For the algorithms below, a permutation is represented as a size-\(n \) array with values and indices ranging from 1 to \(n \).

Question 1. Give a linear-time algorithm computing the inverse of a permutation.

Question 2. Give a linear-time algorithm computing an optimal sequence of swaps sorting a permutation.

Question 3. Give a linear-time algorithm computing the decomposition of a permutation into disjoint cycles.

Question 4. Let \(S \) be a set of permutations defining distance \(d_S \) over \(S_n \), such that \(S \) is stable by inversion (\(\pi \in S \Rightarrow \pi^{-1} \in S \)).

- Prove that \(d_S(\pi) = d_S(\pi^{-1}) \) for every permutation \(\pi \).
- The stability by inversion is a sufficient condition to have the above property, but is it necessary?

Question 5. Give sorting sequences for the following permutations, and prove they are optimal:

- \(\langle 654321 \rangle \), using block-interchanges
- \(\langle 3254761 \rangle \), using transpositions

Question 6. Show that \(td(\pi) \leq n - LIS(\pi) \), where \(LIS \) denotes the length of the longest increasing subsequence.

Question 7. Give a polynomial-time 2-approximation algorithm for the Transposition Distance problem.