return (S′,Γ,δ ′,F )
end function
The main algorithm contains two nested fixed point computations: the outer forZ0 and the inner for

Z1. The initial automatonA 0 contains only the statess∗ ands⊥ with transitions as described above. That
is A 0 = ({s∗,s⊥} ,Γ,δ ,{s⊥}) with

δ =
{

s∗
A
−→ {s∗} | A∈ Γ∧A 6=⊥

}

∪
{

s∗
⊥
−→ {s⊥}

}

.

The algorithm is then a call to the function FIX 0(A 0) defined below. We define two functions for com-
puting the fixed points forZ0 andZ1. Both of these functions are similar to each other: they begin by
setting up an automaton representing the initial approximation of the fixed point, either by adding no
transitions (the empty set) or all transitions (the largestset). They then enter a loop of computing the
next approximation and then using projection to transfer (and accelerate) the new value to the statesp0 or
p1 as appropriate. The function FIX 0(A ) computes the fixed point forZ0 and uses FIX 1(A ) to compute
the next approximation, while FIX 1(A ) computes the fixed point forZ1 and uses a function PRE(A ) to
compute the next approximation. These two functions are thus defined

function FIX 0(A )
(S,Γ,δ ,F )←A

S
′← S∪

{

p0 | p∈Q
}

δ ′←
{

p0 A
−→ S | p∈Q∧A∈ Γ∧A 6=⊥∧S⊆ S

′ \{s⊥}
}

∪
{

p0 ⊥−→ {s⊥} | p∈Q
}

B← (S′,Γ,δ ′,F )
repeat

B← FIX 1(B)
B← PROJ(B, 1, 0)

until B unchanged
return B

end function
and

function FIX 1(A )
(S,Γ,δ ,F )←A

S
′← S∪

{

p1 | p∈Q
}

B← (S′,Γ,δ ,F )
repeat

B← PRE(B)
B← PROJ(B′, 2, 1)

until B unchanged
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return B

end function .

The inner fixed point computation uses a function PRE(A ) to compute the step of the calculation corre-
sponding to

(F ∩PreP(Z0))∪
(

F ∩PreP(Z1)
)

.

This function adds transitions in the same way as the loop of saturation algorithm for reachability games,
except it is sensitive to the two different fixed point variables. For convenience, we define the function
Ω such that

Ω(p) =

{

0 p∈ F

1 p /∈ F .

We can then define

function PRE(A )
(S,Γ,δ ,F )←A

S
′← S∪

{

p2 | p∈Q
}

δ ′←

{

p2 A
−→ S

∣

∣

∣
p∈QE∧∃(p,a)→ (q,w) ∈ ∆.qΩ(p) w

−→ S
}

∪
{

p2 A
−→ S

∣

∣

∣
p∈QA∧∀(p,a)→ (q,w) ∈ ∆.∃qΩ(p) w

−→ S′.S′ ⊆ S
}

return (S′,Γ,δ ′,F )
end function .

The automatonB that is the result of FIX 0(A 0) will be such that(p,w) ∈W iff w∈Lp0(B). Since
there are at most an exponential number of transitions in theautomaton each fixed point may iterate at
most an exponential number of times. This gives us an overallexponential run time for the algorithm.

Theorem 4 The winning region of a pushdown Büchi game is regular and computable in exponential
time.

Note that for the one player case (i.e. all states belong tóEloise), the computation can be done in
polynomial time [7, 22].

4.3.2 Winning strategies

Cachat also showed that, like in reachability games, it is possible to construct a linear space positional
strategy and a constant time (though not positional) pushdown strategy foŕEloise. However, in his PhD.
thesis [14] Cachat observes that adopting his techniques for computing strategies for Abelard is not
clear. However, it is known that, even for the full case of parity games, a pushdown strategy exists using
different techniques [57, 40].

4.4 Pushdown parity games

Parity games allow more complex liveness properties to be checked. To define a parity game, each
configuration is assigned a “colour” from a set of colours represented by natural numbers. The winner
of the game depends on the smallest colour appearing infinitely often in the run: if it is even theńEloise
wins the game, else Abelard wins.

More formally, given a sequence of configurationsρ = (q0,w0),(q1,w1), . . . let Inf(ρ) be the set of
control states appearing infinitely often inρ . That is

Inf(ρ) =
{

q
∣

∣ ∀i∃ j > i.q j = q
}

.
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Given a set of control statesQ and maximum colourκ , let Ω : Q→{0, . . . ,κ} be a colouring function
assigning colours to each control state. We can generaliseΩ to sets of control statesPby taking the image
of P. That is,Ω(P) = {α | ∃p∈ P.Ω(p) = α }.

A pushdown parity game is a tuple(Q,Γ,⊥,∆,Ω) whereΩ : Q→ {0, . . . ,κ} is a colouring function
assigning to each control state a colour from the set{0, . . . ,κ}. Moreover, the tuple defines a pushdown
game(Q,Γ,⊥,∆,W) where

W = {ρ | min(Ω(Inf(ρ))) is even} .

Thus, a Büchi game is a special case of a parity game, where the set of colours is{0,1} and

Ω(p) =

{

0 p∈ F

1 p /∈ F .

4.4.1 Characterising the winning region

The characterisation of́Eloise’s winning region in terms of fixed points is a natural extension of the
Büchi version. That is, assumingκ to be odd and writingCα to denote{(p,w) | Ω(p) = α }, we need

νZ0.µZ1. · · · .νZκ−1.µZκ .
⋃

0≤α≤κ
(Cα ∩PreP(Zα)) .

This formula can be understood as a generalisation of the Büchi formula, whereF = C0 andF = C1.
When the colour of a configuration is odd, then it is bound by a least fixed point. Hence, it must eventually
exit this fixed point by visiting a configuration with a smaller colour (just like a configuration inF had
to visit a configuration inF). When the colour is even, then it is bound by a greatest fixed point – hence
a play can stay within this fixed point, never visiting a smaller colour, and satisfy the winning condition
for Éloise.

4.4.2 Computing the winning region

Fix a pushdown parity gameP= (Q,Γ,⊥,∆,Ω). Computing the winning region in a pushdown parity
game is a direct extension of the algorithm presented for Büchi games. Since a Büchi game is simply a
pushdown parity game with two colours, we generalise the nesting of the fixed point calls to an arbitrary
number of colours. To this end we introduce a function DISPATCH(A , α) that manages the level of
nesting, and performs a fixed point or a pre-step analysis as appropriate.

function DISPATCH(A , α)
if α = κ +1 then

return PRE(A )
else

return FIX (A , α)
end if

end function
Using this function we can define a generic fixed point function based on the Büchi functions. This
function performs the nested calculations and the projection as before. The initial transitions from the
new states introduced by the function depend on the parity ofα : when computing an even (greatest)
fixed point, we add all transitions, and when computing an odd(least) fixed point, we add no transitions.

function FIX (A , α)
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(S,Γ,δ ,F )←A

S
′←{pα | p∈Q}

if α is eventhen
δ ′←

{

pα A
−→ S | p∈Q∧A∈ Γ∧A 6=⊥∧S⊆ S

′ \{s⊥}
}

∪
{

pα ⊥
−→ {s⊥} | p∈Q

}

else
δ ′← /0

end if
B← (S∪S′,Γ,δ ∪δ ′,F )
repeat

B← DISPATCH(B, α +1)
B← PROJ(B, α +1, α)

until B unchanged
return B

end function

Finally, we redefine the PRE(A ) function to add transitions to the correct initial states.Note, we were
already usingΩ to distinguish between different fixed point variables, hence this function is almost
identical to the Büchi case.

function PRE(A )
(S,Γ,δ ,F )←A

S
′← S∪

{

pκ+1 | p∈Q
}

δ ′←

{

pκ+1 A
−→ S

∣

∣

∣
p∈QE∧∃(p,a)→ (q,w) ∈ ∆.qΩ(p) w

−→ S
}

∪
{

pκ+1 A
−→ S

∣

∣

∣
p∈QA∧∀(p,a)→ (q,w) ∈ ∆.∃qΩ(p) w

−→ S′.S′ ⊆ S
}

return (S′,Γ,δ ′,F )
end function

Thus, to compute the winning region of a pushdown parity game, we make the call DISPATCH(A 0, 0)
whereA 0 is the initial automaton with only the statess∗ ands⊥ as defined in the Büchi case.

The automatonB that is the result of DISPATCH(A 0, 0) will be such that(p,w)∈W iff w∈Lp0(B).
Since there are at most an exponential number of transitionsin the automaton each fixed point may iterate
at most an exponential number of times. This gives us an overall exponential run time for the algorithm.

Theorem 5 The winning region of a pushdown parity game is regular and computable in exponential
time.

4.4.3 Winning strategies

Unfortunately, it is currently unknown how to compute the winning strategies foŕEloise and Abelard
using the saturation technique for pushdown parity games. However, using a different approach, both
Walukiewicz [57] and Serre [40] have shown that a pushdown strategy exists for both players.

5 Implementations and Applications of Saturation Methods

In this article, we have presented the saturation method from a theoretical standpoint. The method,
however, is an algorithmic approach that is well suited to implementation, and several tools have been
constructed using saturation as its core technique.
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5.1 Single Player Implementations

Perhaps the most famous of these tools is Moped [21, 39] and its incarnation as a model checker for
Java, JMoped [52, 50]. In taking the algorithm from a theoretical tool to a practical one, a number of
new concerns had to be taken into account.

The rules of a pushdown system roughly correspond to the statements in a program. In a program
with thousands of lines, a fixed point iteration that checks,during each iteration, whether each rule leads
to new transitions in the automaton would be woefully inefficient. In constructing Moped, Esparzaet
al. [20] showed how this naive outer loop can be reorganised suchthat, at each iteration, only the relevant
rules of the system were considered, leading to a significantimprovement in performance.

A second consideration of applications to the analysis of program models is the handling of data
values. Boolean programs are essentially pushdown systemswhere each control state and stack character
contains a valuation of a set of global and local boolean variables respectively. These boolean programs
are the natural output of predicate abstraction tools such as SATABS [18] as well as the target compilation
language of JMoped.

Since there are only finitely many valuations of sets of boolean variables, they can directly be encoded
as control states or characters and standard pushdown analysis techniques can be employed. However,
since they are also exponential in number, such an approach is inherently inefficient. Hence, Esparzaet
al. introducedsymbolic pushdown systems[21] which make boolean valuations first class objects. The
saturation technique was extended by adding BDDs representing variable valuations to the edges of the
P-automata, leading to an implementation capable of analysing symbolic pushdown systems derived
from real-world programs.

Around this time it was observed by Reps that the BDDs could bereplaced by any abstract domain
of values that was sufficiently well behaved, and many staticanalyses could be derived. This led to the
introduction ofweighted pushdown systems[37] (and, indeed,extendedweighted pushdown systems
amongst other improvements [33, 32]), of which symbolic pushdown systems and their BDD represen-
tation were an instance. The developers of Moped created theweighted pushdown system library[58] as
a component of Moped, and Repset al. developed WALi [56] implementing these new algorithms.

5.2 Two-Player Implementations

Perhaps the most straight-forward optimisation to make to the saturation technique as presented for two-
player games is via the observation that a transition

s
A
−→ S

is effectively redundant if there exists another transition

s
A
−→ S′

with S′ ⊆ S. This is because an accepting run fromS contains within it an accepting run fromS′, and
thus the former transition can be removed.

When considering reachability games, it is also possible toimprove the naive fixed point iteration,
as in the single-player case, to avoid checking against all pushdown rules during each step of the im-
plementation. Such an optimisation was introduced by Suwimonteerabuthet al. and implemented with
applications to certificate chain analysis [53].

This work has recently been built upon by Song who has developed various tools based upon reduc-
tions to Büchi games and tools for their analysis. Primarily this work has focussed on a specification
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language that is an extension of CTL and its translation intosymbolic pushdown Büchi games [44, 46]
resulting in the tool PuMoC [45]. The main application of this work has been in the detection of malware.
More recently still, this work has been developed for LTL-like properties to deal with situations where
the CTL approach was insufficient [47], culminating in the PoMMaDe tool [49].

However, the combination of BDD representations and alternating automata is not an easy one, since
BDDs lack the necessary alternation for a direct embedding.Hence, Song’s algorithm pays an extra expo-
nential in its worst-case complexity (doubly exponential rather than exponential), although the practical
runtime is improved. The optimal inclusion of symbolic representations into the analysis of two-player
games remains an open problem.

The saturation technique for the full case of parity games has been implemented in the PDSolver
tool [27] and applied to dataflow analysis problems for Java programs. Due to the interactions between
the several layers of fixed points, it is not clear how to adaptEsparzaet al. and Suwimonteerabuthet al.’s
efficient algorithms to this case, nor how to include symbolic representations. These remain limitations
of the tool, and interesting avenues for future work.

6 Extensions of the Saturation Method

In this article we have looked at the different saturation methods for pushdown systems. Across several
articles, the technique has proved to be applicable to various extensions to the basic model. We briefly
list some of these results here.

Concurrency The reachability problem for pushdown systems with two or more stacks is well known
to be undecidable. Since multiple stacks are needed to modelmulti-thread recursive programs, a number
of underapproximation techniques have been studied for which the reachability problem is decidable.
One such technique isbounded context switching[36] where the number of interactions between the
threads is limited to ana priori fixed numberk. While this cannot prove the absence of errors, it is
effective at finding bugs in programs, since, empirically, bugs usually manifest themselves within a
small number of interactions. This restriction can be relaxed further by allowing a bounded number of
phases[54] (where all threads run concurrently, but during each phase only one thread is allowed to pop
from its stack), or a bounded scope [55] (where, threads are scheduled in a round-robin fashion, and
characters may only be removed from the stack if they were pushed at most a fixed number of rounds
earlier).

The saturation technique has proved useful for each of theserestrictions. In particular, Moped has
been extended to provide context bounded analysis of multi-stack pushdown systems [51] by Suwimon-
teerabuthet al. and saturation was used by Seth to provide a regular solutionto the global reachability
problem for phase bounded pushdown systems [43]. The original proof that the reachability problem for
scope bounded pushdown systems is decidable was itself an extension of the saturation technique [55].

An alternative restriction that permits a decidable reachability and LTL model checking problem
is that ofordered multi-pushdown systemswhere only the leftmost non-empty stack is able to remove
characters. Atig provides two extensions of the saturationtechnique in this direction [1]. First, instead
of each pushdown rule adding a fixed sequence of characters tothe stack, he allows rules to contain
languages of sequences that may be pushed. If it is decidablewhether the language of a rule intersected
with a regular language is empty, then an augmented saturation technique leads to an effective analysis
algorithm. In particular, the model checking problem for ordered pushdown systems can be solved with
this formalism.
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Finally, Song generalises his LTL model checking algorithms to the case of pushdown systems with
dynamic thread creation [48], again using a saturation technique at its core.

Ground Tree Rewrite Systems and ResourcesGround tree rewrite systems can be thought of as
pushdown systems with a single control state and a more complex stack structure. That is, the stack is
a tree rather than a word. Rewrite rules in this system replace complete subtrees. For example a push
rule (p,A)→ (p,BC) can be considered to be replacing the subtree consisting in the leaf nodeA with the
subtreeB(C) (i.e. aB-node with aC-leaf as a child). In 1987, Dauchetet al. used saturation to show that
the confluence problem for these systems is decidable [19]. More recently, Lang and Löding adapted
this method to analyse prefix replacement systems with resource usage [34].

Higher-Order and Collapsible Pushdown Systems Pushdown systems provide a natural model for
first-order recursive programs. When considering higher-order programs, we can usehigher-order push-
down systems[35] whose stacks have a nested “stack-of-stacks” structure. These systems correspond to
higher-order recursion schemessatisfying asafetyconstraint [30]. Recently, these systems were gener-
alised tocollapsible pushdown systems(via panic automata[31]), providing an automata model without
the need for the safety constraint [25].

The saturation technique was first applied to the analysis ofhigher-order systems by Bouajjani and
Meyer [8] who considered higher-order pushdown systems with a single control state. This algorithm
was generalised by Hague and Ong to permit an arbitrary number of control states [26]. An alternative
construction in the case of second order higher-order pushdown systems was provided by Seth [41].

More recently this approach was developed by Broadbentet al. to obtain a saturation algorithm
for the full case of collapsible pushdown systems [9], leading to the analysis tool C-SHORe [10]. This
algorithm was applied directly to the analysis of recursionschemes (without the intermediate automata
model) by Broadbent and Kobayashi, resulting in the HorSat tool [11].

Finally, the case of concurrent higher-order systems has been briefly considered. Seth used satura-
tion to show that parity games over phase-bounded higher-order pushdown systems (without collapse) are
effectively solvable [42]. Recently, Hague showed that thesaturation approaches for first-order phase-
bounded, ordered and scope-bounded pushdown systems can beadapted to solve the analogous reacha-
bility problems for collapsible pushdown systems [24].
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